
Static and Dynamic Optimization (42111)

Build. 303b, room 048
Section for Dynamical Systems

Dept. of Applied Mathematics and Computer Science
The Technical University of Denmark

Email: nkpo@dtu.dk
phone: +45 4525 3356
mobile: +45 2890 3797

2019-11-03 13:23

Lecture 9: End Point constraints

1 / 33

L9 - End point constraints (EPC)

Outline of lecture

Recap F8

Solution to Free C problem

Simple EPC

Simple partial EPC

Linear EPC

General EPC

Continuous time DO with EPC

Reading guidance (DO chapter 3).

2 / 33

Dynamic Optimization (D, free)

Find a sequence ui, i = 0, ..., N − 1 which takes
the system

xi+1 = fi(xi, ui) x0 = x0

from its initial state x
0
along a trajectory such

that the performance index

J = φN [xN] +

N−1∑
i=0

Li(xi, ui)

is optimized. Define the Hamiltonian function as:

Hi = Li(xi, ui) + λ
T

i+1fi(xi, ui)

Then the Euler-Lagrange equations are:

xi+1 = fi(xi, ui) λ
T

i
=

∂

∂xi

Hi

0 =
∂

∂ui

Hi

with boundary conditions:

x0 = x0 λ
T

N
=

∂

∂xN

φN (xN)

Dynamic Optimization (C, free)

Find a function ut t ∈ [0; T] which takes the
system system

ẋt = ft(xt, ut) x0 = x
0

from its initial state x
0
along a trajectory such

that the performance index

J = φT [xT] +

∫
T

0

Lt(xt, ut) dt

is optimized. Define the Hamilton function as:

Ht(xt, ut, λt) = Lt(xt, ut) + λ
T

t
ft(xt, ut)

Then the Euler-Lagrange equations are:

ẋt = ft(xt, ut) − λ̇
T

t
=

∂

∂xt

Ht

0 =
∂

∂ut

Ht

with boundary conditions:

x0 = x
0

λ
T

T
=

∂

∂xT

φT (xT)

3 / 33

Solutions for the C problem

4 / 33

Solutions for the C problem

Type of solutions:

Analytical solutions (for very simple problems)

Semi analytical solutions (eg. the LQ problem)

numerical solutions

5 / 33

Forward sweep method

Ht = Lt(x, u) + λtft(x, u)

Euler-Lagrange Equations I

ẋt = ft(xt, ut) x0 = x0

−λ̇Tt =
∂

∂xt
Ht λTT =

∂

∂xT
φT (xT)

0 =
∂

∂ut
Ht

Costate equation

λ̇t = −
[∂

∂xt
Ht

]T
= gt(xt, λt, ut)

Euler-Lagrange Equations II

ẋt = ft(xt, ut)

−λ̇Tt =
∂

∂xt
Lt(x, u) + λT

∂

∂xt
ft(x, u)

0 =
∂

∂ut
Lt(xt, ut) + λT

∂

∂ut
ft(xt, ut)

Stationarity equation

ut = ht(xt, λt)

6 / 33

Forward sweep method

Guess λ0 and use the knowledge x0 and integrate (use e.g. ode45)

d

dt

[

xt
λt

]

=

[

ft(xt, ut)
gt(xt, λt, ut)

]

ut = ht(xt, λt)

i.e.
d

dt

[

xt
λt

]

=

[

f
t
(xt, λt)

g
t
(xt, λt)

]

At the end check the condition:

λTT =
∂

∂xT
φT (xT)

Use e.g. fsolve to ajust λ0 such that the condition is satisfied.

7 / 33

End point constraints (EPC)

8 / 33

End point constraints (D) - Simple EPC

Find a sequence ui, i = 0, ..., N − 1 which takes the system

xi+1 = fi(xi, ui) x0 = x0

from its initial state, x0, along a trajectory to

xN = xN (Simple EPC)

such that the performance index

J = φN [xN] +

N−1
∑

i=0

Li(xi, ui)

is optimized.

9 / 33

End point constraints (D)

In general:

ψN (xN) = 0 ψ : Rn+1
→ R

p p ≤ n+ 1

Linear EPC

CxN = r e.g. C =

[

1 0 0 0
0 1 0 0

]

r =

[

1.4
2.3

]

Simple partial EPC

xN =

[

x̃N
x̄N

]

x̃N = x̃N ∈ R
p p ≤ n

10 / 33

Investment planning

Plan: During a period of time (N intervals) to invest a amount of money ui to obtain a
specified sum (xN) at the end of the period.

Dynamics:
xi+1 = (1 + α)xi + ui x0 = 0 xN = 10.000 Dkr

Objective:

Min J J =

N−1
∑

i=0

1

2
u2i

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800
Input sequence

1 2 3 4 5 6 7 8 9 10 11
0

2000

4000

6000

8000

10000

12000
Saldo

11 / 33

Simple end point constraints Proof

Consider the discreet time system (for i = 0, 1, ... N − 1)

xi+1 = fi(xi, ui) x0 = x0 (1)

the performance index

J = φN (xN) +

N−1
∑

i=0

Li(xi, ui) (2)

and the simple terminal constraint
xN = xN (3)

where xN (and x0) is given. Introduce the multiplier (vector with same length as x since EPC
are simple) ν and form the Lagrange relaxation:

JL = φN (xN) + λT0 (x0 − x0) + νT (xN − xN) +

N−1
∑

i=0

[

Li(xi, ui) + λTi+1

(

fi(xi, ui)− xi+1

)

]

New conditions: Stationarity w.r.t. xN (for i = N − 1) gives:

0T =
∂

∂xN
φN + νT − λTN λTN = νT +

∂

∂xN
φN

Stationarity w.r.t. ν gives
xN = xN

The rest is as usual (as for the free case).
12 / 33

Simple end point constraints

Defining the Hamiltonian function

Hi(xi, ui, λi+1) = Li(xi, ui) + λTi+1fi(xi, ui)

The Euler-Lagrange equations:

xi+1 = fi(xi, ui) λTi =
∂

∂xi
Hi 0T =

∂

∂ui
Hi

with boundary conditions:

x0 = x0 xN = xN λTN = νT +
∂

∂xN
φN

Conditions: 3× n (of which 2 × n are trivial and n are very simple)

Unknowns: x0, xN and ν (results: 3× n)

Conditions on states rather than on costates (for simple EPC). Trade conditions on states for
costates.

13 / 33

Partial simple end point constraints

Consider the system (i = 0, ... , N − 1)

xi+1 = fi(xi, ui) x0 = x0 (4)

the performance index

J = φN (xN) +

N−1
∑

i=0

Li(xi, ui) (5)

and the simple but partial simple terminal constraints

xN =

[

x̃N
x̄N

]

x̃N = x̃N ∈ R
p p < n λN =

[

λ̃N
λ̄N

]

where x̃N (and x0) are given. Introduce the multiplier (vector) ν ∈ R
p and form the Lagrange

relaxation:

JL = φN (xN) + λT0 (x0 − x0) + νT (x̃N − x̃N) +

N−1
∑

i=0

[

Li(xi, ui) + λTi+1

(

fi(xi, ui)− xi+1

)

]

New conditions: Stationarity w.r.t. xN (i.e. x̃ and x̄) gives:

λ̃TN = νT+
∂

∂x̃
φ λ̄TN =

∂

∂x̄
φ

Stationarity w.r.t. ν gives
x̃N = x̃N

The rest is as usual (free dyn. opt.).
14 / 33

Partial simple end point constraints (in summary)

Defining the Hamiltonian function

Hi = Li(xi, ui) + λTi+1fi(xi, ui)

The Euler-Lagrange equations:

xi+1 = fi(xi, ui) λTi =
∂

∂xi
Hi 0T =

∂

∂ui
Hi

with boundary conditions:

x0 = x0 x̃N = x̃N λ̃TN = νT +
∂

∂x̃N
φ(xN) λ̄TN =

∂

∂x̄N
φ(xN)

Conditions: n+ p+ p+ (n− p) = 2× n+ p.
Unknowns: x0, x̃N , ν and λ̄N (results: n+ p + p+ (n− p))

General EP

15 / 33

General end point constraints

Consider the system (i = 0, ... , N − 1)

xi+1 = fi(xi, ui) x0 = x0 (6)

the performance index

J = φN (xN) +

N−1
∑

i=0

Li(xi, ui) (7)

and the general terminal constraints

ψN (xN) = 0 ψ : Rn+1
→ R

p (8)

where ψ (and x0) are given. Introduce the multiplier (vector of length p) ν and form the
Lagrange relaxation:

JL = φN (xN) + λT0 (x0 − x0) + νTψN (xN) +

N−1
∑

i=0

[

Li(xi, ui) + λTi+1

(

fi(xi, ui)− xi+1

)

]

New conditions: Stationarity w.r.t. xN gives:

λTN = νT
∂

∂xN
ψ +

∂

∂xN
φ

Stationarity w.r.t. ν gives
ψN (xN) = 0

The rest is as usual (free dyn. opt.).
16 / 33

General end point constraints (D)

Defining the Hamiltonian function

Hi = Li(xi, ui) + λTi+1fi(xi, ui)

The Euler-Lagrange equations:

xi+1 = fi(xi, ui) λTi =
∂

∂xi
Hi 0T =

∂

∂ui
Hi

with boundary conditions:

x0 = x0 ψ(xN) = 0 λTN = νT
∂

∂xT
ψ +

∂

∂xT
φ

Conditions: n+ p+ n.
Unknowns: x0, xN and ν (results: 2× n+ p)

17 / 33

End point constraints (C)

In this section we consider the continuous case in which t ∈ [0; T] ∈ R. The problem is to find
the input function ut to the system

ẋ = ft(xt, ut) x0 = x0

such that the performance index

J = φT (xT) +

∫ T

0

Lt(xt, ut)dt

is optimized and the end point constraints in

ψT (xT) = 0

are met.

JL = φT (xT) + λT0 x0 − λTT xT + νTψT (xT)

+

∫ T

0

(

Lt(xt, ut) + λTt ft(xt, ut) + λ̇Tt xt

)

dt

Stationarity w.r.t. xT gives:

λTT = νT
∂

∂xT
ψT +

∂

∂xT
φT

stationarity w.r.t. ν gives
ψT (xT) = 0

18 / 33

Euler-Lagrange equations

If we introduce the Hamiltonian function as

Ht(xt, ut) = Lt(xt, ut) + λTt ft(xt, ut) (9)

we can express the necessary conditions as

ẋt = ft(xt, ut) − λ̇Tt =
∂

∂xt
Ht 0T =

∂

∂ut
Ht

with the (split) boundary conditions

x0 = x0 ψT (xT) = 0 λTT = νT
∂

∂xT
ψT +

∂

∂xT
φT

Simple EPC:
ψT (xT) = (xT − xT) = 0

x0 = x0 xT = xT λTT = νT +
∂

∂xT
φT (xT)

19 / 33

Partial simple EPC:

xT =

[

x̃T
x̄T

]

x̃T = x̃T

x0 = x0 x̃T = x̃T λ̃TT = νT +
∂

∂x̃T
φ λ̄TT =

∂

∂x̄T
φ

Linear EPC
CxT = r

x0 = x0 CxT = r λT = νTC +
∂

∂xT
φT (xT)

20 / 33

Orbit injection problem - Simplified

A body is initially at rest in the origin. A constant specific thrust force, a, is applied to the body
in a direction that makes an angle θt with the z-axis. Let u and v be the velocity in the z and y
direction, respectively.

θ

H

a
y

u

v

z

The task is to find an input function of angles of direction, θt such that the body in a finite
period, T ,

1 is injected into orbit i.e. reach a specific height H

yT = H

2 has zero vertical speed (y-direction)
vT = 0

3 has maximum horizontal speed (z-direction)

Max uT

This is also denoted as a Thrust Direction Programming (TDP) problem.
21 / 33

Orbit injection - The dynamic

The problem is to find the input function, θt, such that the terminal horizontal velocity, uT , (at a
specific altitude H) is maximized.

θ

H

a
y

u

v

z

The dynamic is:

d

dt









ut
vt
zt
yt









=









a cos(θt)
a sin(θt)

ut
vt

















u0
v0
z0
y0









=









0
0
0
0









22 / 33

Orbit injection - The terminal conditions

The terminal constraints are
vT = 0 yT = H

The objective is to maximize:
J = φ(xT) = uT

More condensed:

J = φ(xT) = uT

[

v

y

]

T

=

[

0
H

]

xt =









u

v

z

y









t

23 / 33

Orbit injection - Euler-Lagrange equations

The Hamilton functions is (since L = 0)

Ht = λTt ft =
[

λut λvt λzt λ
y
t

]









a cos(θt)
a sin(θt)

ut
vt









Ht = λut a cos(θt) + λvt a sin(θt) + λzt ut + λ
y
t vt

The Euler-Lagrange equations consists of the state equation,

d

dt









ut
vt
zt
yt









=









a cos(θt)
a sin(θt)

ut
vt

















u0
v0
z0
y0









=









0
0
0
0









(just cut and paste)

the costate equation

−
d

dt

[

λut λvt λzt λ
y
t

]

=
[

λzt λ
y
t 0 0

]

=
∂

∂xt
Ht

and the stationarity condition

0 = −λut a sin(θt) + λvt a cos(θt) =
∂

∂ut
Ht

24 / 33

Orbit injection - The boundary conditions

Since

φT (xt) = ut

[

v

y

]

T

=

[

0
H

]

we have the boundary conditions

λvT = νv λ
y

T
= νy

λuT = 1 λzT = 0

25 / 33

Orbit injection - The stationarity

The stationarity condition
0 = −λut a sin(θt) + λvt a cos(θt)

gives the tangent law:

tan(θt) =
λvt

λut

It turns out (later on) to be a linear tangent law.

26 / 33

Orbit injection - The Costates

The Costate equations

−
d

dt

[

λut λvt λzt λ
y
t

]

=
[

λzt λ
y
t 0 0

]

and the boundary conditions

λvT = νv λ
y

T
= νy (just a copy)

λuT = 1 λzT = 0

gives us:
λzt = 0 λ

y
t = νy constant in time

λut = 1 constant in time

λvt = νv + νy(T − t)

tan(θt) = νv + νy(T − t)

27 / 33

Orbit injection

Find νv and νy such that
tan(θt) = νv + νy(T − t)

in the dynamics

d

dt









ut
vt
zt
yt









=









a cos(θt)
a sin(θt)

ut
vt

















u0
v0
z0
y0









=









0
0
0
0









results in
[

v

y

]

T

=

[

0
H

]

28 / 33

Orbit injection

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−80

−60

−40

−20

0

20

40

60

80
θ

(d
eg

)

Orbit injection problem (TDP)

time (t/T)

θ

v

u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

u
an

d
v

in
 P

U

29 / 33

Orbit injection

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Orbit injection problem (TDP)

y
in

 P
U

x in PU

30 / 33

% --

parms.m

% --

T=1; % parameters

a=1;

H=0.2;

x0=zeros(4,1); % Initial state variable

% --

function main1

% --

parms

parm0=[-2.4 4.7]’; % Initial guess on parametes

opt=optimset; % Options for fsolve

opt=optimset(opt,’Display’,’iter’);

parm=fsolve(@erf,parm0,opt); % Call fsolve for finding parameters

[err,time,xt]=erf(parm); % Call erf ones more for getting the

tht=atan(parm(1)+parm(2)*(T-time)); % optimal input solution

% Here goes the plotting commands. Omitted here.

% file on databar: ~nkpo/02711/dist3/main1.m

31 / 33

% --

function [err,time,xt]=erf(parm)

% --

% Determine the end point error (err) given the EPC Lagrange multipliers

% in parm (and the constants that specifies the problem).

parms

Tspan=0:T;

[time,xt]=ode45(@tdp,Tspan,x0);

xT=xt(end,:)’;

err=[xT(2);

xT(4)-H];

% --

function dx=tdp(t,x,parm)

% --

% System model. Determine the (time) derivative of the state vector

% given the time, state (x) and the EPC Lagrange multipliers.

parms

u=x(1); v=x(2); z=x(3); y=x(4);

nuu=parm(1); nuy=parm(2);

th=atan(nuu+nuy*(T-t));

dx=[a*cos(th);

a*sin(th);

u;

v];

32 / 33

Reading guidance

DO Chapter 3

33 / 33

	Intro, Recap
	EPC(D)
	Example
	Partial simple EPC
	Example
	General EPC(D)

	EPC(C)
	Example
	Example
	Example

	Reading (DO Chapter 3)

