)
o |
=

M

Solution Methods — Numerical Algorithms

Evelien van der Hurk

DTU Managment Engineering

sran=5 oy | E

DTU Management Engineering
Department of Management Engineering




2

DTU Management Engineering

)
o |
=

M

Class Exercises From Last Time

42111: Static and Dynamic Optimization (6) 09/10/2017



=
—
=

M

Class Exercise 2

minimize: —2x1 + X2
subject to: x; +x2 =3
(.171, 172) cX

@ Suppose X={(0,0),(0,4),(4,4),(4,0),(1,2),(2,1)}

@ Formulate the Lagrangian Dual Problem

© Plot the Lagrangian Dual Problem

@ Find the optimal solution to the primal and dual problems
@ Check whether the objective functions are equal

@ Explain your observation in 5
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Solution (1) =
e Let \ be the lagrange multiplier on the equality constraint
e Lagrangian is then:
L(iB, /\) = —2x1 + x9 + )\(3 — 1 — l‘2)

e The Lagrangian Dual Function is then:

(N = rréiE{—le +z2+ N3 —21 —x2)} (1)

=3\ + min{(—A — 2)x; + (1 — Nz} (2)
xeX

e Interesting values of A:

eX< -2
o ) e[-2,1]
e \>1
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Solution (2)

M

./\§—2—> 1‘1:0,33‘2:0

B()\) =3\ +0(—A—2)+0(1—\)
=3\

ele[-2,1] = z1=4,20=0

0()\) =3\ +4(—A—2)+0(1—))
=-8-)\

.>\214) I1:4,{E2:4

O(N) =3)\+4(—A—2)+4(1—))
— —4-5\
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Observations

M

o\ =2 O(\) = —6< f(z¥), =¥ = (2,1)
e There is a duality gap

e 9(\) does not even contain a feasible solution!
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Lecture Overview

Numerical Algorithms for Optimization

e Unconstrained
e Several Variables
e Separable Programming

e Interior point methods/Barrier methods
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Motivation

Numerical Algorithms for Optimization

e Nonlinear optimization is difficult, in general

e Many optimization software packages exist...

e ...but a general method that works for all problems cannot exist
e So: software packages will give 'wrong’ answers

e Insight into algorithms: ability to formulate a problem with algorithm in mind
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LP programs are “easy”

Two efficient algorithms
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e Simplex method: insect crawling on a topaz

e Interior point methods: insect gnawing there way through a topaz.
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Historical comment

e In 1983 Narendra K. Karmarkar hit the headlines in major world newspapers: he
had discovered another polynomial algorithm for LP problems, that he claimed
was very efficient. This type of method became known as interior point methods.
Karmarkar he worked for a private company and kept the algorithm secret for
years...

e This energized the scientific community to “rediscover” Karmarkars algorithm,
and beat his algorithm. Experts of the simplex method fought to keep their
algorithm competitive.

® The result: LP problems can be solved a million times faster than before 1983. A
factor thousand is due to faster computers, another factor thousand is due to
better theory.
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Quality

Approximation xg of the point of global minimum Z of a function
f : G — R of n variables defined on a subset GG of R".

Quality of a solution
® Tog — ab

* f(zo0) — f(2)

o (@)= (@)
F@—1@)

® [f'(zo)]
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Quality

M

Quality of an algorithm

e Efficiency: each step leads to a guaranteed convergence (additional nr of
decimals)

e Reliability: it provides a “certificate of quality”

Notes:

e Note: the algorithm will give an approximation of the optimal solution (e.g. to
be € distance from optimal); analytical solutions provide the exact optimal point.

e “ideal algorithms” (that are efficient and reliable) are only available for convex
optimization problems.
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One Variable Unconstrained Optimization

Let's consider the simplest case: Unconstrained optimization with just a
single variable x, where the differentiable function to be minimizes is convex
(or for maximization, is concave)

e The necessary and sufficient condition for a particular solution x = z* to be a
global maximum is:
i :

dx rer
e Previously lectures: analytical solution methods
e What if it cannot be solved (easily) analytically?
e We can utilize search procedures to solve it numerically

e Find a sequence of trial solutions that lead towards the optimal solution
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Bisection Method

e Can always be applied when f(x) concave for maximization (or convex for
minimization)
e |t can also be used for certain other functions

o If z* denotes the optimal solution, all that is needed is that

ﬁ>0 ifx <zx*
dzr

df .

i f = r*
e 0 ifzx==2x
ﬁ<0 if z > 2"
dx

e These conditions automatically hold when f(z) is concave

e The sign of the gradient indicates the direction of improvement
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Bisection Method

M

Bisection

Given two values, z < T, with f'(z) >0, f(Z) <0

e Find the midpoint & = £52

e Find the sign of the slope of the midpoint

® The next two values are:
=zif f'(2) <0
=zif f/() >0

o
°x

e What is the stopping criterion?
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Bisection Method

Bisection

Given two values, z < T, with f'(z) >0, f(Z) <0

e Find the midpoint & = £52

e Find the sign of the slope of the midpoint

® The next two values are:
=zif f'(2) <0
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e What is the stopping criterion?
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Bisection Method

The Problem
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maximize f(z) = 12z — 3z* — 228

18 DTU Management Engineering
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Bisection Method
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Bisection Method

Iteration  f/(&) z T z f(z)
0 0 2 1 7.0000
1 -12.00 | O 1 0.5 5.7812
2 10.12 | 0.5 1 0.75 7.6948
3 4.09 | 0.75 1 0.875 7.8439
4 -2.19 | 0.75 0.875 0.8125 7.8672
5 1.31 | 0.8125 0.875 0.84375 7.8829
6 -0.34 | 0.8125 0.84375 | 0.828125  7.8815
7 0.51 | 0.828125 0.84375 | 0.8359375 7.8839

20 DTU Management Engineering

x* ~ 0.836

f(a*) = 7.8839

0.828125 < z* < 0.84375
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Bisection Method

M

e Intuitive and straightforward procedure

e Converges slowly

e An iteration decreases the difference between the bounds by one half
e Only information on the derivative of f(z) is used

e More information could be obtained by looking at f”(x)
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Newton Method

M

e Basic Idea: Approximate f(z) within the neighbourhood of the current trial
solution by a quadratic function

e This approximation is obtained by truncating the Taylor series after the second
derivative

[ (%)

5 (@it — z;)?

f@igr) = flz) + f (@) (i — i) +

e Having set x; at iteration 14, this is just a quadratic function of z; 1

e Can be maximized by setting its derivative to zero
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mm&ﬂﬁﬂ)%fW0+f%%X%+r—%)+—jf—@wl—wy
f(@ig1) = () + 7 (20) (i1 — 4)

_f()
[ (ws)

Ti41 = T4

e What is the stopping criterion?
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mm&ﬂﬁﬂ)%fW0+f%%X%+r—%)+—jf—@wl—wy
f(@ig1) = () + 7 (20) (i1 — 4)

_f()
[ (ws)

Ti41 = T4

e What is the stopping criterion?

Tit1 —CCZ" <e€
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Same Example
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The Problem

minimize: f(x) = 122 — 3z* — 22

fl(x) =12 —1223 — 122°

f"(z) = —36z3— 60x*
n 1— 2% —2b
B ' 33 + Had
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Newton Method
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Newton Method

Iteration x; flz)  fl(xy)  fr@) f(@)
1 117 -12 -96 0.875
2 0.875 | 7.8439 -2.1940 -62.733 | 0.84003
3 0.84003 | 7.8838 -0.1325 -55.279 | 0.83763
4 0.83763 | 7.8839 -0.0006 -54.790 | 0.83762

26 DTU Management Engineering

o* = 083763
F(z*) = 7.8839
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Several variables

M

Newton: Multivariable

Given @1, the next iterate maximizes the quadratic approximation

f(e2) + Y f(@2)(@ — 1) + (@ — 1) H(m) 222

Ty =z, — H(z1) 'V (z1)"

Gradient search

| A\

The next iteration maximizes f along the gradient ray

maximize: g(t) = f(x1 +tVf(x1)T)st. t>0

To = X1 + t*Vf(scl)T
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Example

The Problem
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maximize: f(z,y) = 2zy + 2y — 2° — 2y

28 DTU Management Engineering
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Example

e The vector of partial derivatives is given as

_(9F of of
Vf(a:) = (8'“,83327..., 8xn)

e Here of
—— =2y — 2
ox 4 v
g:2x+2—4y
dy

e Suppose we select the point (x,y)=(0,0) as our initial point

e V£(0,0) =(0,2)
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Example

e Perform an iteration
x=04+1t0)=0

y=0+1(2) =2t
e Substituting these expressions in f(x) we get

f(x+t+Vf(x)) = f(0,2t) = 4t — 8t

e Differentiate wrt to ¢ p
— (4t —8t?) =4 —16t =0
dt( )

e Therefore t* = 1, and = (0,0) + 1(0,2) = (0, 1)
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Example

e Gradient at = (0, 3) is Vf(0,3) = (1,0)

'3
1

e Substituting these expressions in f(x) we get

e Determine step length

fatesvi@) =1 (ng)=t-t 43

e Differentiate wrt to ¢

d_ o, 1
LR T S Y
ALY

e Therefore t* = 1, and = = (0,3) + 3(1,0) = (3, 3)
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Separable Programming

M

The Problem

maximize: >, f;(z;)
subject to: Ax <b

e Each f; is approximated by a piece-wise linear function

f(y) = s1y1+ s2y2 + s3y3
Y =Y1+Y2+Yy3
0 <y1<uw
0 <y2<wup
0 <ys<wus
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Separable Programming
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e Special restrictions:
e 3o = 0 whenever y; < u;
e y3 = 0 whenever y5 < uy
e If each f; is concave,
e Automatically satisfied by the simplex method

o Why?
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Barrier methods/Interior Point Methods

M

The Problem

maximize:  f(x)
subject to:  g(x)

IV IA
[l

xr

e For a sequence of decreasing positive r's, solve
maximize f(x) — rB(x)

® B is a barrier function approaching oo as a feasible point approaches the
boundary of the feasible region

e For example
1

Bl@) = Z b; —lgz(w) - 4 ;y
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The Problem

maximize: Ty
subject to: 224y <3
z,y =0
r T Y
1 1

1 0.90 1.36
1072 0.987 1.925
107% 0.998 1.993

o Class exercise

Verify that the KKT conditions are satisfied at x =1 & y = 2
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Some more comments

On the power of algorithms

“General minimization schemes, such as the gradient method and the Netwon
method, work well for up to four variables. Convex blackbox methods, such as the
ellipsoid method, “work well” for up to 1,000 variables. Self-concordant barrier
methods work well for up to 10,000 variables. A special case of self-concordant
barrier methods, which is available for linear, quadratic, and semidefinite
programming, the so-caled primal-dual methods, works even well for up to
1,000,000 variables.”

Yurii Nesterov, Introductory Lectures on Convex Programming: Basic
Course, Kluwer Acadamic Press, Boston, 2003.
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A taste for more?

M

42112 Mathematical Programming Modelling (intermediate)

42114 Integer Programming (fundamentals)

42115 Network Optimization (fundamentals)

42116 Implementing OR Solution Methods (advanced)

42136 Large Scale Optimization using Decomposition (advanced)
42137 Optimization using metaheuristics (advanced)

42401 Introduction to Management Science (fundamentals)

42881 Optimisation in Public Transport (applied, advanced)

42885 Maritime Logistics (applied, advanced)

42887 Vehicle Routing and Distribution Planning (applied, advanced)
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Class exercise

M

Separable programming

maximize: 32z — 2* + 4y — 2
subject to: 24+9? <9
z,y 20

e Formulate this as an LP model using x =0,1,2,3 and y =0,1,2,3 as
breakpoints for the approximating piece-wise linear functions
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