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Today’s Material

e Extrema

e Convex Function

e Convex Sets

e Other Convexity Concepts

e Unconstrained Optimization
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Extrema

Problem

max f(xz)st. xS

max {f(xz): x € S}

e Global maximum x*

fl®*) > f(x) Veels
e L ocal maximum x°:

f(x?) > f(x) Va in a neighborhood around x’

e strict maximum/minimum defined similarly
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Weierstrass theorem:

M

A continuous function achieves its max/min on a closed and bounded set
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Supremum and Infimum
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The supremum of a set S having a partial order is the least upper bound of S
(if it exists) and is denoted sup S.

The infimum of a set S having a partial order is the greatest lower bound of S
(if it exists) and is denoted inf S.

o If the extrema are not achieved:
® max — sup
e min — inf
e Examples
e sup{2,3,4,5}7
esup{z € Q: 2% < 2}?
e inf{l/z:2z>0}7
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Finding Optimal Solutions

M

Every method for finding and characterizing optimal solutions is based on
optimality conditions - either necessary or sufficient

Necessary Condition

A condition Cy(x) is necessary if Cy(x*) is satisfied by every optimal solution
x* (and possibly some other solutions as well).

Sufficient Condition

| \

A condition Cy(x) is sufficient if Co(x*) ensures that x* is optimal (but some
optimal solutions may not satisfy Co(x*).

| \

Mathematically

{z|Cs(x)} C {x|z optimal solution } C {z|C(x)}

\
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Finding Optimal Solutions

An example of a necessary condition in the case S is “well-behaved” no
improving feasible direction

Feasible Direction

Consider ° € S, s € R" is called a feasible direction if there exists €(s) > 0 such
that
x°+es€S Ve:0<e<E(s)

We denote the cone of feasible directions from x° in S as S(z°)

Improving Direction

s € R™ is called an improving direction if there exists €(s) > 0 such that

f(x+es) < f(x°) Ve:0<e<Fe(s)

The cone of improving directions from x° in S is denoted F'(x°)
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Finding Optimal Solutions

Local Optima

If 2° is a local minimum, then there exist no s € S(x°) for which f(.) decreases
along s, i.e. for which

f(x° + €28) < f(x°+ €15) for 0 < €1 < €2 < €(s)

Stated otherwise: A necessary condition for local optimality is

Fx’)nS(x®) =10
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Improving Feasible Directions
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If for a given direction s it holds that
Vf(z%)s<0

Then s is an improving direction

Well known necessary condition for local optimality of x° for a
differentiable function:
Vf(x?) =0

In other words, x? is stationary with respect to f(.)
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What if stationarity is not enough?

M

e Suppose f is twice continuously differentiable
e Analyse the Hessian matrix for f at x°

2 o
Pty - (PUEON

Sufficient Condition

If Vf(x°) =0 and V2f(z°) is positive definite:
V2 f(z)x >0 V xcR™\{0}

then x° is a local minimum
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What if Stationarity is not Enough?
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e A necessary condition for local optimality is “Stationarity + positive
semidefiniteness of V2 f(z°)"

o Note that positive definiteness is not a necessary condition
e E.g. look at f(z) = 2* for 2° =0

e Similar statements hold for maximization problems

o Key concept here is negative definiteness
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Definiteness of a Matrix

e A number of criteria regarding the definiteness of a matrix exist

e A symmetric n X n matrix A is positive definite if and only if
xTAx >0 Va e R"\{0}

e Positive semidefinite is defined likewise with ”/ > instead of // >

e Negative (semi) definite is defined by reversing the inequality signs to " <’ and
" <" respectively.

Necessary conditions for positive definiteness:

o A is regular with det(A) > 0

e A~! s positive definite
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Definiteness of a Matrix

Necessary+Sufficient conditions for positive definiteness:

e Sylvestor's Criterion: All principal submatrices have positive determinants

ail a2 ais

ail a2

(au) az1 a2 a3
az; a2

asz1 asz a3z

o All eigenvalues of A are positive

=
—
=

M

14 DTU Management Engineering 42111: Static and Dynamic Optimization (3) 18/09/2017



=
—
=

Necessary and Sufficient Conditions

M

Suppose that f(.) is differentiable at a local minimum a°. Then V f(2°)s > 0 for
s € S(x®). If f(.) is twice differentiable at ° and V f(x°) = 0, then
sTV2f(x%)s > 0Vs € S(x°)

Theorem

Suppose that S is convex and non-empty, f(.) differentiable, and that x° € S.
Suppose furthermore that f(.) is convex.

e z° is a local minimum if and only if ° is a global minimum

e 2° is a local (and hence global) minimum if and only if

Vf(x®)(x—x°) >0Vx e S
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Convex Combination

M

Convex combination

The convex combination of two points is the line segment between them

a1y + asxg for ag,as > 0and o +ap =1
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Convex function

Convex Functions

A convex function lies below its chord

flanzr + aoxe) < aq f(21) + o f(x2)

e A strictly convex function has no more than one minimum
N R S

e Examples: y=x°, y=2% y==x

e The sum of convex functions is also convex

e A differentiable convex function lies above its tangent

o A differentiable function is convex if its Hessian is positive semi-definite

e Strictly convex not analogous!

e A function f is concave iff —f is convex
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Convex function

Convex Functions

A convex function lies below its chord

flanzr + aoxe) < aq f(21) + o f(x2)

e A strictly convex function has no more than one minimum
N R S

e Examples: y=x°, y=2% y==x

e The sum of convex functions is also convex

e A differentiable convex function lies above its tangent

o A differentiable function is convex if its Hessian is positive semi-definite

e Strictly convex not analogous!

e A function f is concave iff —f is convex
EOQ objective function: T(Q) = dK/Q + cd + hQ /27
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Economic Order Quantity Model
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The problem

The Economic Order Quantity Model is an inventory model that helps
manafacturers, retailers, and wholesalers determine how they should optimally
replenish their stock levels.

Costs

| \

e K = Setup cost for odering one batch
® ¢ = unit cost for producing/purchasing

e i, = holding cost per unit per unit of time in inventory

I A\

e d — A known constant demand rate
e () = The order quantity (arrives all at once)

® Planned shortages are not allowed

N,
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Convex sets

Definition

A convex set contains all convex combinations of its elements

a1y + asxg €SV 1,2 € 5]

e Some examples of E.g. (1,2], 22 +y?> <4, 0

e Level curve (2 dimensions):
{(1‘,y) : f(z,y) = B}

o [ evel set:

{z: f(x) < p}
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Lower Level Set Example

M

z1

Z2

1 +x2 <3
1+ 322 <7
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Lower Level Set Example

Y1

Y2

\

y1+3y2 > 2 y1+y22>1

21 DTU Management Engineering 42111: Static and Dynamic Optimization (3) 18/09/2017



Upper Level Set Example
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Plot of 222 + 442
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Upper Level Set Example
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Plot of 222 + 432
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Plot of 54z + —9z2 4 78y — 13y>
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Convexity, Concavity, and Optima

M

Theorem

Suppose that S is convex and that f(x) is convex on S for the problem
minges f(x), then

o If * is locally minimal, then x* is globally minimal
e The set X* of global optimal solutions is convex

o If f is strictly convex, then x* is unique
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Examples
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Problem 1
Minimize ——zalnzy + % + 23
Subject to: 1.0< 21 <5.0
0.6 <25 <36
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What does the function look like?

Txy
exp(z?+y?)

=

\\ ," [T
z \\\\\ \\ '"""Illn
N L #
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Minimize ~Y)°_, —ilnz;
Subject to: Zle z;, =6

z; <35i=123
z; >15i=1,23

29
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Class exercises

M

e Show that f(z) = ||z|| = \/>_, 7 is convex

e Prove that any level set of a convex function is a convex set
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Other Types of Convexity

e The idea of pseudoconvexity of a function is to extend the class of functions for
which stationarity is a sufficient condition for global optimality. If f is defined on
an open set X and is differentiable we define the concept of pseudoconvexity.

e A differentiable function f is pseudoconvex if

Vi) (@' —x)>0= f(z') > f(x) Vz,2’ €X
e or alternatively ..

f(@) < f(z) = Vf(x)(z —x) <0 Vz,2' € X

e A function f is pseudoconcave iff —f is pseudoconvex

e Note that if f is convex and differentiable, and X is open, then f is also
pseudoconvex
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Other Types of Convexity

e A function is quasiconvex if all lower level sets are convex

e That is, the following sets are convex
S ={z: f(x) < B}

e A function is quasiconcave if all upper level sets are convex

e That is, the following sets are convex
S ={x: f(x) > B}

e Note that if f is convex and differentiable, and X is open, then f is also
quasiconvex

e Convexity properties

Convex = pseudoconvex = quasiconvex
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Exercises

M

Show the following

e f(z) = x + x3 is pseudoconvex but not convex

e f(z) = 22 is quasiconvex but not pseudoconvex
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Exercises

Convexity Questions
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e Can a function be both convex and concave?

e |s a convex function of a convex function convex?

e |s a convex combination of convex functions convex?

e |s the intersection of convex sets convex?
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Unconstrained problem

min f(x) s.t. x € R"

o Necessary optimality condition for ° to be a local minimum
Vf(x°) =0 and H(x°) is positive semidefinite
e Sufficient optimality condition for ° to be a local minimum
Vf(x°) =0 and H(x°) is positive definite

e Necessary and sufficient
e Suppose f is pseudoconvex
e x* is a global minimum iff Vf(x*) =0
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Unconstrained example

M

min f(z) = (2 - 1)3

o f'(z) =6x(z? —1)2 =0 for z =0, %1

o H(x) =242%(2% — 1) + 6(z? — 1)?

e H(0)=6and H(£1) =0

e Therefore z = 0 is a local minimum (actually the global minimum)

e x = +1 are saddle points
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What does the function look like?

Plot of — zaln(z1) + % + 23
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Class Exercise

M

Suppose A is an m x n matrix, b is a given m vector, find

min || Az — b||?
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