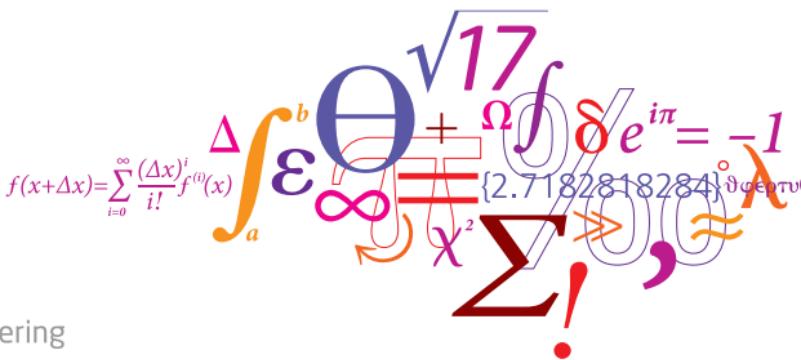


Linear Programming & Duality

Richard M. Lusby

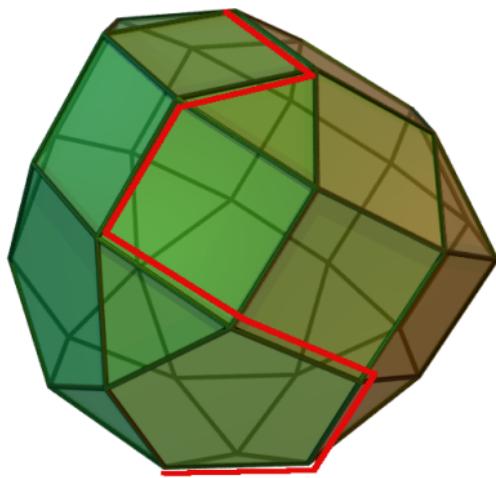
DTU Management Engineering



Today's Agenda

- Linear Programming
- Revised Simplex
- Duality

Linear Programming Solution Method



- Convert \leq inequalities by adding slack variables
- Put data into simplex tableau
- Perform simplex iterations by pivoting
- **Entering Variable** (*pivot column*)
 - Most negative coefficient in top row
- **Leaving Variable** (*pivot row*)
 - Minimum ratio: right hand sides and positive pivot column entries
- We disregard complications here
 - Phase 1, no feasible solution, unbounded solutions

Linear Programming First and Final Tableau

Z	x_1	x_2	s_1	s_2	s_3	
1	-3	-5				0
	1	0	1			4
	0	2		1		12
	3	2			1	18

Z	x_1	x_2	s_1	s_2	s_3	
1			$\frac{3}{2}$	1		36
			1	$\frac{1}{3}$	$-\frac{1}{3}$	2
			1	$\frac{1}{2}$	0	6
	1			$-\frac{1}{3}$	$\frac{1}{3}$	2

Revised Simplex

Matrix formulation

- General LP

$$\begin{array}{ll}\text{maximize} & \mathbf{c}^T \mathbf{x} \\ \text{subject to:} & \mathbf{Ax} \leq \mathbf{b} \\ & \mathbf{x} \geq 0\end{array}$$

- becomes ..

$$\begin{array}{ll}\text{maximize} & \mathbf{c}^T \mathbf{x} + 0\mathbf{s} \\ \text{subject to:} & \mathbf{Ax} + \mathbf{Is} = \mathbf{b} \\ & \mathbf{x} \geq 0 \\ & \mathbf{s} \geq 0\end{array}$$

- In each tableau each variable in x, s is designated as a basic variable or a nonbasic variable
- The tableau represents the equation system solved with respect to the basic variables.
- The basis matrix B is formed by the columns in the first tableau of the current basic variables
- The inverse basis matrix appears under the slack variables in each tableau

Revised Simplex

Matrix formulation

$$\begin{aligned} & \text{maximize} && \mathbf{c}_B^T \mathbf{x}_B + \mathbf{c}_N^T \mathbf{x}_N \\ & \text{subject to:} && B \mathbf{x}_B + N \mathbf{x}_N = \mathbf{b} \\ & && \mathbf{x}_B \geq 0 \\ & && \mathbf{x}_N \geq 0 \end{aligned}$$

First and Later Tableau

First tableau ...

Z	x	s	
1	$-c$	0	0
	A	I	b

Later tableau ...

Z	x	s	
1	$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$
	$B^{-1} A$	B^{-1}	$B^{-1} b$

- The current solution is $x_B = B^{-1}b$, $x_N = 0$, $Z = c_B B^{-1}b$
- At Optimality we have $c_B B^{-1} \geq 0$, $c_B B^{-1} A \geq c$
- The shadow prices are $c_B B^{-1}$

- The *primal* problem

$$\begin{array}{lll} \text{maximize} & Z_P = & 3x_1 + 5x_2 \\ \text{subject to:} & x_1 & \leq 4 \\ & +2x_2 & \leq 12 \\ & 3x_1 - 2x_2 & \leq 18 \\ & x_1 & \geq 0 \\ & x_2 & \geq 0 \end{array}$$

- The corresponding *dual* problem

$$\begin{aligned} \text{minimize} \quad Z_D &= 4y_1 + 12y_2 + 18y_3 \\ \text{subject to:} \quad Z_D &= y_1 + 3y_3 \geq 3 \\ &\quad +2y_2 + 2y_3 \geq 5 \\ &\quad y_1 \geq 0 \\ &\quad y_2 \geq 0 \\ &\quad y_3 \geq 0 \end{aligned}$$

The problem

Each unit of product 1 requires 1 hour in department A and 1 hour in department B, and yields a profit of 1. The corresponding numbers for product 2 are 1 and 3, and 2. There are 3 and 7 hours available in departments A and B, respectively.

- Formulate an LP model and set up the first tableau
- Write the dual problem

Primal: maximize $c^T x$

subject to: $Ax \leq b$

$x \geq 0$

Dual: minimize $b^T y$

subject to: $A^T y \geq c$

$y \geq 0$

Weak Duality Theorem

If x is primal feasible and y is dual feasible, then $c^T x \leq y^T Ax \leq b^T y$

Proof?

Strong Duality Theorem

If one of the problems has an optimal solution the other one also has an optimal solution and the optimal objective function values are equal

- The optimal dual solution appears in the optimal primal tableau, under the slack variables (Proof?)
- The two other possibilities are
 - One problem is infeasible, the other is unbounded
 - Both problems are infeasible

$$\begin{array}{ll}\text{Primal: maximize} & \mathbf{c}^T \mathbf{x} \\ \text{subject to:} & \begin{array}{ll} A\mathbf{x} + \mathbf{s} & = \mathbf{b} \\ \mathbf{x} & \geq 0 \\ \mathbf{s} & \geq 0 \end{array}\end{array}$$

$$\begin{array}{ll}\text{Dual: minimize} & \mathbf{b}^T \mathbf{y} \\ \text{subject to:} & \begin{array}{ll} \mathbf{A}^T \mathbf{y} - \mathbf{e} & = \mathbf{c} \\ \mathbf{y} & \geq 0 \\ \mathbf{e} & \geq 0 \end{array}\end{array}$$

Definition

A primal solution and a dual solution exhibit complementary slackness if $\mathbf{e}^T \mathbf{x} = 0$ and $\mathbf{y}^T \mathbf{s} = 0$, i.e., corresponding \mathbf{x} - and \mathbf{y} -values are not both positive

Complementary Slackness Theorem

Theorem: A primal solution and a dual solution are optimal iff they are feasible and complementary (proof?)

Example

Correspondences: x_1 and e_1 , x_2 and e_2
 y_1 and s_1 , y_2 and s_2 , y_3 and s_3

Class exercise 2

- The final tableau for the exercise 1 problem is

Z	x_1	x_2	s_1	s_2	
1			$\frac{1}{2}$	$\frac{1}{2}$	5
	1		$\frac{3}{2}$	$-\frac{1}{2}$	1
		1	$-\frac{1}{2}$	$\frac{1}{2}$	2

- Read off the optimal solution and the dual solution.
- Read off B^{-1} and verify that $B^{-1}B = I$.
- Given the primal solution, find the dual solution using complementary slackness.
- Use complementary slackness to show that $x_1 = 0$, $x_2 = \frac{7}{3}$ is not optimal.

Richard M. Lusby

DTU Management Engineering, Technical University of Denmark

Building 424, Room 208

2800 Kgs. Lyngby, Denmark

<http://www.man.dtu.dk>

rmlu@dtu.dk

phone +45 4525 3084