Static and Dynamic Optimization (42111)

Build. 303b, room 048
Section for Dynamical Systems
Dept. of Applied Mathematics and Computer Science
The Technical University of Denmark

Email: nkpo@dtu.dk
phone: +45 4525 3356
mobile: +45 2890 3797

2019-11-17 17:48

Lecture 11: Dynamic Programming

=
—
=

i

34

Outline of lecture

Dynamic Programming

Anecdote: In 1960+ buzz words like 'dynamic’ and 'programming’ was a must (like Al and
'learning’ now, 'adaptive’ and ANN some years ago.) to get funding.

Recap F7-F10

Dynamic Programming (D)

Unconstrained

Constrained

Reading guidance (DO: chapter 6, page 73-83)

¢ ¢ ¢ ¢ ¢

=
—
=

i

N

34

Dynamic Optimization (D)

Find a sequence u; € U;, ¢ =0, ..., N — 1 which
takes the system

P(zn) =0

from its initial state z, along a trajectory such
that the performance index

ziy1 = fi(i,ui) x0 =124

N-—1

J = ¢én[zNn] + Z Li(xi,u;)

i=0
is minimized. Define the Hamiltonian function as:
T
Hi = Li(@i, ui) + A\jpq fi(zi, ui)

The necessary conditions are:

i = Jia((@s, wg)))\3 = ng
. T 0
w=org mip He (07 = 5H:)

with boundary conditions:

N T
To = I Ap =V -

Dynamic Optimization (C)

Find a function us € Uy t € [0; T] € R which
takes the system system

P(zr) =0

from its initial state z, along a trajectory such
that the performance index

@y = fi(ze, ue) zo = T,

T
J = prlr] +/ Ly(we, ue) dt
0

is minimized. Define the Hamilton function as:
Hy = Ly (w¢,ut) +)\;Fft(wh Ut)

The necessary conditions are:
Ty = ft(wh Ut)
. T o
uty = arg min H; (0 = —Ht)
uy EUL Ous

with boundary conditions:

A\

=

i

w

34

Dynamic Programming - Deterministic

Found in Bertsekas (probably also an anecdote).

Kierkegaard: Life can only be understood going backwards, but it must be lived going forwards.

Let us (for a start) now focus on:

Discrete independent variable (normally the time, ¢ € N or t = iT%).
Discrete and finite state space and decision space (X; and U;)

=
—
=

i

IS

34

Stagecoach problem - Shortest path.

Example (Hans Ravn: Statisk og Dynamisk Optimering)

Go from A to B with minimal cost.

42

=
—
=

i

o

34

Dynamic Programming

x
10 4 13
14
8 1 8
8
Lordon
6 10 11 3 B:Esbjerg | 2
7 9 7 6
41
12 21
1 1 1 | ;
0 1 2 3 4
i
N—1
J=9¢n(zN)+ Li(xq,us) Objective
i=0
zit+1 = fi(zi,wi) w0 =z Dynamics
(wi,u;) € Vi Constraints DTU
>
TN €VN >

o

34

Dynamic Programming

Here we easily find the optimal decisions:

—1 for z3 =3
uz(xzz)=4¢ 0 1for T3 = ?
or T3 =

and the optimal costs to go:

8 for xz3 =3
for x3 =2
6 for xz3 =1

Il
w

Va(z3)

=
—
=

i

34

~

Dynamic Programming

For i = 2 we have:

the optimal decisions:
—1 for xo9 =3

uz(z2) =49 —1 for zo =
1 for xo =1

and the optimal costs:
11 for z9 =3
Va(z2) = 13 for o =2
14 for z9 =1

=
—
=

i

=

34

Dynamic Programming

For i = 1 we have:

B: Esbjerg

2 3 4
the optimal decisions:
0 for 1 =3
uj(z1)=4q 1 for z1 =2

0 for z1 =1
and the optimal costs:

21 for x1 =3
Vi(z1) = 22 for 1 =2
26 for z1 =1

=
—
=

i

©

34

Dynamic Programming

Finally, for ¢ = 0 we have:

the optimal decisions:

ug(xzo) =0 since xg =2
and the optimal cost:

Vo(zo) = 28 since zp = 2

=
—
=

i

10/34

Dynamic Programming

Let us return to ¢ = 1 and see what we actually did.

B: Esbjerg

We had the optimal cost to go, Va(z2), for the next stage stored ie.
11 for x9 =3

Vo(z2) = 13 for 90 =2
14 for zo =1

as well as the optimal decision sequence from there on .

For each possible value of z1 (z1 = 1,2, 3), we evaluated the loss for each possible decision (e.g.

up = —1,0,1 for z1 = 2), and minimized wrt. u;:
Li(z1,u1) + Va(fi(z1,u1)) because z2 = fi(z1,u1) w
>
That minimization results in Vi (z1). -

11/34

Dynamic Programming

B: Esbjerg

For each possible value of z1 (1,2, 3):

Vi(z1) = muiln{Ll(xlﬂul) + V2(f1(3317u1))} (z1,u1) € V1

Or in general (for i = 3,2,1,0):

Vi(z;) = @Lin{L(xi,Ui) + Vi+1(fi(xivui))} (wisus) € Vi

=
—
=

i

12 /34

Free Dynamic Programming

Richard Ernest Bellman (1920-1984) was an American ap- .

plied mathematician who was central to the rise of “modern
control theory”, i.e. state space methods in systems and
control. His most celebrated contribution is dynamic pro-
gramming and the principle of optimality, which both con-
cern dividing complex decision-making problems into more,
but simpler, sub-problems. A Ph.D. from Princeton, he
spend the majority of his career at RAND corporation.

=
—
=

i

13 /34

Free Dynamic Programming

Let us now focus on finding a sequence of decisions u; % =0, ,1,... N which takes the system
Tit1 = fi(wi, us) zo =z,
along a trajectory, such that the cost function

N-—-1
J=¢@n)+ > Li(zi, ui)= Jo(zo,uy ')
i=o

is minimized.

0 i+l N

Y

Def.: u” the sequence of decision from i to k.
The truncated performance index (the cost to go)

N-—1
Ji(wi,u) TN = dlan) + Y Li(zy, ur)

k=1

It is quite easy to see that

Ji(zi,up 7YY = L, ug) + J7L+1(-T'i+1)u7];_]'._11)

=
—
=

and that in particular
J = Jo(wo, ud ™Y Jn = d(zn)

i

14 /34

Free Dynamic Programming

The Bellman function (the optimal cost to go) is defined as:

Vi(z;) = r]nvi_n1 Ji(xi, uﬁvfl)
u!
i

and is a function of the present state, z;, and index, i.
In particular
Vn(zn) = én(zN)

Theorem

The Bellman function V;, is given by the backwards recursion

Vi(zs:) = Dgivn[Li(xi,ui) + Vig1(@it1)]

with the boundary condition
Vn(zn) = ¢n(zN)

Bellman equation is a functional equation, gives a sufficient condition and the overall
optimimum is given as Vo(zo) = J*.

Free Dynamic Programming

What about the decisions?

u; = arg I{ii‘n[Li(zi,ui) + Viga(fi(zi, ui))] = ui(®)

Tit1

If a maximization problem: min — max.

=
—
=

i

16 /34

By definition we have:

Vi(z:) = m}i\]ni1 Ji(aci,ulel)
_ g (s ars)) N-1
= min [Ll(:tz,ul)—i-JHl(le,qu)]

Since ui\i—ll do not affect L; we can write

Vl(wl) = H&ivn Li(éti,’ui) T IIlIi\er1 Ji+1(xi+1,uf\j;11)
‘ Wit1
The last term is nothing but V;41, due to the definition of the Bellman function. The boundary

condition is also given by definition of the Bellman function (Vi (zx) = ¢n(zn)) that do not
depend on uy .

O

=
—
=

B

Pause

DU

i

18 /34

LQ problem

Simple LQ problem: The problem is bring the system

Tit1 = ax; + buy To = Zg

from the initial state along a trajectory such the performance index

N-1
J=pa% + Z qz? + ru?
i=0

is minimized.

In the boundary we have
Vn(zn) = ¢(zN) = poiy

Inspired of this, we will try the candidate function

Vi = sia}

=
—
=

i

19 /34

The Bellman equation
Vi(xi) = n%i‘n[Li(wi,ui) + Vigr(zigr)]
gives in this special (scalar LQ) case:

2 ; 2 2 2
§;%; = min [qri + ruy + Si41%i4q]
i —— e —
Li(ziui) Vigr(zig1)

or with the state equation inserted

sizf = min [qa:? + 7"11,Z2 + sit1(az; + b'u,i)z]
ug —
fi(wi,ug)

The minimum is obtained for
abs;y1

r+ b25i+1

Ui = 2

which inserted in the recursion results in:

2

2122
a“b”s?

1 2
STy = [l]+a2$i+1 - s] ;

r+b2siq41

(cut an paste)

=
—
=

i

20/34

The candidate function satisfies the Bellman equation if

232 2
5 a“b%si, 4
$i=q+a"8i41 — ——o—— SN =D
r+ b Si41
which is the (scalar version of the) Riccati equation. The solution:

v

and

time ()

Method: Guess the type of functionallity in V;(x) i.e. up to a number of parameter. Check if it
satisfy the Bellman equation. This results in a (number of) recursion(s) for the parameter(s).

=
=

i

Euler-Lagrange and Bellman

Vi(z:) = Dgivn[Li(xi,ui) + Vig1(@it1)]
Necessary condition (stationarity):

of — OL; OVig1 Oziq1

= i1 = fi(xq,ug
8ui 8xi+1 8u1 o fl(v l)

If the costate (or the adjoint state) is defined as the sensitivity, i.e. as:

T & 0Vi(zi) T OVit1
A =)‘i+1 =
ox; 0441
then oL of
o7 = 222 4 \r 2N
Ou; 1 oy,
or:
T 0 T
0t = au-Hi where H; = Li(xq,u;) +)‘i+1fi(mi7ui)
T
DTU
i.e. the stationarity condition in the the Euler-Lagrange equation. -
>

22 /34

Euler-Lagrange and Bellman

On the optimal trajectory
Vi(wi) = Li(zi,ui) + Vigr(fi(@i, u7))

or if we apply the chain rule

T A 81/;(331) _ 8Li 8Vi+1 8fz _ 8Li)\T 8f1
)‘i = —a - an. - + i+15
83:1- 8351 8xi+1 83:1 ox 8351
or
ar= 2 H; M= —oén(zN)
¢ ox; ox

i.e. the costate equation.

=
=
=

i

23 /34

Pause

DU

i

24 /34

Constrained Dynamic Programming

Constraints:

u; € U;

Xq € X,;

System dynamics:

Performance index

Feasible state set:

Feasible decision set:

xip1 = fizs,ug) w0 =

N-1

J=¢n(zN)+ Z Li(zi,ui)

i=0

Di={zi€eXi|Iu €Uy fi(xi,ui) € Diy1 }

U (zi) ={u; €Uy :

IN = XN

fi(zi,ug) € Zig1 }

=
—
=

i

25 /34

Constrained Dynamic Programming

Theorem

Bellman equation:

Vi(z;) = min [Li(zs,ui) + Vit (zit1)]

u; EUS

Vn(zn) = én(zN)

Feasible state set:
9; = { T, € X; | Ju;, €eU; : fl(a:l,ul) € -@i-‘rl }

9N = XN

Feasible decision set:
Ui () ={ ui €U = fizs,ui) € Diya1 }

A\

=
—
=

i

26 /34

Stagecoach problem Il

It is easy to realize that

Xi={J} X3={KHI} Xy={EFG}

X ={B,C,D} Xy={A}
However, since there is no path from K to J

Dy={J} Ds={H,I} Dy={E FG}
D1 ={B,C,D} Dy={A}

=
—
=

i

27 /34

Optimal stepping (DD)

. Consider the system
Tit1l = T; + u; o =2
the performance index
N—-1
J:x?\,-i—Z:v?-i-u? with N =4
i=0
and the constraints

w €{-1,0, 1} z;€{-2, -1, 0, 1, 2}

=
—
=

i

28 /34

Firstly, we establish V4 (z4)

as in the following table

T4

-2
-1
0
1
2

ISR CINENINY

The combination of x3 and

Via(za) = pa(wa) = 3

u3 determines the following state

T4 =23 +u3

and consequently the Vj(x4) contribution.

T4 us

z3 | -1 0 1
2|13 -2 -1
-1 -2 -1 0
0 -1 0 1
1 0 1 2
2 1 2 3

I
w

Vi(za)

[y

xr3 -

-2
-1
0
1
2

~rors~8
A HOR MO

8#|—AO|—A|—A

The combination of x3 and u3 also determines the instantaneous loss L3 = xg + ug

Ls
X3
-2
-1
0
1
2 5

I3
w

~ R oOr aol&

1
—_

N = NO
N =N Ol

5

If we add up the instantaneous loss and V4 we have a tableau in which we for each possible value
of x3 can perform the minimization in

Vs (s) = min[Ls (3, us) + Va(es + us)]

and determine the optimal value for the decision and the Bellman function (as function of z3).

L3+ Vy us 1%} u§
3 -1 0 1
-2 co 8 6 6 1
-1 6 2 2 2 0,1
0 2 0 2 0 0
1 2 2 6 2 -1,0
2 6 8 oo 6 -1

Knowing V3(x3) we have one of the components for ¢ = 2. In this manner we can iterate
backwards and finds:

Ly + V3 U Vo | ud
i) -1 0 1
-2 [e%e) 10 7 7 1
-1 8 3 2 2 1
0 3 0 3 0 0
1 2 3 8 2 -1
2 7 10 oo 7 -1

L1+ Vs Ul 1% u’f
1 -1 0 1
-2 [e%e) 11 7 7 1
-1 9 3 2 2 1
0 3 0 3 0 0
1 2 3 9 2 -1
2 7 11 [e%¢) 7 -1

Lo+ W1 uo Vo u(’;
0 -1 0 1
-2 [e%e) 11 7 7 1
-1 9 3 2 2 1
0 3 0 3 0 0
1 2 3 9 2 -1
2 7 11 [e¢) 7 -1

With zg = 2 we can trace forward and find the input sequence —1, —1, 0, 0 which give (an
optimal) performance equal 7. Sensitivity. Steering vs. feedback.

Optimal stepping (DD) II - EPC

Consider the system from previous example, but with the constraints that z4 = 1.
System

Tip1 =% +u; x0=2 T4=1

Performance index
3
2 2 2
J=xi+ g Ty + uj
i=0

Constraints:
u; € {-1, 0, 1} z; €{-2, -1, 0, 1, 2}

L3 +V, u3 Vs | uj
= Z;‘ 3 1 0 1
1 oo -2 co oo 00 | oo
0 oo -1 co oo 00 | oo
1 1 0 co oo 2 2 1
5 oo 1 0o 2 0o 2 0
2 6 co oo 6 -1
DTu
>
>
>

32/34

Lo+ V3 u2 1% u;
) -1 0 1
-2 o o0 o0 |
-1 co oo 4 4 1
0 [e%¢) 2 3 2 0
1 4 3 8 3 0
2 7 10 oo 7 -1
L1+ Vs Ul 1% u’{
T1 -1 0 1
-2 0o 0 9 9 1
-1 [e%e) 5 4 4 1
0 5 2 4 2 0
1 4 4 9 4 -1
2 8 11 [e%¢) 8 -1
Lo+ W1 uo Vo ué
o -1 0 1
-2 [e%¢) 13 9 9 1
-1 11 5 4 4 1
0 5 2 5 2 0
1 4 5 10 4 -1
2 9 12 oo 9 -1

DT
With 2o = 2 we can iterate forward and find the optimal input sequence —1, —1, 0, 1 which iss-
connected to a performance index equal 9. e

Reading guidance

DO: chapter 6, page 73-83

=
=
=

i

34 /34

