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Lecture 9: End Point constraints
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L9 - End point constraints (EPC)

Qutline of lecture

Recap F8

Solution to Free C problem
Simple EPC

Simple partial EPC

Linear EPC

General EPC

Continuous time DO with EPC
Reading guidance (DO chapter 3).
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Dynamic Optimization (D, free)

Find a sequence u;, ¢ = 0, ..., N — 1 which takes
the system
i1 = filws, us) To = I

from its initial state z, along a trajectory such
that the performance index
N-1

J = ¢én[zn] + Z Li(zi,u;)

i=0

is optimized. Define the Hamiltonian function as:

H; = Li(wi, us) + My q fi (@i, wi)

Then the Euler-Lagrange equations are:

zin = films,us) Ay = 0 H;
0= 2
ou;
with boundary conditions:
zo =2, Ay= %¢N($N)

Dynamic Optimization (C, free)

Find a function u; t € [0; T'] which takes the

system system
-'tt:ft(mt)ut) ZTo = Ly

from its initial state z, along a trajectory such
that the performance index

T
J=drlor)+ [ Li(wiur) dt
0
is optimized. Define the Hamilton function as:

Hy(ze,ue, A\¢) = Ly(ze, ue) + Ath(xt,1tt)

Then the Euler-Lagrange equations are:

. 7]
. _r_- %5
Tt ft($t7ut) + oae [
0= 17}
T Ouy ¢
with boundary conditions:
7]
T
o = T, Ar = %QW(OET)
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Solutions for the C problem
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Solutions for the C problem

Type of solutions:
@ Analytical solutions (for very simple problems)
@ Semi analytical solutions (eg. the LQ problem)

@ numerical solutions

=
—
=

i

o

33



Forward sweep method

H; = Lt(x,u) + )\tft(xvu)

Euler-Lagrange Equations |

Euler-Lagrange Equations Il

¢ = fe(xe, ut) To = X ) A )
Tt = fr(xe, ut

. b5} 3]
M =_—"H; M= _""¢r(zr) . 9 9
b om T oar 3T = ——Li(a,u) + AT —— fi(x, )
9 oxt Oz
0= —H; o 16)
Out 0= —Lt(zt,ut)—i—)\T—ft(zt,ut)
Ouy Ouy

Stationarity equation

ut = hi(xt, Ae)

< 16)
At = —[—Ht]T = ge(we, Ae, uz)
xt

=
—
=

i

o

33



Forward sweep method

Guess Ao and use the knowledge xo and integrate (use e.g. ode4b)

i[5 ][y ] e

d Tt _ it (wt, At)
dt | e | gt(ift, At)
At the end check the condition:

o]
T = %¢T($T)

Use e.g. fsolve to ajust \g such that the condition is satisfied.
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End point constraints (EPC)
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End point constraints (D) - Simple EPC

Find a sequence u;, ¢ =0, ..., N — 1 which takes the system
xip1 = fi(zi, ug) To = Z

from its initial state, x), along a trajectory to

TN =2Zpn (Simple EPC)

such that the performance index

N-1

J =oén[zN]+ Z Li(xq,us)

=0

is optimized.
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End point constraints (D)

In general:
Yn(zN) =0 PRI SR p<n41

Linear EPC
1 0 0 O 1.4
Con =1 €& C*[o 1 0 o} T [2.3

Simple partial EPC
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Investment planning

Plan: During a period of time (NN intervals) to invest a amount of money u; to obtain a
specified sum (z,y) at the end of the period.

Dynamics:
Ti41 = (1 + OL)IZ' + u; Tro = 0 TN = 10.000 Dkr
Objective:
N-1,
Min J J= —u?
=0 2

Input sequence
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Simple end point constraints Proof

Consider the discreet time system (for s =0, 1, ... N — 1)

xip1 = fi(zi,ui) w0 =Zg (1)
the performance index
N-1
J=o¢n(@n)+ Y Li(wi,ui) (2)
i=0

and the simple terminal constraint
TN =Zn (3)

where z; (and z,) is given. Introduce the multiplier (vector with same length as z since EPC
are simple) v and form the Lagrange relaxation:

N-1
T = ¢n(2n) + A8 (2o — z0) +v7 (e —zy) + D [L (@i, i) + Ay (filwi, ug) — Ii+1)]
=0

New conditions: Stationarity w.r.t. x (for i = N — 1) gives:

0
OT:%‘bN‘FV - AN Ay =v" +ﬂ¢N

Stationarity w.r.t. v gives

=
—
=

TN = XN

i

The rest is as usual (as for the free case).
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Simple end point constraints

Defining the Hamiltonian function

Hi(wi,uwi, Nip1) = Li (w5, w;) + M5 1 fi(2,w:)

The Euler-Lagrange equations:

0 16)
Tiv1 = fi(zs,ug) A = %Hl 0" = %Hﬁ
1 T

with boundary conditions:

0

T

ro=2y rN=zy Av=vi4+ 0N
oxr N

Conditions: 3 X M (of which 2 x n are trivial and 7 are very simple)
Unknowns: zg, zny and v (results: 3 X n)

Conditions on states rather than on costates (for simple EPC). Trade conditions on states for DU

>
costates.
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Partial simple end point constraints

Consider the system (¢ =0, ... ,N —1)

Tiy1 = fi(zi,ui) T =2 (4)
the performance index
N-1
J=¢n(@n)+ Y Li(wi,u) (5)
i=0

and the simple but partial simple terminal constraints
TN = ZN InN=Zy €RP p<n AN = é\N
TN =N AN
where Z 5 (and z) are given. Introduce the multiplier (vector) v € RP and form the Lagrange
relaxation:

N-1
Jr = on(an) + A8 (29 — z0) + 7 (@n — Zy) + Z [Lz(xuuz) + >\7;T+1 (fi(we, uq) — $i+1)]
i=0

New conditions: Stationarity w.r.t. zn (i.e. Z and Z) gives:

B 9 _
5T = T 3T —
N=V +8:Z‘¢ N 3f¢

Stationarity w.r.t. v gives
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TN =ZTpn

i

The rest is as usual (free dyn. opt.).

14 /33



Partial simple end point constraints (in summary)

Defining the Hamiltonian function

Hi = Li(xi,ui) + Ny fi@i, i)

The Euler-Lagrange equations:

o 0
zip1 = filzi,w) N =_—H; 0"=_—"H,
ox; Ou;
with boundary conditions:
- - ~ o _
To =2z IN=2Zy M =vT+ ﬁfi’(ﬂw) Ay = ﬁ‘b(%N)
N N

Conditions: n+p+p+(n—p) =2 xn+p.
Unknowns: zo, Zn, v and Ay (results: n+p+p+ (n —p))
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General end point constraints

Consider the system (¢ =0, ... ,N —1)

xip1 = fi(zi,ui) w0 =Zg (6)
the performance index
N-1
J=o¢n(@n)+ Y Li(wi,ui) )
i=0

and the general terminal constraints
Yn(zN) =0 ¥ RV 5 RP (8)

where 9 (and z) are given. Introduce the multiplier (vector of length p) v and form the
Lagrange relaxation:

N-1
Jp=on(aN) + A (g — w0) + v by (zn) + Z [Lz(xwuz) + A5 (fi(es, ) — $i+1)]
i=0

New conditions: Stationarity w.r.t. x gives:
1o} 0
P\ S VI
8xN w 83:N ¢

Stationarity w.r.t. v gives
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Yn(zn) =0

i

The rest is as usual (free dyn. opt.).
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General end point constraints (D)

Defining the Hamiltonian function

H; = Li(zi, ui) + Ay fi(@i, wi)

The Euler-Lagrange equations:

o 1o}
zip1 = filzi,u) N =_—H, 0T=_"H
ox; Ou;
with boundary conditions:
0 0
= =0 N =, ,T_—_ _Z
zo=1z5 P(zN) v adeJ + 8$T¢

Conditions: n+ p + n.
Unknowns: zg, zny and v (results: 2 X n + p)
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End point constraints (C)

In this section we consider the continuous case in which ¢t € [0; T] € R. The problem is to find
the input function u; to the system

izft(xtvut) o = Zg

such that the performance index
T
J = ¢T(:BT) +/ Lt(xt,ut)dt
0

is optimized and the end point constraints in

Yr(zr) =0

are met.

Jr = ¢r(er) + M zo — Mar + vy (ar)

T
+/ (Lt(xt,ut) + AT felae, ug) + )\tTQJt) dt
0

Stationarity w.r.t. zp gives:

R

83:T 8$T ¢T

=
—
=

stationarity w.r.t. v gives

i

Yr(xr) =0
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Euler-Lagrange equations

If we introduce the Hamiltonian function as

Hi(t,ut) = Le(xe,ur) + A fe (@, ur) (9)

we can express the necessary conditions as

o= fiwou) 3T = Lm0t = Py,
Oxt Ouy

with the (split) boundary conditions

o o
ro=2zq Yrler)=0 N =vT ——yr+

oxr oxr or

Simple EPC:
Yr(zr) = (zr —27) =0

0
To = Z TT =T )\T = ,/T + %(bT(IT)
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Partial simple EPC:

[ ar .
xT—{iT} T = Zp
1o} - 0
To=25 Ir =27 )‘T:”TJrajqj g:ﬁ
T
Linear EPC
Cxr =1

1o}
To = g Cxr =1 A = vIo+ %¢T($T)
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Orbit injection problem - Simplified

A body is initially at rest in the origin. A constant specific thrust force, a, is applied to the body
in a direction that makes an angle 6; with the z-axis. Let u and v be the velocity in the z and y
direction, respectively.

>
z

The task is to find an input function of angles of direction, 6; such that the body in a finite
period, T,
1 is injected into orbit i.e. reach a specific height H

yr =H
2 has zero vertical speed (y-direction)
v = 0
3 has maximum horizontal speed (z-direction)
Mazx ur w
>
>

This is also denoted as a Thrust Direction Programming (TDP) problem.
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Orbit injection - The dynamic

The problem is to find the input function, 6, such that the terminal horizontal velocity, ur, (at a
specific altitude H) is maximized.

‘y a

H

The dynamic is:

ut a cos(0¢) uQ 0
a | v | _ | asin(f) v | _| O
dt | =z | ut z0 | |0
Yt vt Yo 0

DTU

>

>

>
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Orbit injection - The terminal conditions

The terminal constraints are
vp=0 yr=H

The objective is to maximize:
J = ¢(zr) = ur

More condensed:

J =¢(xr) =ur HL:{H

Tt =

< w e g
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Orbit injection - Euler-Lagrange equations

The Hamilton functions is (since L = 0)

a cos(6t)
a sin(6y)
ut
Ut

He=Afr=[ 2 Ay A N ]

Hy = Afa cos(0) + AYa sin(0y) + Afue + Aoy

The Euler-Lagrange equations consists of the state equation,

ut a cos(6t) ug 0
d ;
o Zi - “ szunt(et) Zg = 8 (just cut and paste)
Yt vt Yo 0
the costate equation
d 0
S LA A A M =AM 0 0] = 2, 1t
and the stationarity condition
o DTU
0 = —M\fa sin(0:) + AYa cos(6t) =_—H; >
du =
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Orbit injection - The boundary conditions

Since

were [1],-[ ]

we have the boundary conditions

T =y N =y
AL =1 Ao =0
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Orbit injection - The stationarity

The stationarity condition

0= —Xa sin(0¢) + A\ a cos(6¢)
gives the tangent law:

tan(6;) = i—z
t

It turns out (later on) to be a linear tangent law.

=
—
=

i

26/33



Orbit injection - The Costates

The Costate equations

SSIN N N M T=[A N 0 0]

and the boundary conditions

A = vy M=y (just a copy)
(T [ 2—
A =1 X =0
gives us:
A7 =0 A =y constant in time
A =1 constant in time

A =vy + vy (T —t)

4=
—
=

tan(0:) = vy + vy (T — t)




Orbit injection

Find vy and vy such that
tan(0:) = vy + vy (T — t)

in the dynamics

ut a cos(0¢) uo 0

d vt | a sin(6y) ) |0
dt 2t - ut 20 10
Yt vt Yo 0

results in

]
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Orbit injection

80

Orbit injection problem (TDP)
T T T

0.7

0.1 0.2 0.3 0.4

05
time (Y/T)

uandvin PU
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Orbit injection

Orbit injection problem (TDP)
0.2 T T T

0.18| 4

0.12 - 4

0.1 g i 4

yin PU

0.08- 4

0.04 .

0.02 : . .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
xin PU
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h
parms.m

%

T=1; ’ parameters

1
1;
0

©

o

.2;
x0=zeros(4,1); % Initial state variable

0
%
function mainl

%

parms
parm0=[-2.4 4.7]°; J Initial guess on parametes

opt=optimset; % Options for fsolve
opt=optimset (opt,’Display’,’iter’);
parm=fsolve(Qerf,parm0,opt); % Call fsolve for finding parameters

[err,time,xt]=erf(parm); % Call erf ones more for getting the
tht=atan(parm(1)+parm(2)*(T-time)); 7% optimal input solution

% Here goes the plotting commands. Omitted here.
% file on databar: “nkpo/02711/dist3/mainl.m

=
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yA
function [err,time,xt]=erf (parm)
yA
% Determine the end point error (err) given the EPC Lagrange multipliers
% in parm (and the constants that specifies the problem).

parms

Tspan=0:T;

[time,xt]=0de45(@tdp,Tspan,x0) ;

xT=xt(end,:)’;

err=[xT(2);
xT(4)-H];
yA
function dx=tdp(t,x,parm)
yA

% System model. Determine the (time) derivative of the state vector
% given the time, state (x) and the EPC Lagrange multipliers.
parms
u=x(1); v=x(2); z=x(3); y=x(4);
nuu=parm(1) ; nuy=parm(2);
th=atan (nuu+nuy*(T-t));
dx=[a*cos(th);
a*sin(th);
u;
v];
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Reading guidance

DO Chapter 3
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