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Outline of lecture

Dynamic Programming

Anecdote: In 1960+ buzz words like ’dynamic’ and ’programming’ was a must (like AI and
’learning’ now, ’adaptive’ and ANN some years ago.) to get funding.

Recap F7-F10

Dynamic Programming (D)

Unconstrained

Constrained

Reading guidance (DO: chapter 6, page 73-83)
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Dynamic Optimization (D)

Find a sequence ui ∈ Ui, i = 0, ..., N − 1 which
takes the system

xi+1 = fi(xi, ui) x0 = x
0

ψ(xN ) = 0

from its initial state x
0
along a trajectory such

that the performance index

J = φN [xN ] +

N−1
∑

i=0

Li(xi, ui)

is minimized. Define the Hamiltonian function as:

Hi = Li(xi, ui) + λ
T

i+1fi(xi, ui)

The necessary conditions are:

xi+1 = fi(xi, ui) λ
T

i
=

∂

∂xi

Hi

ui = arg min
ui∈Ui

Hi

(

0T =
∂

∂ui

Hi

)

with boundary conditions:

x0 = x
0

λ
N

T
= ν

T ∂

∂xN

ψ +
∂

∂xN

φ

Dynamic Optimization (C)

Find a function ut ∈ Ut t ∈ [0; T ] ∈ R which
takes the system system

ẋt = ft(xt, ut) x0 = x
0

ψ(xT ) = 0

from its initial state x
0
along a trajectory such

that the performance index

J = φT [xT ] +

∫

T

0

Lt(xt, ut) dt

is minimized. Define the Hamilton function as:

Ht = Lt(xt, ut) + λ
T

t
ft(xt, ut)

The necessary conditions are:

ẋt = ft(xt, ut) − λ̇
T

t
=

∂

∂xt

Ht

ut = arg min
ut∈Ut

Ht

(

0T =
∂

∂ut

Ht

)

with boundary conditions:

x0 = x
0

λ
T

T
= ν

T ∂

∂xT

ψ +
∂

∂xT

φ
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Dynamic Programming - Deterministic

Found in Bertsekas (probably also an anecdote).

Kierkegaard: Life can only be understood going backwards, but it must be lived going forwards.

Let us (for a start) now focus on:

Discrete independent variable (normally the time, i ∈ N or t = iTs).
Discrete and finite state space and decision space ( Xi and Ui )

4 / 34



Stagecoach problem - Shortest path.

Example (Hans Ravn: Statisk og Dynamisk Optimering)

Go from A to B with minimal cost.

B: Esbjerg

A: London
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Dynamic Programming

B: Esbjerg

A: London

8

7

12 21

6
7

11

8

8

410

11

14
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914

311

9

6

0 1 2 3 4

1

3

2

x

i

J = φN (xN ) +

N−1∑

i=0

Li(xi, ui) Objective

xi+1 = fi(xi, ui) x0 = x0 Dynamics

(xi, ui) ∈ Vi Constraints

xN ∈ VN
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Dynamic Programming

Let us start with the easy part - next to the end (i.e. i = 3).

B: Esbjerg

A: London
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8

Here we easily find the optimal decisions:

u∗
3(x3) =







−1 for x3 = 3
0 for x3 = 2
1 for x3 = 1

and the optimal costs to go:

V3(x3) =







8 for x3 = 3
3 for x3 = 2
6 for x3 = 1
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Dynamic Programming

For i = 2 we have:

B: Esbjerg

A: London
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the optimal decisions:

u∗
2(x2) =







−1 for x2 = 3
−1 for x2 = 2
1 for x2 = 1

and the optimal costs:

V2(x2) =







11 for x2 = 3
13 for x2 = 2
14 for x2 = 1
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Dynamic Programming

For i = 1 we have:

B: Esbjerg

A: London
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the optimal decisions:

u∗
1(x1) =







0 for x1 = 3
1 for x1 = 2
0 for x1 = 1

and the optimal costs:

V1(x1) =







21 for x1 = 3
22 for x1 = 2
26 for x1 = 1
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Dynamic Programming

Finally, for i = 0 we have:

B: Esbjerg

A: London

8
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the optimal decisions:
u∗
0(x0) = 0 since x0 = 2

and the optimal cost:
V0(x0) = 28 since x0 = 2
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Dynamic Programming

Let us return to i = 1 and see what we actually did.

B: Esbjerg

A: London
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We had the optimal cost to go, V2(x2), for the next stage stored ie.

V2(x2) =







11 for x2 = 3
13 for x2 = 2
14 for x2 = 1

as well as the optimal decision sequence from there on .

For each possible value of x1 (x1 = 1, 2, 3), we evaluated the loss for each possible decision (e.g.
u1 = −1, 0, 1 for x1 = 2 ), and minimized wrt. u1:

L1(x1, u1) + V2(f1(x1, u1)) because x2 = f1(x1, u1)

That minimization results in V1(x1).
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Dynamic Programming

B: Esbjerg

A: London

8
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For each possible value of x1 (1, 2, 3):

V1(x1) = min
u1

{

L1(x1, u1) + V2(f1(x1, u1))
}

(x1, u1) ∈ V1

Or in general (for i = 3, 2, 1, 0):

Vi(xi) = min
ui

{

L(xi, ui) + Vi+1(fi(xi, ui))
}

(xi, ui) ∈ Vi
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Free Dynamic Programming

Richard Ernest Bellman (1920-1984) was an American ap-
plied mathematician who was central to the rise of “modern
control theory”, i.e. state space methods in systems and
control. His most celebrated contribution is dynamic pro-
gramming and the principle of optimality, which both con-
cern dividing complex decision-making problems into more,
but simpler, sub-problems. A Ph.D. from Princeton, he
spend the majority of his career at RAND corporation.
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Free Dynamic Programming

Let us now focus on finding a sequence of decisions ui i = 0, , 1, . . . N which takes the system

xi+1 = fi(xi, ui) x0 = x
0

along a trajectory, such that the cost function

J = φ(xN ) +

N−1
∑

i=0

Li(xi, ui)= J0(x0, u
N−1

0 )

is minimized.

���
���
���
���

0 i i+1 N

Def.: uk

i
the sequence of decision from i to k.

The truncated performance index (the cost to go)

Ji(xi, u
N−1

i
) = φ(xN ) +

N−1
∑

k=i

Lk(xk, uk)

It is quite easy to see that

Ji(xi, u
N−1

i
) = Li(xi, ui) + Ji+1(xi+1, u

N−1

i+1 )

and that in particular

J = J0(x0, u
N−1

0 ) JN = φ(xN)
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Free Dynamic Programming

The Bellman function (the optimal cost to go) is defined as:

Vi(xi) = min
u
N−1

i

Ji(xi, u
N−1
i )

and is a function of the present state, xi, and index, i.
In particular

VN (xN ) = φN (xN )

Theorem

The Bellman function Vi, is given by the backwards recursion

Vi(xi) = min
ui

[

Li(xi, ui) + Vi+1(xi+1)
]

with the boundary condition

VN (xN ) = φN (xN )

Bellman equation is a functional equation, gives a sufficient condition and the overall

optimimum is given as V0(x0) = J∗.

�
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Free Dynamic Programming

What about the decisions?

ui = arg min
ui

[

Li(xi, ui) + Vi+1( fi(xi, ui)
︸ ︷︷ ︸

xi+1

)
]

= ui(xi)

If a maximization problem: min → max.
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Proof.

By definition we have:

Vi(xi) = min
u
N−1

i

Ji(xi, u
N−1
i )

= min
u
N−1

i

[

Li(xi, ui) + Ji+1(xi+1, u
N−1
i+1 )

]

Since uN−1
i+1 do not affect Li we can write

Vi(xi) = min
ui



 Li(xi, ui) + min
u
N−1

i+1

Ji+1(xi+1, u
N−1
i+1 )





The last term is nothing but Vi+1, due to the definition of the Bellman function. The boundary
condition is also given by definition of the Bellman function (VN (xN ) = φN (xN )) that do not
depend on uN .
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Pause
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LQ problem

Simple LQ problem: The problem is bring the system

xi+1 = axi + bui x0 = x0

from the initial state along a trajectory such the performance index

J = px2
N +

N−1∑

i=0

qx2
i + ru2

i

is minimized.

In the boundary we have
VN (xN ) = φ(xN ) = px2

N

Inspired of this, we will try the candidate function

Vi = six
2
i
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The Bellman equation

Vi(xi) = min
ui

[

Li(xi, ui) + Vi+1(xi+1)
]

(cut an paste)

gives in this special (scalar LQ) case:

six
2
i = min

ui

[

qx2
i + ru2

i
︸ ︷︷ ︸

Li(xi,ui)

+ si+1x
2
i+1

︸ ︷︷ ︸

Vi+1(xi+1)

]

or with the state equation inserted

six
2
i = min

ui

[

qx2
i + ru2

i + si+1(axi + bui
︸ ︷︷ ︸

fi(xi,ui)

)2
]

The minimum is obtained for

ui = −
absi+1

r + b2si+1
xi

which inserted in the recursion results in:

six
2
i =

[

q + a2si+1 −
a2b2s2i+1

r + b2si+1

]

x2
i
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The candidate function satisfies the Bellman equation if

si = q + a2si+1 −
a2b2s2i+1

r + b2si+1
sN = p

which is the (scalar version of the) Riccati equation. The solution: si+1 and

ui = −
absi+1

r + b2si+1
xi

and
Vi(x) = six

2

−5
0

5

0

5

10

0

5

10

15

20

25

x
t

x

V
t
(x)

time (i)

V

Method: Guess the type of functionallity in Vi(x) i.e. up to a number of parameter. Check if it
satisfy the Bellman equation. This results in a (number of) recursion(s) for the parameter(s).
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Euler-Lagrange and Bellman

Vi(xi) = min
ui

[

Li(xi, ui) + Vi+1(xi+1)
]

Necessary condition (stationarity):

0T =
∂Li

∂ui

+
∂Vi+1

∂xi+1

∂xi+1

∂ui

xi+1 = fi(xi, ui)

If the costate (or the adjoint state) is defined as the sensitivity, i.e. as:

λT
i

△
=

∂Vi(xi)

∂xi

λT
i+1 =

∂Vi+1

∂xi+1

then

0T =
∂Li

∂ui

+ λT
i+1

∂fi

∂ui

or:

0T =
∂

∂ui

Hi where Hi = Li(xi, ui) + λT
i+1fi(xi, ui)

i.e. the stationarity condition in the the Euler-Lagrange equation.
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Euler-Lagrange and Bellman

On the optimal trajectory

Vi(xi) = Li(xi, u
∗
i ) + Vi+1(fi(xi, u

∗
i ))

or if we apply the chain rule

λT
i

△
=

∂Vi(xi)

∂xi

=
∂Li

∂xi

+
∂Vi+1

∂xi+1

∂fi

∂xi

=
∂Li

∂x
+ λT

i+1

∂fi

∂xi

or

λT
i =

∂

∂xi

Hi λT
N =

∂

∂x
φN (xN )

i.e. the costate equation.
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Pause
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Constrained Dynamic Programming

Constraints:

ui ∈ Ui xi ∈ Xi

System dynamics:
xi+1 = fi(xi, ui) x0 = x0

Performance index

J = φN (xN ) +

N−1∑

i=0

Li(xi, ui)

Feasible state set:
Di = { xi ∈ Xi | ∃ ui ∈ Ui : fi(xi, ui) ∈ Di+1 }

DN = XN

Feasible decision set:
U∗
i (xi) = { ui ∈ Ui : fi(xi, ui) ∈ Di+1 }
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Constrained Dynamic Programming

Theorem

Bellman equation:

Vi(xi) = min
ui∈U∗

i

[

Li(xi, ui) + Vi+1(xi+1)
]

VN (xN ) = φN (xN )

Feasible state set:

Di = { xi ∈ Xi | ∃ ui ∈ Ui : fi(xi, ui) ∈ Di+1 }

DN = XN

Feasible decision set:

U∗
i (xi) = { ui ∈ Ui : fi(xi, ui) ∈ Di+1 }

�
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Stagecoach problem II

A

B

C

D

E

F

G

I

H

J

2

4

3

6

7

4

3

4
2

4
1

5

1

4

6

3

3

3

3

4

K
3

0 1 2 3 4

It is easy to realize that

X4 =
{
J
}

X3 =
{
K,H, I

}
X2 =

{
E,F,G

}

X1 =
{
B,C,D

}
X0 =

{
A
}

However, since there is no path from K to J

D4 =
{
J
}

D3 =
{
H, I

}
D2 =

{
E,F,G

}

D1 =
{
B,C,D

}
D0 =

{
A
}
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Optimal stepping (DD)

. Consider the system
xi+1 = xi + ui x0 = 2

the performance index

J = x2
N +

N−1∑

i=0

x2
i + u2

i with N = 4

and the constraints
ui ∈ {−1, 0, 1} xi ∈ {−2, −1, 0, 1, 2}
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Firstly, we establish V4(x4) as in the following table

x4 V4

-2 4
-1 1
0 0
1 1
2 4

V4(x4) = φ4(x4) = x2
4

The combination of x3 and u3 determines the following state

x4 = x3 + u3

and consequently the V4(x4) contribution.

x4 u3

x3 -1 0 1
-2 -3 -2 -1
-1 -2 -1 0
0 -1 0 1
1 0 1 2
2 1 2 3

V4(x4) u3

x3 -1 0 1
-2 ∞ 4 1
-1 4 1 0
0 1 0 1
1 0 1 4
2 1 4 ∞



The combination of x3 and u3 also determines the instantaneous loss L3 = x2
3 + u2

3.

L3 u3

x3 -1 0 1
-2 5 4 5
-1 2 1 2
0 1 0 1
1 2 1 2
2 5 4 5

If we add up the instantaneous loss and V4 we have a tableau in which we for each possible value
of x3 can perform the minimization in

V3(x3) = min
u3

[L3(x3, u3) + V4(x3 + u3)]

and determine the optimal value for the decision and the Bellman function (as function of x3).

L3 + V4 u3 V3 u∗
3

x3 -1 0 1
-2 ∞ 8 6 6 1
-1 6 2 2 2 0,1
0 2 0 2 0 0
1 2 2 6 2 -1,0
2 6 8 ∞ 6 -1

Knowing V3(x3) we have one of the components for i = 2. In this manner we can iterate
backwards and finds:



L2 + V3 u2 V2 u∗
2

x2 -1 0 1
-2 ∞ 10 7 7 1
-1 8 3 2 2 1
0 3 0 3 0 0
1 2 3 8 2 -1
2 7 10 ∞ 7 -1

L1 + V2 u1 V1 u∗
1

x1 -1 0 1
-2 ∞ 11 7 7 1
-1 9 3 2 2 1
0 3 0 3 0 0
1 2 3 9 2 -1
2 7 11 ∞ 7 -1

L0 + V1 u0 V0 u∗
0

x0 -1 0 1
-2 ∞ 11 7 7 1
-1 9 3 2 2 1
0 3 0 3 0 0
1 2 3 9 2 -1
2 7 11 ∞ 7 -1

With x0 = 2 we can trace forward and find the input sequence −1, −1, 0, 0 which give (an
optimal) performance equal 7. Sensitivity. Steering vs. feedback.



Optimal stepping (DD) II - EPC

Consider the system from previous example, but with the constraints that x4 = 1.
System

xi+1 = xi + ui x0 = 2 x4 = 1

Performance index

J = x2
4 +

3∑

i=0

x2
i + u2

i

Constraints:
ui ∈ {−1, 0, 1} xi ∈ {−2, −1, 0, 1, 2}

x4 V4

-2 ∞
-1 ∞
0 ∞
1 1
2 ∞

L3 + V4 u3 V3 u∗
3

x3 -1 0 1
-2 ∞ ∞ ∞ ∞
-1 ∞ ∞ ∞ ∞
0 ∞ ∞ 2 2 1
1 ∞ 2 ∞ 2 0
2 6 ∞ ∞ 6 -1
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L2 + V3 u2 V2 u∗
2

x2 -1 0 1
-2 ∞ ∞ ∞ ∞
-1 ∞ ∞ 4 4 1
0 ∞ 2 3 2 0
1 4 3 8 3 0
2 7 10 ∞ 7 -1

L1 + V2 u1 V1 u∗
1

x1 -1 0 1
-2 ∞ ∞ 9 9 1
-1 ∞ 5 4 4 1
0 5 2 4 2 0
1 4 4 9 4 -1
2 8 11 ∞ 8 -1

L0 + V1 u0 V0 u∗
0

x0 -1 0 1
-2 ∞ 13 9 9 1
-1 11 5 4 4 1
0 5 2 5 2 0
1 4 5 10 4 -1
2 9 12 ∞ 9 -1

With x0 = 2 we can iterate forward and find the optimal input sequence −1, −1, 0, 1 which is
connected to a performance index equal 9.

33 / 34



Reading guidance

DO: chapter 6, page 73-83
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