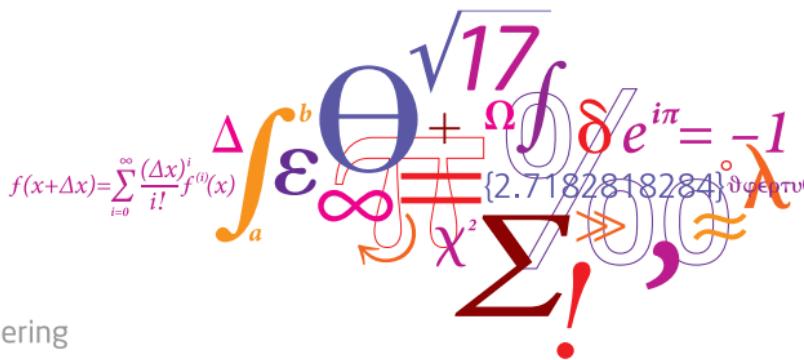


Convexity and Optimization

Richard Lusby

DTU Management Engineering



Class Exercises From Last Time

Today's Material

- Extrema
- Convex Function
- Convex Sets
- Other Convexity Concepts
- Unconstrained Optimization

Extrema

Problem

$$\max f(\mathbf{x}) \text{ s.t. } \mathbf{x} \in S$$

$$\max \{f(\mathbf{x}) : \mathbf{x} \in S\}$$

- Global maximum \mathbf{x}^*

$$f(\mathbf{x}^*) \geq f(\mathbf{x}) \quad \forall \mathbf{x} \in S$$

- Local maximum \mathbf{x}^o :

$$f(\mathbf{x}^o) \geq f(\mathbf{x}) \quad \forall \mathbf{x} \text{ in a neighborhood around } \mathbf{x}^o$$

- **strict** maximum/minimum defined similarly

Weierstrass theorem:

Theorem

A continuous function achieves its max/min on a closed and bounded set

Supremum and Infimum

Supremum

The supremum of a set S having a partial order is the least upper bound of S (if it exists) and is denoted $\sup S$.

Infimum

The infimum of a set S having a partial order is the greatest lower bound of S (if it exists) and is denoted $\inf S$.

- If the extrema are not achieved:

- $\max \rightarrow \sup$
- $\min \rightarrow \inf$

- Examples

- $\sup\{2, 3, 4, 5\}?$
- $\sup\{x \in \mathbb{Q} : x^2 < 2\}?$
- $\inf\{1/x : x > 0\}?$

Finding Optimal Solutions

Every method for finding and characterizing optimal solutions is based on **optimality conditions** - either **necessary** or **sufficient**

Necessary Condition

*A condition $C_1(x)$ is **necessary** if $C_1(x^*)$ is satisfied by every optimal solution x^* (and possibly some other solutions as well).*

Sufficient Condition

*A condition $C_2(x)$ is **sufficient** if $C_2(x^*)$ ensures that x^* is optimal (but some optimal solutions may not satisfy $C_2(x^*)$).*

Mathematically

$$\{x | C_2(x)\} \subseteq \{x | x \text{ optimal solution}\} \subseteq \{x | C_1(x)\}$$

Finding Optimal Solutions

An example of a necessary condition in the case S is “well-behaved” **no improving feasible direction**

Feasible Direction

Consider $\mathbf{x}^o \in S, s \in \mathbb{R}^n$ is called a **feasible** direction if there exists $\bar{\epsilon}(s) > 0$ such that

$$\mathbf{x}^o + \epsilon s \in S \quad \forall \epsilon : 0 < \epsilon \leq \bar{\epsilon}(s)$$

We denote the **cone** of feasible directions from \mathbf{x}^o in S as $S(\mathbf{x}^o)$

Improving Direction

$s \in \mathbb{R}^n$ is called an **improving** direction if there exists $\bar{\epsilon}(s) > 0$ such that

$$f(\mathbf{x}^o + \epsilon s) < f(\mathbf{x}^o) \quad \forall \epsilon : 0 < \epsilon \leq \bar{\epsilon}(s)$$

The **cone** of improving directions from \mathbf{x}^o in S is denoted $F(\mathbf{x}^o)$

Finding Optimal Solutions

Local Optima

If \mathbf{x}^o is a local minimum, then there exist **no** $s \in S(\mathbf{x}^o)$ for which $f(\cdot)$ decreases along s , i.e. for which

$$f(\mathbf{x}^o + \epsilon_2 s) < f(\mathbf{x}^o + \epsilon_1 s) \text{ for } 0 \leq \epsilon_1 < \epsilon_2 \leq \bar{\epsilon}(s)$$

Stated otherwise: A necessary condition for local optimality is

$$F(\mathbf{x}^o) \cap S(\mathbf{x}^o) = \emptyset$$

Improving Feasible Directions

If for a given direction s it holds that

$$\nabla f(x^o)s < 0$$

Then s is an improving direction

Well known necessary condition for local optimality of x^o for a differentiable function:

$$\nabla f(x^o) = 0$$

In other words, x^o is **stationary** with respect to $f(\cdot)$

What if stationarity is not enough?

- Suppose f is twice continuously differentiable
- Analyse the Hessian matrix for f at x^o

$$\nabla^2 f(\mathbf{x}^o) = \left\{ \frac{\partial^2(f(\mathbf{x}^o))}{\partial x_i \partial x_j} \right\}, \quad i, j = 1, \dots, n$$

Sufficient Condition

If $\nabla f(\mathbf{x}^o) = 0$ and $\nabla^2 f(\mathbf{x}^o)$ is **positive definite**:

$$\mathbf{x}^T \nabla^2 f(\mathbf{x}^o) \mathbf{x} > 0 \quad \forall \quad \mathbf{x} \in \mathbb{R}^n \setminus \{0\}$$

then \mathbf{x}^o is a local minimum

What if Stationarity is not Enough?

- A necessary condition for local optimality is “Stationarity + **positive semidefiniteness** of $\nabla^2 f(x^o)$ ”
- Note that positive definiteness is not a necessary condition
 - E.g. look at $f(x) = x^4$ for $x^o = 0$
- Similar statements hold for maximization problems
 - Key concept here is **negative definiteness**

Definiteness of a Matrix

- A number of criteria regarding the definiteness of a matrix exist
- A symmetric $n \times n$ matrix A is **positive definite** if and only if

$$\mathbf{x}^T A \mathbf{x} > 0 \quad \forall \mathbf{x} \in \mathbb{R}^n \setminus \{0\}$$

- **Positive semidefinite** is defined likewise with " \geq " instead of " $>$ "
- **Negative (semi) definite** is defined by reversing the inequality signs to " $<$ " and " \leq ", respectively.

Necessary conditions for positive definiteness:

- A is regular with $\det(A) > 0$
- A^{-1} is positive definite

Definiteness of a Matrix

Necessary+Sufficient conditions for positive definiteness:

- Sylvester's Criterion: All principal submatrices have positive determinants

$$(a_{11}) \quad \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \quad \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

- All eigenvalues of A are positive

Necessary and Sufficient Conditions

Theorem

Suppose that $f(\cdot)$ is differentiable at a local minimum \mathbf{x}^o . Then $\nabla f(\mathbf{x}^o)s \geq 0$ for $s \in S(\mathbf{x}^o)$. If $f(\cdot)$ is twice differentiable at \mathbf{x}^o and $\nabla f(\mathbf{x}^o) = 0$, then $s^T \nabla^2 f(\mathbf{x}^o)s \geq 0 \forall s \in S(\mathbf{x}^o)$

Theorem

Suppose that S is convex and non-empty, $f(\cdot)$ differentiable, and that $\mathbf{x}^o \in S$. Suppose furthermore that $f(\cdot)$ is convex.

- \mathbf{x}^o is a local minimum if and only if \mathbf{x}^o is a global minimum
- \mathbf{x}^o is a local (and hence global) minimum if and only if

$$\nabla f(\mathbf{x}^o)(\mathbf{x} - \mathbf{x}^o) \geq 0 \quad \forall \mathbf{x} \in S$$

Convex Combination

Convex combination

The **convex combination** of two points is the line segment between them

$$\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 \text{ for } \alpha_1, \alpha_2 \geq 0 \text{ and } \alpha_1 + \alpha_2 = 1$$

Convex function

Convex Functions

A convex function lies below its **chord**

$$f(\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2) \leq \alpha_1 f(\mathbf{x}_1) + \alpha_2 f(\mathbf{x}_2)$$

- A **strictly** convex function has no more than one minimum
- Examples: $y = x^2$, $y = x^4$, $y = x$
- The sum of convex functions is also convex
- A differentiable convex function lies above its tangent
- A differentiable function is convex if its Hessian is positive semi-definite
 - Strictly convex not analogous!
- A function f is **concave** iff $-f$ is convex

Convex function

Convex Functions

A convex function lies below its **chord**

$$f(\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2) \leq \alpha_1 f(\mathbf{x}_1) + \alpha_2 f(\mathbf{x}_2)$$

- A **strictly** convex function has no more than one minimum
- Examples: $y = x^2$, $y = x^4$, $y = x$
- The sum of convex functions is also convex
- A differentiable convex function lies above its tangent
- A differentiable function is convex if its Hessian is positive semi-definite
 - Strictly convex not analogous!
- A function f is **concave** iff $-f$ is convex

EOQ objective function: $T(Q) = dK/Q + cd + hQ/2$?

Economic Order Quantity Model

The problem

The **Economic Order Quantity Model** is an inventory model that helps manufacturers, retailers, and wholesalers determine how they should optimally replenish their stock levels.

Costs

- K = Setup cost for ordering one batch
- c = unit cost for producing/purchasing
- h = holding cost per unit per unit of time in inventory

Assumptions

- d = A known constant demand rate
- Q = The order quantity (arrives all at once)
- Planned shortages are not allowed

Convex sets

Definition

A **convex set** contains all convex combinations of its elements

$$\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 \in S \quad \forall \mathbf{x}_1, \mathbf{x}_2 \in S$$

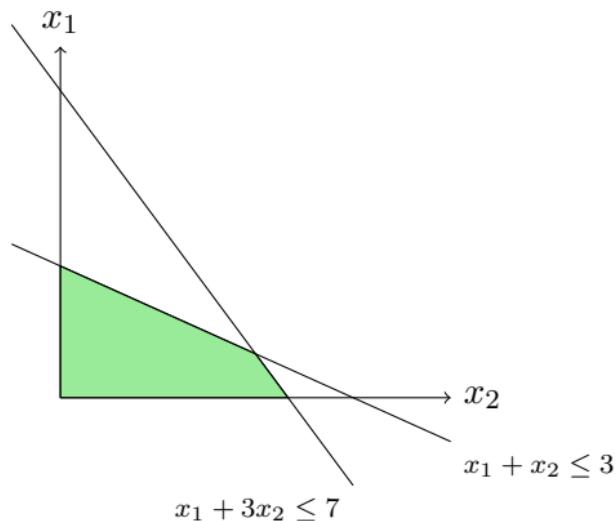
- Some examples of E.g. $(1, 2]$, $x^2 + y^2 < 4$, \emptyset
- Level curve (2 dimensions):

$$\{(x, y) : f(x, y) = \beta\}$$

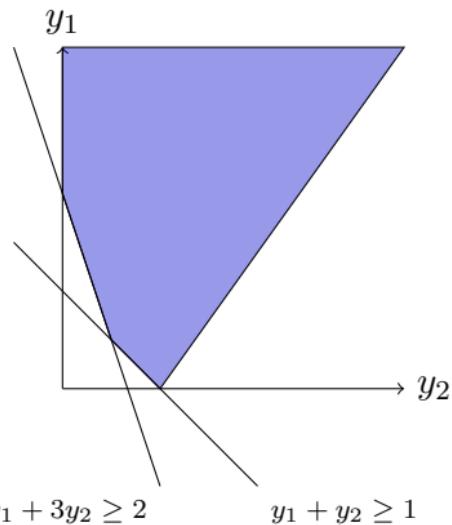
- Level set:

$$\{\mathbf{x} : f(\mathbf{x}) \leq \beta\}$$

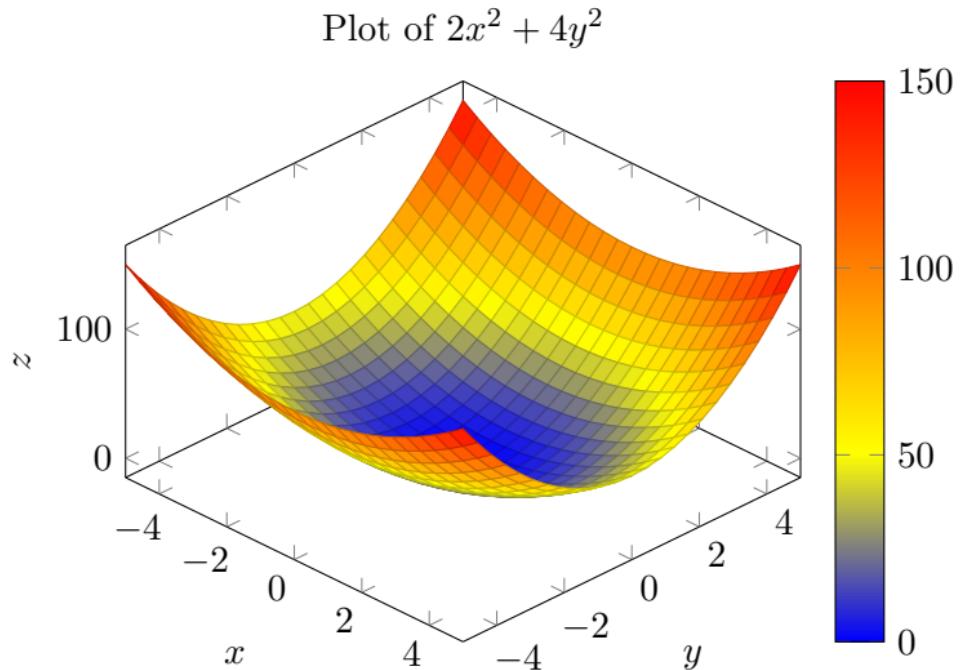
Lower Level Set Example



Lower Level Set Example

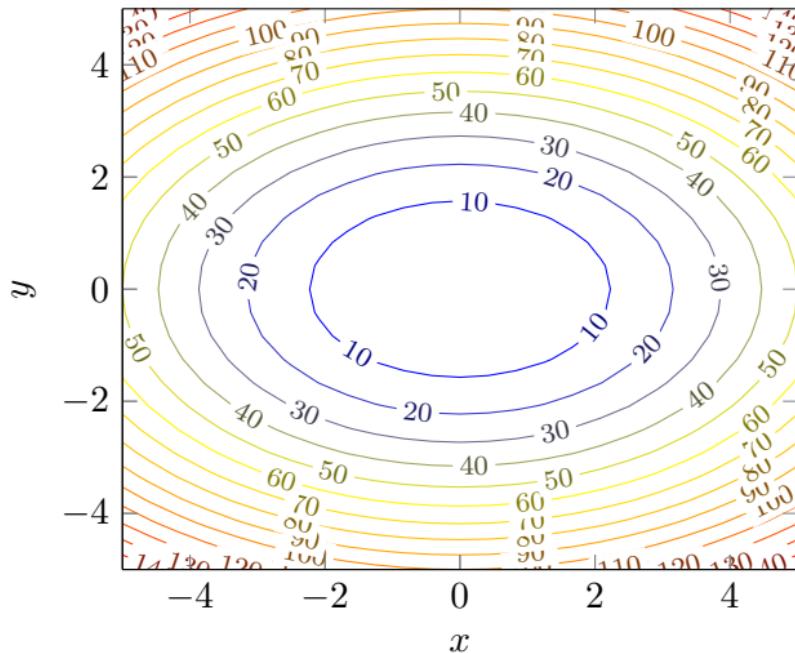


Upper Level Set Example



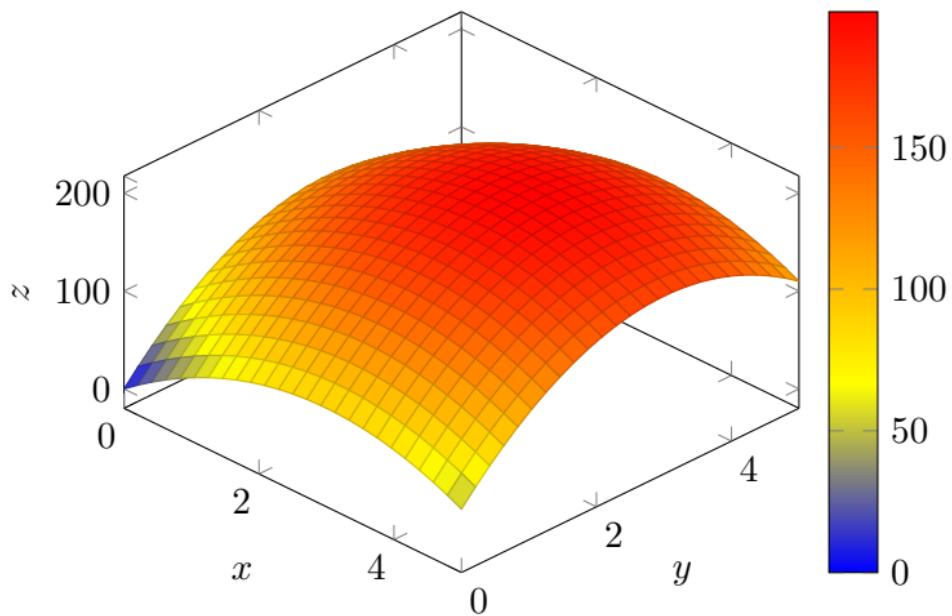
Upper Level Set Example

Plot of $2x^2 + 4y^2$



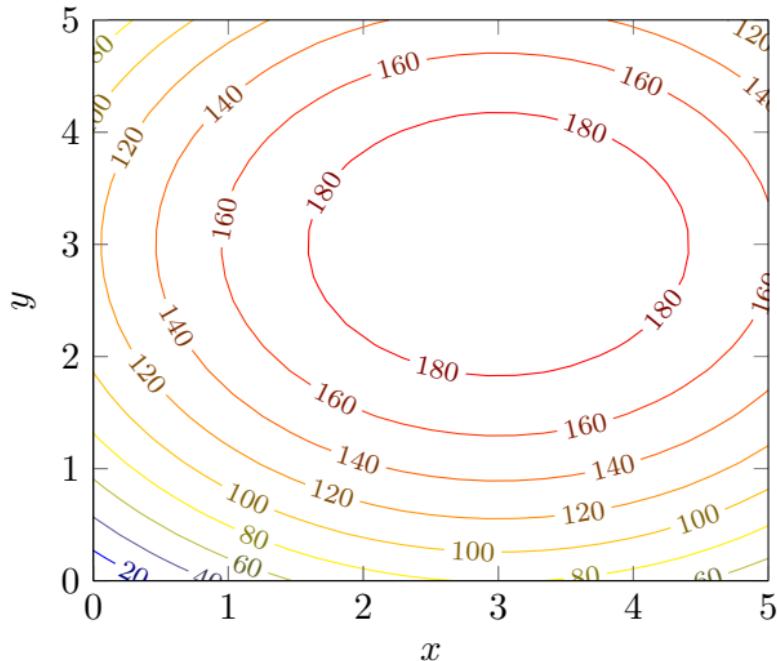
Example

Plot of $54x + -9x^2 + 78y - 13y^2$



Example

$$\text{Plot of } 54x + -9x^2 + 78y - 13y^2$$



Convexity, Concavity, and Optima

Theorem

Suppose that S is convex and that $f(\mathbf{x})$ is convex on S for the problem $\min_{\mathbf{x} \in S} f(\mathbf{x})$, then

- If \mathbf{x}^* is locally minimal, then \mathbf{x}^* is globally minimal
- The set X^* of global optimal solutions is convex
- If f is strictly convex, then \mathbf{x}^* is unique

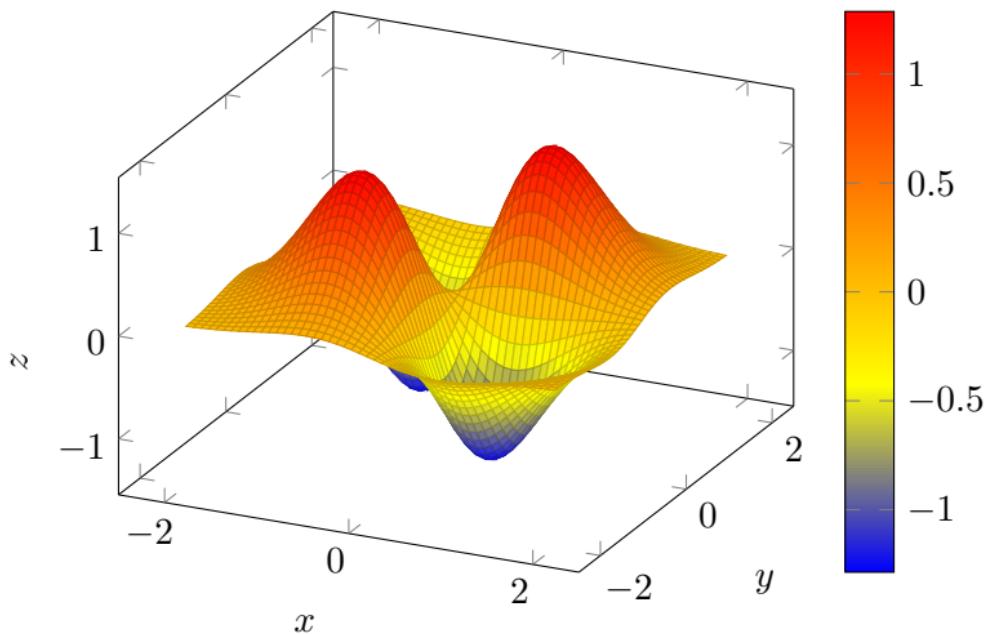
Examples

Problem 1

$$\begin{aligned} \text{Minimize} \quad & -x_2 \ln x_1 + \frac{x_1}{9} + x_2^2 \\ \text{Subject to:} \quad & 1.0 \leq x_1 \leq 5.0 \\ & 0.6 \leq x_2 \leq 3.6 \end{aligned}$$

What does the function look like?

$$z = \frac{7xy}{\exp(x^2+y^2)}$$



Problem 2

$$\begin{array}{ll}\text{Minimize} & \sum_{i=1}^3 -ilnx_i \\ \text{Subject to:} & \sum_{i=1}^3 x_i = 6 \\ & x_i \leq 3.5 \quad i = 1, 2, 3 \\ & x_i \geq 1.5 \quad i = 1, 2, 3\end{array}$$

Class exercises

- Show that $f(\mathbf{x}) = \|\mathbf{x}\| = \sqrt{\sum_i x_i^2}$ is convex
- Prove that any level set of a convex function is a convex set

Other Types of Convexity

- The idea of **pseudoconvexity** of a function is to extend the class of functions for which stationarity is a sufficient condition for global optimality. If f is defined on an open set X and is differentiable we define the concept of pseudoconvexity.
- A differentiable function f is **pseudoconvex** if

$$\nabla f(\mathbf{x}) \cdot (\mathbf{x}' - \mathbf{x}) \geq 0 \Rightarrow f(\mathbf{x}') \geq f(\mathbf{x}) \quad \forall \mathbf{x}, \mathbf{x}' \in X$$

- or alternatively ..

$$f(\mathbf{x}') < f(\mathbf{x}) \Rightarrow \nabla f(\mathbf{x})(\mathbf{x}' - \mathbf{x}) < 0 \quad \forall \mathbf{x}, \mathbf{x}' \in X$$

- A function f is **pseudoconcave** iff $-f$ is pseudoconvex
- Note that if f is convex and differentiable, and X is open, then f is also pseudoconvex

Other Types of Convexity

- A function is **quasiconvex** if all lower level sets are convex
- That is, the following sets are convex

$$S' = \{\mathbf{x} : f(\mathbf{x}) \leq \beta\}$$

- A function is **quasiconcave** if all upper level sets are convex
- That is, the following sets are convex

$$S' = \{\mathbf{x} : f(\mathbf{x}) \geq \beta\}$$

- Note that if f is convex and differentiable, and X is open, then f is also quasiconvex
- Convexity properties

Convex \Rightarrow pseudoconvex \Rightarrow quasiconvex

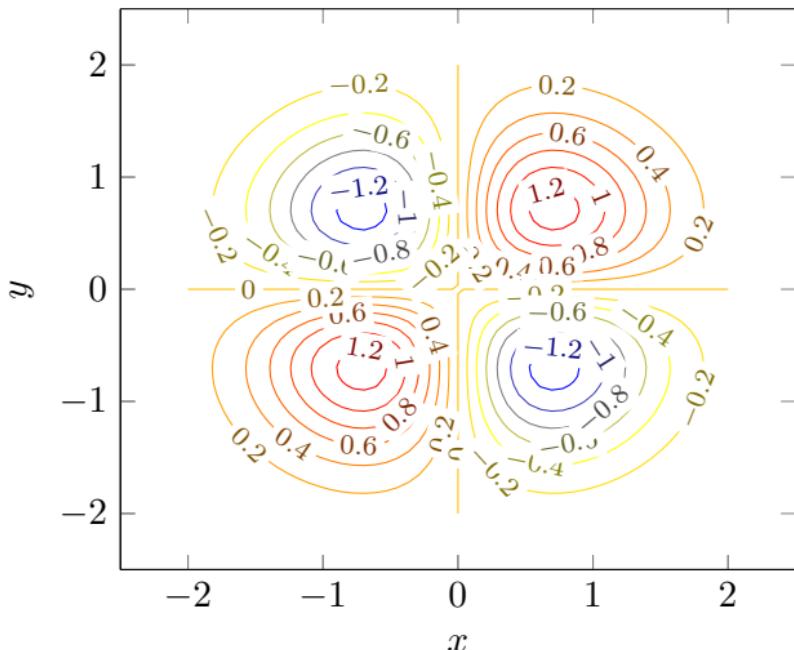
Exercises

Show the following

- $f(x) = x + x^3$ is **pseudoconvex** but not **convex**
- $f(x) = x^3$ is **quasiconvex** but not **pseudoconvex**

Graphically

$$z = \frac{7xy}{\exp(x^2+y^2)}$$



Exercises

Convexity Questions

- Can a function be both convex and concave?
- Is a convex function of a convex function convex?
- Is a convex combination of convex functions convex?
- Is the intersection of convex sets convex?

Unconstrained problem

$$\min f(\mathbf{x}) \text{ s.t. } \mathbf{x} \in R^n$$

- **Necessary** optimality condition for \mathbf{x}^o to be a local minimum

$$\nabla f(\mathbf{x}^o) = 0 \text{ and } H(\mathbf{x}^o) \text{ is positive semidefinite}$$

- **Sufficient** optimality condition for \mathbf{x}^o to be a local minimum

$$\nabla f(\mathbf{x}^o) = 0 \text{ and } H(\mathbf{x}^o) \text{ is positive definite}$$

- **Necessary and sufficient**

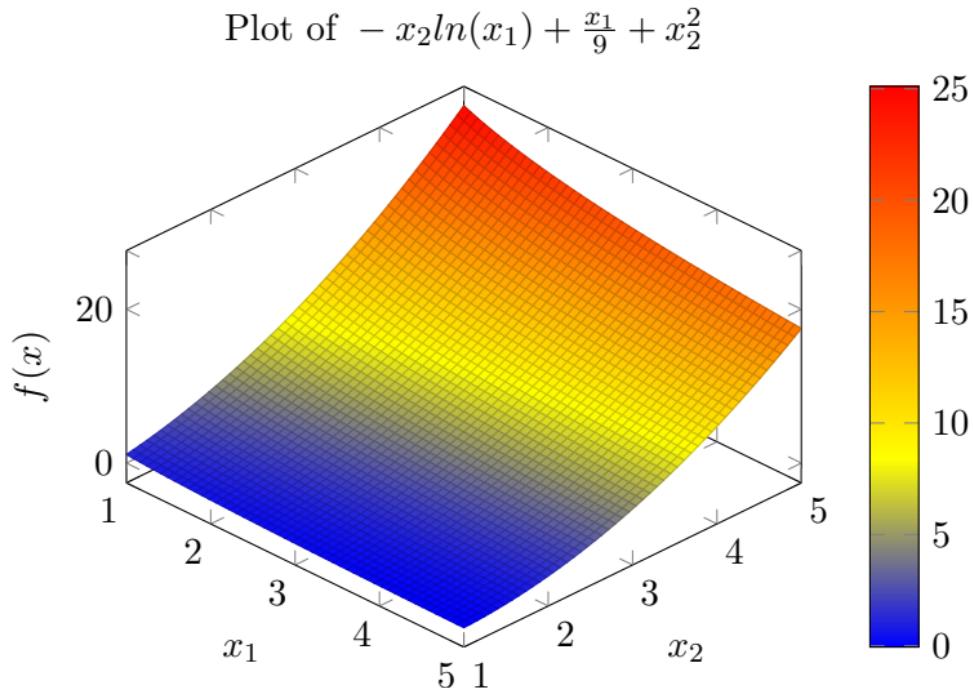
- Suppose f is pseudoconvex
- \mathbf{x}^* is a global minimum iff $\nabla f(\mathbf{x}^*) = 0$

Unconstrained example

$$\min f(x) = (x^2 - 1)^3$$

- $f'(x) = 6x(x^2 - 1)^2 = 0$ for $x = 0, \pm 1$
- $H(x) = 24x^2(x^2 - 1) + 6(x^2 - 1)^2$
- $H(0) = 6$ and $H(\pm 1) = 0$
- Therefore $x = 0$ is a local minimum (actually the global minimum)
- $x = \pm 1$ are saddle points

What does the function look like?



Class Exercise

Problem

Suppose A is an $m * n$ matrix, b is a given m vector, find

$$\min ||Ax - b||^2$$

Richard M. Lusby

DTU Management Engineering, Technical University of Denmark

Building 424, Room 208

2800 Kgs. Lyngby, Denmark

<http://www.man.dtu.dk>

rmlu@dtu.dk

phone +45 4525 3084