

Lagrangian Duality

Evelien van der Hurk

DTU Management Engineering

DTU Management EngineeringDepartment of Management Engineering

Topics

- Lagrange Multipliers
- Lagrangian Relaxation
- Lagrangian Duality

Example: Economic Order Quantity Model

- Parameters
 - Demand rate: d
 - Order cost: K
 - Unit cost: c
 - Holding cost: h
- ullet Decision Variable: The optimal order quantity Q
- Objective Function:

$$\text{minimize } \frac{dK}{Q} + dc + \frac{hQ}{2}$$

• Optimal Order Quantity:

$$Q^* = \sqrt{\frac{2dK}{h}}$$

EOQ Model

Suppose we have several items with a space constraint q

The problem

minimize
$$\sum_{j} \left(\frac{d_{j}K_{j}}{Q_{j}} + d_{j}c_{j} + \frac{hQ_{j}}{2} \right)$$

subject to: $\sum_{j} Q_{j} \leq q$

We have the following possibilities

1 The constraint is non-binding/slack, i.e

$$\sum_{j} \sqrt{\frac{2d_j K_j}{h}} < q$$

2 The constraint is binding/active

Lagrange Multiplier

The problem

minimize
$$T(Q_1, Q_2, \dots, Q_n) = \sum_j \left(\frac{d_j K_j}{Q_j} + d_j c_j + \frac{hQ_j}{2}\right)$$
 subject to: $\sum_j Q_j = q$

• Lagrange multiplier λ

minimize
$$T(Q_1, Q_2, \dots, Q_n) + \frac{\lambda}{\lambda} (\sum_j Q_j - q)$$

Differentiate with respect to Q_i:

$$\frac{\partial T}{\partial Q_j} = -\frac{d_j K_j}{Q_j^2} + \frac{h}{2} + \lambda = 0 \,\forall j$$

• Solving for Q_i

$$Q_j = \sqrt{\frac{2d_j K_j}{h + 2\lambda}} \ \forall j$$

Lagrange multiplier

• Substituting this into the constraint we have

$$\sum_{j} \sqrt{\frac{2d_j K_j}{h + 2\lambda}} = q$$

• Solving for λ and Q_i gives:

$$\lambda = \lambda^* = \frac{\left(\frac{\sum_j \sqrt{2d_j K_j}}{q}\right)^2 - h}{2}$$
$$Q_j^* = \sqrt{\frac{2d_j K_j}{h + 2\lambda^*}} \, \forall j$$

Interpretation of λ

• In linear programming a dual variable is a shadow price:

$$y_i^* = \frac{\partial Z^*}{\partial b_i}$$

• Similarly, in the EOQ model, the Lagrange multiplier measures the marginal change in the total cost resulting from a change in the available space

$$\lambda^* = \frac{\partial T^*}{\partial q}$$

Problem

minimize: $x^2 + y^2 + 2z^2$

subject to: $2x + 2y - 4z \ge 8$

• The Lagrangian is:

$$L(x, y, z, \mu) = x^{2} + y^{2} + 2z^{2} + \mu(8 - 2x - 2y + 4z)$$

• Note that the unconstrained minimum x = y = z = 0 is **not** feasible

Example Continued

ullet Differentiating with respect to x,y,z

$$\frac{\partial L}{\partial x} = 2x - 2\mu = 0$$
$$\frac{\partial L}{\partial y} = 2y - 2\mu = 0$$
$$\frac{\partial L}{\partial z} = 4z + 4\mu = 0$$

- ullet We can conclude that $z=-\mu, x=y=\mu$
- Substituting this into 2x + 2y 4z = 8 gives x = 1, y = 1, z = -1
- Optimal objective function value = 4

Checking the value of μ

- $\mu=1$ \to states that we can expect an increase (decrease) of one unit for a unit change in the right hand side of the constraint
- Resolve the problem with a righthandside on the constraint of 9
- $\mu^* = \frac{9}{8}, x^* = \frac{9}{8}, y^* = \frac{9}{8}, z^* = -\frac{9}{8}$
- New objective function value:

$$\left(\frac{9}{8}\right)^2 + \left(\frac{9}{8}\right)^2 + 2\left(-\frac{9}{8}\right)^2 = \frac{324}{64}$$

ullet This is an increase of pprox 1 unit

Lagrange relaxation

Problem \mathcal{P}

minimize: f(x)

subject to: $g(x) \leq 0$

- ullet Choose non negative multipliers u
- ullet Solve the Lagrangian: minimize $f(oldsymbol{x}) + oldsymbol{u} oldsymbol{g}(oldsymbol{x})$,
- ullet Optimal solution x^*

Lagrange relaxation

- ullet $f(oldsymbol{x^*}) + oldsymbol{ug}(oldsymbol{x^*})$ provides a lower bound ${\cal P}$
- ullet If $g(x^*) \leq 0$, $ug(x^*) = 0$, x^* is an optimal solution to problem ${\mathcal P}$
- $ullet x^*$ is an optimal solution to:

minimize: $f(\boldsymbol{x})$

subject to: $g(x) \le g(x^*)$

Example from last time ...

minimize
$$2x_1^2 + x_2^2$$

subject to: $x_1 + x_2 = 1$

$$L(x_1, x_2, \lambda_1) = 2x_1^2 + x_2^2 + \lambda_1(1 - x_1 - x_2)$$

Different values of λ_1

$$\lambda_1 = 0 \to \text{get solution } x_1 = x_2 = 0, 1 - x_1 - x_2 = 1$$

$$L(x_1, x_2, \lambda_1) = 0$$

$$\lambda_1=1 o \mathsf{get}$$
 solution $x_1=\frac{1}{4}, x_2=\frac{1}{2}, 1-x_1-x_2=\frac{1}{4}$

$$L(x_1, x_2, \lambda_1) = \frac{5}{8}$$

$$\lambda_1=2 o \operatorname{get}$$
 solution $x_1=\frac{1}{2}, x_2=1, 1-x_1-x_2=-\frac{1}{2}$

$$L(x_1, x_2, \lambda_1) = \frac{1}{2}$$

$$\lambda_1 = \frac{4}{3} \to \text{get solution } x_1 = \frac{1}{3}, x_2 = \frac{2}{3}, 1 - x_1 - x_2 = 0$$

$$L(x_1, x_2, \lambda_1) = \frac{2}{3}$$

Lagrangian Dual

Primal

minimize: f(x)

subject to: $g(x) \leq 0$

h(x) = 0

Lagrangian Dual

maximize: $\theta(\boldsymbol{u}, \boldsymbol{v})$

subject to: $u \geq 0$

$$\theta(\boldsymbol{u}, \boldsymbol{v}) = \min_{\boldsymbol{x}} \{ f(\boldsymbol{x}) + \boldsymbol{u}\boldsymbol{g}(\boldsymbol{x}) + \boldsymbol{v}\boldsymbol{h}(\boldsymbol{x}) \}$$

Lagrangian Dual

Weak Duality: For Feasible Points

$$\theta(\boldsymbol{u}, \boldsymbol{v}) \le f(\boldsymbol{x})$$

Strong Duality: Under Constraint Qualification

If f and ${\boldsymbol g}$ are convex and ${\boldsymbol h}$ is affine, the optimal objective function values are equal

Often there is a duality gap

The problem

minimize:
$$x_1^2 + x_2^2$$

subject to: $x_1 + x_2 \ge 4$
 $x_1, x_2 \ge 0$

- Let $X := \{x \in \mathbb{R}^2 | x_1, x_2 \ge 0\} = \mathbb{R}^2_+$
- The Lagrangian is:

$$L(\mathbf{x}, \lambda) = x_1^2 + x_2^2 + \lambda(4 - x_1 - x_2)$$

The Lagrangian dual function:

$$\theta(\lambda) = \min_{x \in X} \{x_1^2 + x_2^2 + \lambda(4 - x_1 - x_2)\}$$

$$= 4\lambda + \min_{x \in X} \{x_1^2 + x_2^2 - \lambda x_1 - \lambda x_2)\}$$

$$= 4\lambda + \min_{x_1 \ge 0} \{x_1^2 - \lambda x_1\} + \min_{x_2 \ge 0} \{x_2^2 - \lambda x_2\}$$

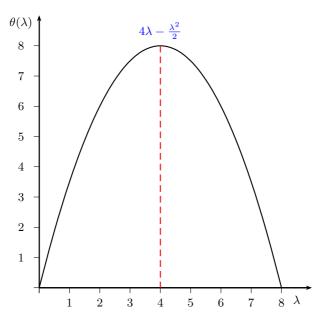
• For a fixed value of $\lambda \geq 0$, the minimum of $L(x,\lambda)$ over $x \in X$ is attained at $x_1(\lambda) = \frac{\lambda}{2}, x_2(\lambda) = \frac{\lambda}{2}$

$$\Rightarrow L(\boldsymbol{x}(\lambda), \lambda) = 4\lambda - \frac{\lambda^2}{2} \quad \forall \lambda \geq 0$$

- The dual function is concave and differentiable
- We want to maximize the value of the dual function

$$\frac{\partial L}{\partial \lambda} = 4 - \lambda = 0$$

- This implies $\lambda^* = 4, \theta(\lambda^*) = 8$
- $\bullet \ \boldsymbol{x}(\lambda^*) = \boldsymbol{x}^* = (2,2)$



The problem

minimize: $3x_1 + 7x_2 + 10x_3$ subject to: $x_1 + 3x_2 + 5x_3 \ge 7$ $x_1, x_2, x_3 \in \{0, 1\}$

- Let $X := \{x \in \mathbb{R}^3 | x_j \in \{0,1\}, j = 1,2,3\}$
- The Lagrangian is:

$$L(\mathbf{x}, \lambda) = 3x_1 + 7x_2 + 10x_3 + \frac{\lambda}{10}(7 - x_1 - 3x_2 - 5x_3)$$

The Lagrangian dual function:

$$\theta(\lambda) = \min_{x \in X} \{3x_1 + 7x_2 + 10x_3 + \lambda(7 - x_1 - 3x_2 - 5x_3)\}$$

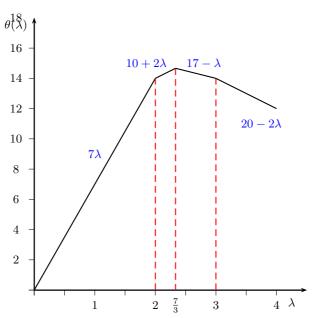
$$= 7\lambda + \min_{x_1 \in \{0,1\}} \{(3 - \lambda)x_1\} + \min_{x_2 \in \{0,1\}} \{(7 - 3\lambda)x_2\}$$

$$\min_{x_3 \in \{0,1\}} \{(10 - 5\lambda)x_3\}$$

• $X(\lambda)$ is obtained by setting

$$x_j = \left\{ \begin{array}{ll} 1 & \text{when the objective coefficient is } \left\{ \begin{array}{ll} \leq 0 \\ \geq 0 \end{array} \right. \right.$$

$\lambda \in$	$x_1(\lambda)$	$x_2(\lambda)$	$x_3(\lambda)$	$g({m x}(\lambda))$	$\theta(\lambda)$
$[-\infty, 2]$	0	0	0	7	7λ
$[2, \frac{7}{3}]$	0	0	1	2	10+2 <i>λ</i>
$[\frac{7}{3}, 3]$	0	1	1	-1	$17-\lambda$
$[3,\infty]$	1	1	1	-2	20-2λ



- ullet θ is concave, but non-differentiable at break points $\lambda \in \{2, \frac{7}{3}, 3\}$
- Check that the slope equals the value of the constraint function
- ullet The slope of heta is negative for objective pieces corresponding to feasible solutions to the original problem
- ullet The one variable function heta has a "derivative" which is non-increasing; this is a property of every concave function of one variable
- $\lambda^* = \frac{7}{3}, \theta(\lambda^*) = \frac{44}{3} = 14\frac{2}{3}$
- $\bullet \ \boldsymbol{x}^* = (0, 1, 1), f(\boldsymbol{x}^*) = 17$
- A positive duality gap!
- $\bullet \ X(\lambda^*) = \{(0,0,1), (0,1,1)\}$

The problem

minimize: $c^T x$

subject to: $Ax \geq b$

 $oldsymbol{x}$ free

• Objective:

$$f(\boldsymbol{x}) = \boldsymbol{c}^T \boldsymbol{x}$$

ullet Identifying $oldsymbol{g}(oldsymbol{x})$

$$g(x) = Ax - b$$

• Lagrangian dual function:

$$\theta(\boldsymbol{\lambda}) = \min_{\boldsymbol{x}} \{ \boldsymbol{c}^T \boldsymbol{x} + \boldsymbol{\lambda}^T (\boldsymbol{b} - A \boldsymbol{x}) \} = \boldsymbol{\lambda}^T \boldsymbol{b}$$

Provided that the following condition is satisfied

$$A^T \lambda - c = 0$$

• That is, we get the following problem

maximize: $\boldsymbol{b}^T \boldsymbol{\lambda}$

subject to: $A^T \lambda = c$

 $oldsymbol{\lambda} \geq oldsymbol{0}$

• Compare with Dual: min. $b^T \lambda$ s.t. $A^T \lambda = c, \lambda \geq 0$

Class exercise 1

minimize: x

subject to: $x^2 + y^2 = 1$

- Solve the problem
- Formulate and solve the dual
- Check whether the objective functions are equal

Class Exercise 2

minimize:
$$-2x_1 + x_2$$

subject to: $x_1 + x_2 = 3$
 $(x_1, x_2) \in X$

- **1** Suppose $X = \{(0,0),(0,4),(4,4),(4,0),(1,2),(2,1)\}$
- 2 Formulate the Lagrangian Dual Problem
- 3 Plot the Lagrangian Dual Problem
- 4 Find the optimal solution to the primal and dual problems
- **5** Check whether the objective functions are equal
- 6 Explain your observation in 5

Richard M. Lusby
DTU Management Engineering, Technical University of Denmark

Building 424, Room 208 rmlu@dtu.dk 2800 Kgs. Lyngby, Denmark phone +45 4525 3084 http://www.man.dtu.dk