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Today’s Material

• Extrema

• Convex Function

• Convex Sets

• Other Convexity Concepts

• Unconstrained Optimization
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Extrema

Problem

max f(x) s.t. x ∈ S

max {f(x) : x ∈ S}

• Global maximum x∗

f(x∗) ≥ f(x) ∀x ∈ S

• Local maximum xo:

f(xo) ≥ f(x) ∀x in a neighborhood around xo

• strict maximum/minimum defined similarly
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Weierstrass theorem:

Theorem

A continuous function achieves its max/min on a closed and bounded set
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Supremum and Infimum

Supremum

The supremum of a set S having a partial order is the least upper bound of S
(if it exists) and is denoted sup S.

Infimum

The infimum of a set S having a partial order is the greatest lower bound of S
(if it exists) and is denoted inf S.

• If the extrema are not achieved:

• max → sup

• min → inf

• Examples

• sup{2, 3, 4, 5}?
• sup{x ∈ Q : x2 < 2}?
• inf{1/x : x > 0}?
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Finding Optimal Solutions

Every method for finding and characterizing optimal solutions is based on
optimality conditions - either necessary or sufficient

Necessary Condition

A condition C1(x) is necessary if C1(x
∗) is satisfied by every optimal solution

x∗ (and possibly some other solutions as well).

Sufficient Condition

A condition C2(x) is sufficient if C2(x
∗) ensures that x∗ is optimal (but some

optimal solutions may not satisfy C2(x
∗).

Mathematically

{x|C2(x)} ⊆ {x|x optimal solution } ⊆ {x|C1(x)}
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Finding Optimal Solutions

An example of a necessary condition in the case S is “well-behaved” no
improving feasible direction

Feasible Direction

Consider xo ∈ S, s ∈ Rn is called a feasible direction if there exists ε(s) > 0 such
that

xo + εs ∈ S ∀ε : 0 < ε ≤ ε(s)

We denote the cone of feasible directions from xo in S as S(xo)

Improving Direction

s ∈ Rn is called an improving direction if there exists ε(s) > 0 such that

f(xo + εs) < f(xo) ∀ε : 0 < ε ≤ ε(s)

The cone of improving directions from xo in S is denoted F (xo)
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Finding Optimal Solutions

Local Optima

If xo is a local minimum, then there exist no s ∈ S(xo) for which f(.) decreases
along s, i.e. for which

f(xo + ε2s) < f(xo + ε1s) for 0 ≤ ε1 < ε2 ≤ ε(s)

Stated otherwise: A necessary condition for local optimality is

F (xo) ∩ S(xo) = ∅
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Improving Feasible Directions

If for a given direction s it holds that

∇f(xo)s < 0

Then s is an improving direction

Well known necessary condition for local optimality of xo for a
differentiable function:

∇f(xo) = 0

In other words, xo is stationary with respect to f(.)
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What if stationarity is not enough?

• Suppose f is twice continuously differentiable

• Analyse the Hessian matrix for f at xo

∇2f(xo) =

{
∂2(f(xo))

∂xi∂xj

}
, i, j = 1, . . . , n

Sufficient Condition

If ∇f(xo) = 0 and ∇2f(xo) is positive definite:

xT∇2f(xo)x > 0 ∀ x ∈ Rn\{0}

then xo is a local minimum
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What if Stationarity is not Enough?

• A necessary condition for local optimality is “Stationarity + positive
semidefiniteness of ∇2f(xo)”

• Note that positive definiteness is not a necessary condition

• E.g. look at f(x) = x4 for xo = 0

• Similar statements hold for maximization problems

• Key concept here is negative definiteness
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Definiteness of a Matrix

• A number of criteria regarding the definiteness of a matrix exist

• A symmetric n× n matrix A is positive definite if and only if

xTAx > 0 ∀x ∈ Rn\{0}

• Positive semidefinite is defined likewise with ′′ ≥′′ instead of ′′ >′′

• Negative (semi) definite is defined by reversing the inequality signs to ′′ <′′ and
′′ ≤′′, respectively.

Necessary conditions for positive definiteness:

• A is regular with det(A) > 0

• A−1 is positive definite
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Definiteness of a Matrix

Necessary+Sufficient conditions for positive definiteness:

• Sylvestor’s Criterion: All principal submatrices have positive determinants

(a11)

(
a11 a12

a21 a22

)  a11 a12 a13

a21 a22 a23

a31 a32 a33


• All eigenvalues of A are positive
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Necessary and Sufficient Conditions

Theorem

Suppose that f(.) is differentiable at a local minimum xo. Then ∇f(xo)s ≥ 0 for
s ∈ S(xo). If f(.) is twice differentiable at xo and ∇f(xo) = 0, then
sT∇2f(xo)s ≥ 0 ∀s ∈ S(xo)

Theorem

Suppose that S is convex and non-empty, f(.) differentiable, and that xo ∈ S.
Suppose furthermore that f(.) is convex.

• xo is a local minimum if and only if xo is a global minimum

• xo is a local (and hence global) minimum if and only if

∇f(xo)(x− xo) ≥ 0 ∀x ∈ S
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Convex Combination

Convex combination

The convex combination of two points is the line segment between them

α1x1 + α2x2 for α1, α2 ≥ 0 and α1 + α2 = 1
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Convex function

Convex Functions

A convex function lies below its chord

f(α1x1 + α2x2) ≤ α1f(x1) + α2f(x2)

• A strictly convex function has no more than one minimum

• Examples: y = x2, y = x4, y = x

• The sum of convex functions is also convex

• A differentiable convex function lies above its tangent

• A differentiable function is convex if its Hessian is positive semi-definite

• Strictly convex not analogous!

• A function f is concave iff −f is convex

EOQ objective function: T (Q) = dK/Q+ cd+ hQ/2?
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Economic Order Quantity Model

The problem

The Economic Order Quantity Model is an inventory model that helps
manafacturers, retailers, and wholesalers determine how they should optimally
replenish their stock levels.

Costs

• K = Setup cost for odering one batch

• c = unit cost for producing/purchasing

• h = holding cost per unit per unit of time in inventory

Assumptions

• d = A known constant demand rate

• Q = The order quantity (arrives all at once)

• Planned shortages are not allowed
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Convex sets

Definition

A convex set contains all convex combinations of its elements

α1x1 + α2x2 ∈ S ∀ x1,x2 ∈ S

• Some examples of E.g. (1, 2], x2 + y2 < 4, ∅
• Level curve (2 dimensions):

{(x, y) : f(x, y) = β}

• Level set:
{x : f(x) ≤ β}
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Lower Level Set Example

x2

x1

x1 + x2 ≤ 3

x1 + 3x2 ≤ 7
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Lower Level Set Example

y2

y1

y1 + y2 ≥ 1y1 + 3y2 ≥ 2
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Upper Level Set Example
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Upper Level Set Example
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Example
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Example
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Convexity, Concavity, and Optima

Theorem

Suppose that S is convex and that f(x) is convex on S for the problem
minx∈S f(x), then

• If x∗ is locally minimal, then x∗ is globally minimal

• The set X∗ of global optimal solutions is convex

• If f is strictly convex, then x∗ is unique
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Examples

Problem 1

Minimize −x2lnx1 + x1

9 + x22
Subject to: 1.0 ≤ x1 ≤ 5.0

0.6 ≤ x2 ≤ 3.6
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What does the function look like?
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Problem 2

Minimize
∑3

i=1−ilnxi
Subject to:

∑3
i=1 xi = 6

xi ≤ 3.5 i = 1, 2, 3

xi ≥ 1.5 i = 1, 2, 3
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Class exercises

• Show that f(x) = ||x|| =
√∑

i x
2
i is convex

• Prove that any level set of a convex function is a convex set
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Other Types of Convexity

• The idea of pseudoconvexity of a function is to extend the class of functions for
which stationarity is a sufficient condition for global optimality. If f is defined on
an open set X and is differentiable we define the concept of pseudoconvexity.

• A differentiable function f is pseudoconvex if

∇f(x) · (x′ − x) ≥ 0⇒ f(x′) ≥ f(x) ∀x, x′ ∈ X

• or alternatively ..

f(x′) < f(x)⇒ ∇f(x)(x′ − x) < 0 ∀x, x′ ∈ X

• A function f is pseudoconcave iff −f is pseudoconvex

• Note that if f is convex and differentiable, and X is open, then f is also
pseudoconvex
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Other Types of Convexity

• A function is quasiconvex if all lower level sets are convex

• That is, the following sets are convex

S′ = {x : f(x) ≤ β}

• A function is quasiconcave if all upper level sets are convex

• That is, the following sets are convex

S′ = {x : f(x) ≥ β}

• Note that if f is convex and differentiable, and X is open, then f is also
quasiconvex

• Convexity properties

Convex ⇒ pseudoconvex ⇒ quasiconvex
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Exercises

Show the following

• f(x) = x+ x3 is pseudoconvex but not convex

• f(x) = x3 is quasiconvex but not pseudoconvex
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Graphically
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Exercises

Convexity Questions

• Can a function be both convex and concave?

• Is a convex function of a convex function convex?

• Is a convex combination of convex functions convex?

• Is the intersection of convex sets convex?
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Unconstrained problem

min f(x) s.t. x ∈ Rn

• Necessary optimality condition for xo to be a local minimum

∇f(xo) = 0 and H(xo) is positive semidefinite

• Sufficient optimality condition for xo to be a local minimum

∇f(xo) = 0 and H(xo) is positive definite

• Necessary and sufficient

• Suppose f is pseudoconvex

• x∗ is a global minimum iff ∇f(x∗) = 0
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Unconstrained example

min f(x) = (x2 − 1)3

• f ′(x) = 6x(x2 − 1)2 = 0 for x = 0,±1
• H(x) = 24x2(x2 − 1) + 6(x2 − 1)2

• H(0) = 6 and H(±1) = 0

• Therefore x = 0 is a local minimum (actually the global minimum)

• x = ±1 are saddle points
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What does the function look like?
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Class Exercise

Problem

Suppose A is an m ∗ n matrix, b is a given m vector, find

min ||Ax− b||2
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