
Static and Dynamic Optimization (42111)

Build. 303b, room 048
Section for Dynamical Systems

Dept. of Applied Mathematics and Computer Science
The Technical University of Denmark

Email: nkpo@dtu.dk
phone: +45 4525 3356
mobile: +45 2890 3797

2019-10-21 21:59

Lecture 7: Free dynamic optimization (D)

1 / 55

Outline of lecture

What is Dynamic Optimization

Dynamics - examples

Cost functions - examples

Free dynamics optimization

Euler-Lagrange equations

Example: optimal stepping

Practicalities

Exercise DO.1

Reading: DO: p. 5-11, 15-27, Appendix B

2 / 55

Dynamic Optimization

What is Dynamic Optimization?

Dynamic Optimization has 3 ingredients:

Some dynamics. Here (in this course) a state space model.

A performance index (cost function, objective function, rewards, index function) to be
optimized (minimized or maximized). In our case it is a summation (or integral) of
contribution over a period of time of fixed or free length (part of the optimization).

Eventually some constraints (on the decisions or on the states)

3 / 55

Problem statement (Free dynamic (D) optimization)

Task: Find a sequence of optimal decisions (ui i = 0, ... N − 1).

Dynamics (described by a state space model):

xi+1 = fi(xi, ui) i = 0, 1, ... N − 1 x0 = x0

Objective: (to minimize or maximize the index):

J = φN (xN) +

N−1
∑

i=0

Li(xi, ui)

Here N and x0 are fixed (given),

J , φ and L are scalars.

xi and fi are n-dimensional vector and vector function

and ui is a m-dimensional vector of decisions.

Notice: no constraints (except given by the dynamics) i.e. Free Dynamic Optimization.

4 / 55

Ex1: Optimal Pricing (simplified)

We are producing a product (brand A) and have to determine its price in order to maximize our
income.

There is a competitor product B - and a problem.

If we are to modest we might have almost all the costumers - but we will not earn that much.

If we are to greedy then the bulk majority of the costumers will bye the other brand B - and we
will lose money.

We devide the period into N intervals and going for a price profile (ui, i = 0, ... N − 1).

5 / 55

Optimal Pricing - the performance index

We have to decide the price of the product ui ∼ u (u being the production cost) in each
interval.

0 N21

Let M be the size of the market and let xi (0 ≤ xi ≤ 1) be the (A) share of the marked in the
i’th interval.

Objective: to make some money - i.e. to maximize

Max J where J =

N−1
∑

i=0

Mx̄i

(

ui − u
)

x̄i =
1

2
(xi + xi+1)

More precisely, xi is the marked share at the beginning of interval i and x̄i is the average share of
the marked in interval i (i = 0, ... N − 1).

6 / 55

Optimal Pricing - the dynamics

x

1−x

p

qA

B

Transition probability A−>B

A −> B

price

p

1

0

Escape prob. Attraction prob.

B −> A

price

Transition probability B−>A
q

0

1

Dynamics: A→A B→A

xi+1 =
(

1− p[ui]
)

xi + q[ui]
(

1− xi

)

x0 = x0
7 / 55

Recap Optimal Pricing

Dynamics:
xi+1 =

(

1− p(ui)
)

xi + q(ui)
(

1− xi

)

x0 = x0

Objective:

Max J where J =

N−1
∑

i=0

Mx̄i

(

ui − u
)

Notice: This is a discrete time model. No constraints. The length of the period (the horizon, N)
is fixed.

8 / 55

If ui = u+ 5 (u = 6, N = 10) we get J = 8 (rounded to integer).

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

x

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

u

9 / 55

Optimal pricing (given correct model): J = 27 (rounded to integer).

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1
x

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

u

Notice different axis for x.

10 / 55

Free Dynamic Optimization

Dynamics (described by a state space model):

xi+1 = fi(xi, ui) x0 = x0

Objective (to optimize the index):

J = φN (xN) +

N−1
∑

i=0

Li(xi, ui)

Here N and x0 are fixed (given), J , φ and L are scalars. xi and fi are n-dimensional vector and
vector function and ui is a vector of decisions.

Notice: no constraints (except given by the dynamics).

11 / 55

Example: Optimal pricing

In this case:

The dynamic is given by:

fi(xi, ui) =
(

1− p(ui)
)

xi + q(ui)
(

1− xi

)

where x0 = 0 and N = 10.

The objective function (performance index) is characterized by:

Li(xi, ui) = Mx̄i

(

ui − u
)

φN (xN) = 0

x̄i =
1

2

[

xi + xi+1

]

where xi+1 =
(

1− p[ui]
)

xi + q[ui]
(

1− xi

)

12 / 55

Dynamics

Dynamics (described by a state space model):

xi+1 = fi(xi, ui) i = 0, 1, ... N − 1 x0 = x0

0 N21

Let us have a look at some other examples:

13 / 55

Example: The Schaefer model

Common growth model in connection to biological systems. E.g. (re)production of fish.

State xi Biomass (mass of fish) in a given area
and at the beginning of interval i.

Decision ui Mass of fish to be catch in interval i.

Parameters r and α

xi+1 = xi + rxi

(

1− αxi

)

−ui x0 = x0 i = 0, 1, ... N

xi

∆xi

∆xi = xi+1 − xi

This is a first order (one state), but an non-linear model. Stationarity and Stability.
14 / 55

Example: The Lotka-Volterra model

A Prey-Predator (the Lotka-Volterra (1925) model or the rabbit[r]-fox[F]) model).

Dynamics:

[

ri+1

Fi+1

]

=

[

ri
Fi

]

+

[

α1ri
β2riFi

]

−

[

β1riFi

α2Fi

]

−

[

ui

vi

]

birth death hunt

0 50 100 150 200 250 300 350 400 450 500
40

60

80

100

120

140

160

180
Lotka−Volterra

fo

x,
 r

ab
bi

t

period

fox

rabbit

A nonlinear, second order model with oscillations. 15 / 55

Dynamics

Dynamic (discrete time) state space model:











x1

x2

...
xn











i+1

= fi





















x1

x2

...
xn











i

,







u1

..

.
um







i











;











x1

x2

...
xn











0

=











x1

x2

...
xn











0

or in short:
xi+1 = fi(xi, ui) x0 = x0

f : Rn+m+1 → R
n

The fox-rabbit example:

[

r

F

]

i+1

=

[

ri + α1ri − β1riFi − ui

Fi + β2riFi − α2Fi − vi

]

16 / 55

The State Space concept

The state space model:
xi+1 = fi(xi, ui) x0 = x0

State xi ∈ R
n: vector containing quantities describing the situation (the state) of the

system.

They contain information of the system history (is a sufficient statistics of the history). No
historical data is needed for determining future state values (xτ where τ > i) if present state
vector xi is known. Notice, this is a Markov property.

Input ui ∈ R
m: vector containing the inputs.

Might be control inputs or decision variables. It might be the inputs from an opponent or
simply a disturbance. Here (for the time being) , we are going to determine a sequence of
optimal inputs.

�����
�����
�����
�����

i

17 / 55

LTI system

Linear Time invariant (LTI) systems











x1

x2

.

..
xn











i+1

= A











x1

x2

.

..
xn











i

+ B







u1

...
um







i

or in short
xi+1 = Axi +Bui

An example:

[

x1

x2

]

i+1

=

[

1 0
0.5 0.8

] [

x1

x2

]

i

+

[

0.3
0.2

]

ui

[

x1

x2

]

0

=

[

0
0

]

18 / 55

Stability

A glimpse of stability

Common sense definition: States do not grow unlimited.

Example 1: Unattended bank loan (r=0.02) :

xi+1 = [1 + r]xi x0 = x0

Example 2: Controlled loan with a down payment equals ui = 0.04xi

xi+1 = [1 + r]xi − ui = 0.98xi x0 = x0

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

19 / 55

Stability - the LTI case

First order (LTI) system (ie. xi, a are scalars)

xi+1 = axi

is (asymptotic) stable if |a| < 1.

A LTI system
xi+1 = Axi

is (asymptotically) stable if all eigenvalues of A is (strictly) inside the unit circle (length of
eigenvalue less than one).

20 / 55

The Objective function

0 N21

J = φ[xN] +

N−1
∑

i=0

Li(xi, ui) ∈ R

scalar function(s)

consists of additive local terms (additve seperable terms)

terminal contribution φ[xN]

running cost, stage cost, interval cost Li(xi, ui)

21 / 55

Quadratic cost

Example: Minimum Energy/Power

Often the square of the state or control variable is related to energy:

Ep = Ri2 (current) Ep =
u2

R
(voltage)

E =
1

2
mv2 (moving mass) E =

1

2
kx2 (spring)

Control system such that

J =

N−1
∑

i=0

x2
i

is minimized.

Often it is compromise between objectives.

J =

N−1
∑

i=0

x2
i + ρu2

i ρ ≥ 0

22 / 55

Quadratic cost

For a multivariate system (x ∈ R
n, u ∈ R

m):

J =

N−1
∑

i=0

xT
i Qxi + uT

i Rui R ≥ 0 Q ≥ 0

For example:

xTQx =
[

x1 x2

]

[

1 0.1
0.1 2

] [

x1

x2

]

= x2
1 + 2 x2

2 + 0.2 x1x2

The quadratic cost is often used in connection to minimizing the (square of) the distance (often
to the origin - as in the example above). Tuning.

23 / 55

Quadratic Index

Fatigue alleviation

24 / 55

Linear index

Example: Max harvesting

Consider a system described by the Schaefer model:

xi+1 = xi + rxi

(

1− αxi

)

−ui x0 = x0 i = 0, 1, ... N

Here we might be in a situation in which we want to maximize the total harvest (over a longer
peirod of time).

First idea: For fixed N drive the system from x0 along a trajectory such that

J = uN +

N−1
∑

i=0

ui

is maximized.

Pitch fall in optimization: Be careful in what you ask for - you might actually get it.

25 / 55

Linear index

Example: Minimum consumption

Consider a situation in which ui is related to consumption e.g. of some material or cost (price).

For fixed N drive the system from x0 to xN such that

J =

N−1
∑

i=0

piui

is minimized. pi is a price. E.g. consumption of electric energy.

26 / 55

Example: Minimum time

Drive the system from x0 to xN such that

J =

N−1
∑

i=0

1 = N

is minimized. The length, N , of the period is then a part of the optimization.

Often some constraints on the states or the decisions are involved.

27 / 55

Free Dynamic Optimization (D)

Minimize J (ie. determine the sequence ui, i = 0, ..., N − 1) where:

J = φ[xN] +

N−1
∑

i=0

Li(xi, ui)

subject to
xi+1 = fi(xi, ui) i = 0, 1, ... N − 1 x0 = x0

Here N , x0 (and f , L and φ) are given.

This is the Bolza formulation. The alternative is a Mayer formulation.

28 / 55

The Mayer form

The problem can also be formulated as a minimization of:

J = φ̃[x̃N] x̃ =

[

x

z

]

subject to
x̃i+1 = f̃i(x̃i, ui) i = 0, 1, ... N − 1 x̃0 = x̃0

This is an equivalent formation of the Dynamic Optimization problem.

The link from the Bolza to the Mayer formulation is given by:
Minimize

J = φ̃[x̃N] = φ(xN) + zN

subject to:

[

x

z

]

i+1

=

[

fi(xi, ui)
zi + Li(xi, ui)

]

i = 0, 1, ... N − 1

[

x

z

]

0

=

[

x0

0

]

29 / 55

Opgave 7.1

Try to minimize

J = ‖u−

[

1
3

]

‖2 + 1

wrt. the two dimensional vector u using eg. fminsearch. Write a short m-file (e.g. with the name:
fopt.m) with the following contents

function loss=fopt(u)

loss=sum((u-[1;3]).^2)+1;

and execute the matlab commands (or put them into a script)

opt=optimset;

opt=optimset(opt,’Display’,’iter’);

fminsearch(’fopt’,[1; 1],opt)

The 2 first lines are just included for controlling the output (to display) from fminsearch.

30 / 55

Opgave 7.2

Try to use the matlab command fsolve to find the solution to the problem (u ∈ R
2):

u−

[

1
3

]

= 0

Write a short m-file (e.g. with the name: fz.m) with the following contents

function f=fz(u)

f=u-[1;3];

and execute the matlab commands

opt=optimset;

opt=optimset(opt,’Display’,’off’);

fsolve(’fz’,[1; 1],opt)

31 / 55

Pause

32 / 55

Simple optimization

Unconstrained optimization

Let

u =







u1

..

.
um






u∗ = argmin J(u)

∂

∂u
J(u) = 0

∂2

∂u2
J(u) > 0

Constrained optimization II

∂

∂λ
JL(u, λ) = 0 g(u) = 0

On g(u) = 0 we have:

∂

∂u
JL(u, λ) = 0 =

∂

∂u
J(u)

Constrained optimization I

Consider the problem of minimizing (find
u ∈ R

m)

L(u) ∈ R

with respect to the (p) constraints

g(u) = 0 ∈ R
p

Introduce the Lagrange multipliers
(λ ∈ R

p) and the Lagrange relaxation:

JL(u, λ) = J(u) + λT g(u)

∂

∂λ
JL(u, λ) = 0

∂

∂u
JL(u, λ) = 0

33 / 55

Constrained optimization III

Consider the problem of minimizing (find
u ∈ R

m)

L(u) ∈ R

with respect to the (p) constraints

g(u) = h(u)− c = 0 ∈ R
p

Introduce the Lagrange multipliers
(λ ∈ R

p) and the Lagrange relaxation:

JL(u, λ) = J(u) + λT (h(u)− c)

∂

∂λ
JL(u, λ) = 0 h(u) = c

∂

∂u
JL(u, λ) =

∂

∂u
J(u, λ) = 0

∂

∂c
JL(u, λ) =

∂

∂c
J(u) = −λT

State dependency

Consider the problem of minimizing (find
u ∈ R

n)

L(x, u) ∈ R

with respect to the (n) constraints

g(x, u) = 0 ∈ R
n

Introduce the Lagrange multipliers
(λ ∈ R

n) and the Lagrange relaxation:

JL(x, u, λ) = J(x, u) + λT g(x, u)

∂

∂λ
JL(x, u, λ) = 0

∂

∂x
JL(x, u, λ) = 0

∂

∂u
JL(x, λ) = 0

34 / 55

Euler-Lagranges equations

J = φ[xN] +

N−1
∑

i=0

Li(xi, ui)

subject to
xi+1 = fi(xi, ui) i = 0, 1, ... N − 1 x0 = x0

Define a Lagrange multiplier vector, λi+1, (Costate or Adjoin state) for each equality constraints

xi+1 = fi(xi, ui) i = 0, 1, ... N − 1 x0 = x0

and form the Lagrangian relaxation:

JL = φ[xN] +

N−1
∑

i=0

Li(xi, ui) +

N−1
∑

j=0

λT
j+1 [fj(xj , uj)− xj+1] + λT

0 [x0 − x0]

Necessarily condition: stationarity wrt. to xi, λi and ui.

35 / 55

Stationarity wrt. λ

JL = φ[xN] +

N−1
∑

i=0

Li(xi, ui) +

N−1
∑

j=0

λT
j+1 [fj(xj , uj)− xj+1] + λT

0 [x0 − x0]

Stationarity wrt. λj+1 (i.e. wrt. λ1 ... λN) gives

fj(xj , uj)− xj+1 = 0 j = 0, 1, ... N − 1

or simply the state equation:

xi+1 = fi(xi, ui) j = 0, 1, ... N − 1

Stationarity wrt. λ0 gives:
x0 = x0

36 / 55

Stationarity wrt. xi

JL = φ[xN] +

N−1
∑

i=0

Li(xi, ui) +

N−1
∑

j=0

λT
j+1 [fj(xj , uj)− xj+1] + λT

0 [x0 − x0]

Stationarity wrt. xi (i = 1, ... N − 1) gives

∂

∂xi

Li(xi, ui) + λT
i+1

∂

∂xi

fi(xi, ui)− λT
i = 0

Notice results for j = i and j + 1 = i . Same result for i = 0. Result for i = N stated below.

or the costate equation:

λT
i =

∂

∂xi

Li(xi, ui) + λT
i+1

∂

∂xi

fi(xi, ui) i = 0, 1, ... N − 1

Stationarity wrt. xN gives

λT
N =

∂

∂xN

φ

37 / 55

Stationarity wrt. ui

Cut and paste - and use some colors:

JL = φ[xN] +

N−1
∑

i=0

Li(xi, ui) +

N−1
∑

j=0

λT
j+1 [fj(xj , uj)− xj+1] + λT

0 [x0 − x0]

Stationarity wrt. ui gives the optimality condition or the stationarity condition:

0 =
∂

∂ui

Li(xi, ui) + λT
i+1

∂

∂ui

fi(xi, ui)

38 / 55

Euler-Lagrange equations

Actually, the discrete Euler-Lagrange (EL) equations. Consider the (the Bolza formulation of the)
problem of minimizing J , where

J = φ[xN] +

N−1
∑

i=0

Li(xi, ui)

subject to
xi+1 = fi(xi, ui) x0 = x0

The EL equations (KKT conditions) are (for i = 0, 1, ... N − 1):

xi+1 = fi(xi, ui)

λT
i =

∂

∂xi

Li(xi, ui) + λT
i+1

∂

∂xi

fi(xi, ui)

0 =
∂

∂ui

Li(xi, ui) + λT
i+1

∂

∂ui

fi(xi, ui)

with boundary conditions

x0 = x0 λT
N =

∂

∂xN

φ

This is a two-point boundary value problem (TPBVP) with N(2n+m) unknowns and equations.
39 / 55

Euler

Born 15 April 1707 Basel, Switzerland. Died: 18 September 1783 (aged 76) Saint Petersburg,
Russian Empire. Residence: Kingdom of Prussia, Russian Empire, Switzerland. Nationality:
Swiss. Alma mater: University of Basel. Doctoral advisor: Johann Bernoulli. Doctoral students:
Nicolas Fuss, Johann Hennert, Joseph Louis Lagrange.

40 / 55

Lagrange

Born: Giuseppe Luigi Lagrancia, 25 January 1736 Turin, Piedmont-Sardinia. Died: 10 April 1813
(aged 77) Paris, France. Residence: Piedmont, France, Prussia. Citizenship: Kingdom of
Sardinia, France. Nationality: Italian, French. Institutions: Ecole Polytechnique. Doctoral
advisor: Leonhard Euler. Doctoral students: Joseph Fourier, Giovanni Plana, Simeon Poisson.

41 / 55

Example: Optimal stepping (D-time version of motion control)

Consider the toy (or black board) problem of stepping the system

xi+1 = xi + ui i = 0, 1, ... N − 1

from an original position x0 towards origin in N steps. This is related to minimizing

J1 =
1

2
x2
N

If the original objective and the step power has same weight (for the sake of simplicity) then the
steps should be found as the minimizing strategy of

J =
1

2
x2
N +

N−1
∑

i=0

1

2
u2
i

In this case the EL equations are:

xi+1 = xi + ui x0 = x0

λi = λi+1 λN = xN

0 = ui + λi+1

42 / 55

Example: Optimal stepping

The last two are easily solved
λi = xN ui = −xN

which in the state equation give
xi+1 = xi − xN

or
xi = x0 − ixN

For i = N this results in

xN =
1

N + 1
x0

and

ui = −
1

N + 1
x0 xi = x0 − i

1

N + 1
x0 λi =

1

N + 1
x0

This problem has a degree of simplicity that allow us to find an analytical solution.

43 / 55

Types of solutions

Examples:

Analytical solutions (for very simple problems)

Semi analytical solutions (for semi simple problems eg. the LQ problem)

Numerical solutions

44 / 55

The Hamiltonian function

Introduce the Hamiltonian function:

Hi(xi, ui, λi+1) = Li(xi, ui) + λT
i+1fi(xi, ui)

Then the EL can be written in a condensed form:

xT
i+1 =

∂

∂λi+1

Hi λT
i =

∂

∂xi

Hi 0 =
∂

∂ui

Hi

x0 = x0 λT
N =

∂

∂x
φ

∂
∂u

Hi is the gradient of J wrt. ui and is (also) called the pulse response sequence.

λT
0

is the gradient of J wrt. x0.

Notice the EL equations are necessary conditions.

45 / 55

Lesson learned (7)

Minimize J (ie. determine the sequence ui, i = 0, ..., N − 1) where:

J = φ[xN] +

N−1
∑

i=0

Li(xi, ui)

subject to
xi+1 = fi(xi, ui) i = 0, 1, ... N − 1 x0 = x0

Defining the Hamiltonian function

Hi = Li(xi, ui) + λT
i+1fi(xi, ui)

The Euler-Lagrange equations can be written as:

xi+1 = fi λT
i =

∂

∂xi

Hi 0 =
∂

∂ui

Hi

x0 = x0 λT
N =

∂

∂x
φ

46 / 55

Reading guidance

Slides, Exercises, solutions and m-files on:

http://www.imm.dtu.dk/courses/42111/

Reading:
DO: p. 5-11, 15-27 (Ch. 2 except continuous time problems).

Appendix B.

47 / 55

Notation

Let s be a scalar, x a (column) vector

x =











x1

x2

...
xn











and f a vector function (of dim m). Then

∂

∂x
s =

(∂

∂x1

s
∂

∂x2

s ...
∂

∂xn

s
)

ie. a row vector.

Furthermore, the Jacobian is defined as:

∂

∂x
f =













∂
∂x1

f1
∂

∂x2
f1 ... ∂

∂xn
f1

∂
∂x1

f2
∂

∂x2
f2 ... ∂

∂xn
f2

.

..
.
..

.

..
∂

∂x1
fm

∂
∂x2

fm ... ∂
∂xn

fm













48 / 55

Notation

The most common examples are:
∂

∂x
Ax = A

∂

∂x
yT x = yT

∂

∂x
xT y = yT

∂

∂x
xTQx = 2xTQ

49 / 55

Rene Victor Valqui Vidal

50 / 55

Glimpse of History

International

Norbert Wiener

1969 Bryson and Ho

Lewis

Bertsekas

R.E. Kalman

Atkins

National

1967 VVV

Hans Ravn

Svend Clausen

Jens Ryberg

1995 Jens Clausen - nkp

Richard Lusby

Rune Larsen

Evelien van der Hurk

51 / 55

Notation

A comment on notation

We use
xi and fi(xi, ui)

rather than
x(i) and f(i, x(i), u(i))

The curse of x

vector containing the state variable

first coordinate (in a position)

decision variable in static optimization

Hack(s):

use s as symbol for the state

use z as symbol for first coordinate

use u as decision variable.

52 / 55

Other practicalities

Campus net (cn.dtu.dk, now inside.dtu.dk).

Course home page (www.imm.dtu.dk/courses/42111).

Gbar download (Matlab) (http://downloads.cc.dtu.dk/).

Report errors and fishy elements in slides and lecture notes.

Email suggestions for improvements.

Include course id (42111) and your study id in emails (subject field).

53 / 55

Task 7.3

Consider the problem of payment of a (study) loan which at the start of the period is 50.000 Dkr.
Let us focus on the problem for a period of 10 years. We are going to determine the optimal pay
back strategy for this loan, i.e. to determine how much we have to pay each year. Assume that
the rate of interests is 5 % per year (α = 0.05) (and that the loan is credited each year), then the
dynamics of the problem can be described by:

xi+1 = axi + bui a = 1 + α b = −1

where xi is the actual size of the loan (including interests) and ui is the annual payment.
On one hand, we are interested in minimizing the amount we have to pay to the bank. On the
other hand, we are not interested in paying to much each year. The objective function, which we
might use in the minimization could be

J =
1

2
px2

N +

N−1
∑

i=0

1

2
qx2

i +
1

2
ru2

i

where q = α2. The weights r and p are at our disposal. Let us for a start choose r = q and p = q

(but let the parameters be variable in your program in order to change them easily).

54 / 55

General EL

Minimize:

J = φ[xN] +

N−1
∑

i=0

Li(xi, ui)

subject to

xi+1 = fi(xi, ui) x0 = x0

Hi = Li(xi, ui) + λT
i+1fi(xi, ui)

xi+1 = fi λT
i =

∂

∂xi

Hi 0 =
∂

∂ui

Hi

x0 = x0 λT
N =

∂

∂x
φ

Specific EL

J =
1

2
px2

N +

N−1
∑

i=0

1

2
qx2

i +
1

2
ru2

i

xi+1 = axi + bui

Hi =
1

2
qx2

i +
1

2
ru2

i + λi+1(axi + bui)

xi+1 = axi + bui x0 = 50000

λi = qxi + aλi+1 λN = pxN

0 = rui + bλi+1

Guess λ0 and iterate:

λi+1 =
λi − qxi

a

ui =
bλi+1

r

xi+1 = axi + bui

until λN = pxN .
55 / 55

	Dynamic Optimization
	Dynamics
	The performance index

	Free Dynamic Optimization (D)
	Euler-Lagranges equations

