

42111: Static and Dynamic Optimization Introduction

Richard M. Lusby

DTU Management Engineering

DTU Management EngineeringDepartment of Management Engineering

People & Places

Primary Contacts

• Static: Associate Professor Richard Lusby

rmlu@dtu.dk, office: 424/208

• Static: Assistant Professor Evelien van der Hurk

evdh@dtu.dk, office: 424/226

Dynamic: Associate Professor Niels Kjølstad Poulsen

nkpo@dtu.dk, office: 303b/016

Location

All lectures and exercises will take place in B421-A73

Course Objectives

Main Objective

To give a well-founded knowledge, both theoretical and practical, of static and dynamic optimization models for data-based decision making. You will be able to formulate and solve operations research and technical-economic models, and to appreciate the interplay between optimization models and the real-life problems described by these.

My part of the course

- Static Optimization
- Non-Linear Programs
- Theoretical properties, Formulations, Solution Methods

Course Objectives

Main Objective

To give a well-founded knowledge, both theoretical and practical, of static and dynamic optimization models for data-based decision making. You will be able to formulate and solve operations research and technical-economic models, and to appreciate the interplay between optimization models and the real-life problems described by these.

My part of the course

- Static Optimization
- Non-Linear Programs
- Theoretical properties, Formulations, Solution Methods

Learning Objectives (1)

- Analyze a given problem in order to formulate an optimization model
- Formulate and analyze models as these are met in static and dynamic optimization.
- Describe and explain the assumptions underlying models and computations
- Analyze an optimization problem in order to identify an appropriate solution method
- Understand and using software solve systems of equations for given optimization problems
- **Interpret** the solutions from a given optimization model

Learning Objectives (2)

- Describe and explain the mathematical background for the applied solution methods.
- Perform sensitivity analysis as part of the evaluating of what-if scenarios in decision making.
- Make use of the possibilities for sensitivity analysis in standard optimization software.

Course Evaluation

- Two written projects (one for static, one for dynamic)
- To be completed individually
- If you collaborate with another student, this must be documented
- Your final mark will be based on the evaluation of the two projects
- Reports must be submitted electronically via CampusNet
 - Static report due: Friday, October 13th
 - Dynamic report due: Friday, December 22nd
- Project one will be distributed next week

Date	Topic	
04 September	Introduction	
11 September	Linear programming and duality	
18 September	er Convexity and optimality	
25 September	25 September Optimization with (in)equality constraints	
02 October	2 October More on Lagrange	
09 October	(Approximate) Solution Algorithms for Non-linear problems	

Recommended Reading Material:

- HL: Hillier and Lieberman: Introduction to Operations Research, McGraw- Hill 2010 (or earlier)
- BS: Bazaraa and Shetty: Non-linear Programming Theory and Algorithms, Wiley 1979 (or later)
- BT: Brinkhuis and Tikhomirov Optimization: Insights and Applications, Princeton University Press 2005

Mathematical Programming

- Components:
 - Decision variables
 - Objective function
 - Constraints
- Model types:
 - Linear Programming
 - Integer Programming
 - Non-linear Programming
- Today's Agenda:
 - Linear programming review
 - Non-linear programming intro
 - Chapter 12 Hillier & Liberman 9th Edition

Example

The WYNDOR GLASS CO. produces high quality glass products, including windows and glass doors. It has 3 plants. Aluminium frames and hardware are made in Plant 1, wood frames are made in Plant 2, and Plant 3 produces the glass and assembles the products. Management is introducing the following two products (in batches of 20):

- Product 1: An 8-foot glass door with an aluminum frame (ppb = \$3,000)
- Product 2: A 4×6 foot double hung wood-framed window (ppb = \$5,000)

Data

	Production ⁻		
Plant	Product 1	Product 2	Hours avail.
1	1	0	4
2	0	2	12
3	3	2	18

maximize
$$Z = 3x_1 + 5x_2$$

subject to: $x_1 \le 4$
 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$
 $x_1 \ge 0$
 $x_2 \ge 0$

$$\begin{pmatrix}
\text{maximize} & Z = 3x_1 + 5x_2 \\
\text{subject to:} & x_1 & \leq 4 \\
& 2x_2 & \leq 12 \\
& 3x_1 + 2x_2 & \leq 18 \\
& x_1 & \geq 0 \\
& x_2 & \geq 0
\end{pmatrix}$$

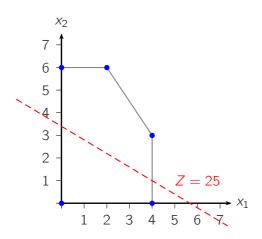
$$\begin{pmatrix}
\text{maximize} & Z = 3x_1 + 5x_2 \\
\text{subject to:} & x_1 & \leq 4 \\
& 2x_2 & \leq 12 \\
& 3x_1 + 2x_2 & \leq 18 \\
& x_1 & \geq 0 \\
& x_2 & \geq 0
\end{pmatrix}$$

$$\begin{pmatrix}
\text{maximize} & Z = 3x_1 + 5x_2 \\
\text{subject to:} & x_1 & \leq 4 \\
& 2x_2 \leq 12 \\
& 3x_1 + 2x_2 \leq 18 \\
& x_1 & \geq 0 \\
& x_2 \geq 0
\end{pmatrix}$$

$$\left(\begin{array}{cccc}
\text{maximize} & Z = & 3x_1 & +5x_2 \\
\text{subject to:} & & x_1 & & \leq 4 \\
& & & 2x_2 & \leq 12 \\
& & 3x_1 & +2x_2 & \leq 18 \\
& & x_1 & & \geq 0 \\
& & & x_2 & \geq 0
\end{array}\right)$$

$$\begin{pmatrix}
\text{maximize} & Z = 3x_1 + 5x_2 \\
\text{subject to:} & x_1 & \leq 4 \\
& 2x_2 & \leq 12 \\
& 3x_1 + 2x_2 & \leq 18 \\
& x_1 & \geq 0 \\
& x_2 & \geq 0
\end{pmatrix}$$

$$\begin{pmatrix}
\text{maximize} & Z = 3x_1 + 5x_2 \\
\text{subject to:} & x_1 & \leq 4 \\
& 2x_2 & \leq 12 \\
& 3x_1 + 2x_2 & \leq 18 \\
& x_1 & \geq 0 \\
& x_2 & \geq 0
\end{pmatrix}$$



 $\text{maximize} \quad \boldsymbol{c}^T\boldsymbol{x}$

subject to: $x \in \mathcal{X}$

- ullet Consider the polyhedron $\mathcal{X} = A oldsymbol{x} \leq oldsymbol{b}$
- A solution x' is feasible if $Ax' \leq b$
- ullet A solution $oldsymbol{x}^*$ is optimal if $Aoldsymbol{x}^* \leq oldsymbol{b}, oldsymbol{c}^Toldsymbol{x}^* \geq, oldsymbol{c}^Toldsymbol{x}$
- The set of feasible solutions to an LP is termed the feasible region
 - forms a (possibly unbounded) convex set.
- \bullet An extreme point of ${\mathcal X}$ cannot be written as a linear combination of other points in ${\mathcal X}$

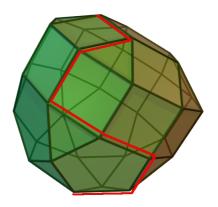
$$\nexists \lambda \in (0,1) : \boldsymbol{x} = \lambda \boldsymbol{y} + (1-\lambda)\boldsymbol{z}, \quad \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathcal{X}, \boldsymbol{x} \neq \boldsymbol{y}, \boldsymbol{x} \neq \boldsymbol{z}$$

- A solution x' is a basic feasible solution if $Ax' \leq b$, $\exists B : x' = A_B^{-1}b$
- ullet or, x' is a basic feasible solution if and only if x' is an extreme point

- Every linear program can be one of : infeasible, unbounded, or have a unique optimal solution value
- Every linear program has an extreme point that is an optimal solution
- A solution approach need only consider extreme points
- A constraint of a linear program is binding at a point x' if the inequality is met with equality at x'. It is nonbinding/slack otherwise.
- What is a dual variable?
- If I have an unbounded polyhedron is my formulation unbounded?
- Can an LP have multiple optimal solutions? What does this mean?
- How do we solve linear programs?

- Every linear program can be one of : infeasible, unbounded, or have a unique optimal solution value
- Every linear program has an extreme point that is an optimal solution
- A solution approach need only consider extreme points
- A constraint of a linear program is binding at a point x' if the inequality is met with equality at x'. It is nonbinding/slack otherwise.
- What is a dual variable?
- If I have an unbounded polyhedron is my formulation unbounded?
- Can an LP have multiple optimal solutions? What does this mean?
- How do we solve linear programs?

Solution Method



maximize
$$\begin{bmatrix} 3 \\ 5 \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
subject to: $\begin{bmatrix} 1 & 0 \\ 3 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 4 \\ 18 \\ 12 \end{bmatrix}$
 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Non Linear Programming

maximize
$$f(\boldsymbol{x})$$

subject to: $g_i(\boldsymbol{x}) \leq b_i \quad \forall i$
 $\boldsymbol{x} \geq 0$

- Production: y
- Price required to sell y units: p(y)
- Total cost of producing y units: c(y)
- Profit:

$$\pi(y) = yp(y) - c(y)$$

• hours needed in department $i: a_i(y)$

$$\begin{array}{ll} \text{maximize} & \sum_{j} \pi(x_{j}) \\ \text{subject to:} & \sum_{j} a_{i}(x_{j}) & \leq b_{i} \quad \forall i \\ x_{j} & \geq 0 \quad \forall j \end{array}$$

max.
$$f(x)$$
, s.t. $g(x) \le 0$

- Production: y
- Price required to sell y units: p(y)
- Total cost of producing y units: c(y)
- Profit:

$$\pi(y) = yp(y) - c(y)$$

• hours needed in department $i: a_i(y)$

$$\begin{array}{ll} \text{maximize} & \sum_{j} \pi(x_{j}) \\ \text{subject to:} & \sum_{j} a_{i}(x_{j}) & \leq b_{i} & \forall i \\ & x_{j} & \geq 0 & \forall j \end{array}$$

$$\max. \ f(x), \ \text{s.t.} \ g(x) \le 0$$

- Production: y
- Price required to sell y units: p(y)
- Total cost of producing y units: c(y)
- Profit:

$$\pi(y) = yp(y) - c(y)$$

• hours needed in department $i: a_i(y)$

$$\begin{array}{ll} \text{maximize} & \sum_{j} \pi(x_{j}) \\ \text{subject to:} & \sum_{j} a_{i}(x_{j}) & \leq b_{i} \quad \forall i \\ x_{j} & \geq 0 \quad \forall j \end{array}$$

max.
$$f(x)$$
, s.t. $g(x) \le 0$

- Production: y
- Price required to sell y units: p(y)
- Total cost of producing y units: c(y)
- Profit:

$$\pi(y) = yp(y) - c(y)$$

• hours needed in department $i: a_i(y)$

$$\begin{array}{ll} \text{maximize} & \sum_{j} \pi(x_{j}) \\ \text{subject to:} & \sum_{j} a_{i}(x_{j}) & \leq b_{i} & \forall i \\ & x_{j} & \geq 0 & \forall j \end{array}$$

$$\max \ f(x), \ \mathrm{s.t.} \ g(x) \leq 0$$

- Production: y
- Price required to sell y units: p(y)
- Total cost of producing y units: c(y)
- Profit:

$$\pi(y) = yp(y) - c(y)$$

• hours needed in department $i: a_i(y)$

$$\begin{array}{ll} \text{maximize} & \sum_{j} \pi(x_{j}) \\ \text{subject to:} & \sum_{j} a_{i}(x_{j}) & \leq b_{i} \quad \forall \\ & x_{j} & \geq 0 \quad \forall j \end{array}$$

$$\max. \ f(x), \ \text{s.t.} \ g(x) \le 0$$

- Production: y
- Price required to sell y units: p(y)
- Total cost of producing y units: c(y)
- Profit:

$$\pi(y) = yp(y) - c(y)$$

• hours needed in department $i: a_i(y)$

$$\begin{array}{ll} \text{maximize} & \sum_{j} \pi(x_{j}) \\ \text{subject to:} & \sum_{j} a_{i}(x_{j}) & \leq b_{i} & \forall i \\ & x_{j} & \geq 0 & \forall j \end{array}$$

max.
$$f(x),$$
 s.t. $g(x) \leq 0$

- Production: y
- Price required to sell y units: p(y)
- Total cost of producing y units: c(y)
- Profit:

$$\pi(y) = yp(y) - c(y)$$

• hours needed in department $i: a_i(y)$

$$\begin{array}{ll} \text{maximize} & \sum_{j} \pi(x_{j}) \\ \text{subject to:} & \sum_{j} a_{i}(x_{j}) & \leq b_{i} \quad \forall i \\ & x_{j} & \geq 0 \quad \forall j \end{array}$$

max.
$$f(x)$$
, s.t. $g(x) \le 0$

- Production: y
- Price required to sell y units: p(y)
- Total cost of producing y units: c(y)
- Profit:

$$\pi(y) = yp(y) - c(y)$$

• hours needed in department $i: a_i(y)$

$$\begin{array}{ll} \text{maximize} & \sum_{j} \pi(x_{j}) \\ \text{subject to:} & \sum_{j} a_{i}(x_{j}) & \leq b_{i} \quad \forall i \\ & x_{j} & \geq 0 \quad \forall j \end{array}$$

max.
$$f(x)$$
, s.t. $g(x) \leq 0$

Transportation problem

- Cost of shipping one extra unit: stair-case constant
- Cost of shipping y units: c(y), piecewise linear
- x_{ij} : The volume shipped from source i to destination j

$$\begin{array}{ll} \text{maximize} & \sum_{i} \sum_{j} C_{ij}(x_{ij}) \\ & \sum_{j} x_{ij} = s_{i} & \forall i \\ & \sum_{i} x_{ij} = d_{j} & \forall j \\ & x_{j} \geq 0 & \forall i, j \end{cases}$$

max.
$$f(x)$$
, s.t. $g(x) \ge 0$ and $h(x) = 0$

Transportation problem

- Cost of shipping one extra unit: stair-case constant
- Cost of shipping y units: c(y), piecewise linear
- x_{ij} : The volume shipped from source i to destination j

maximize
$$\sum_{i} \sum_{j} C_{ij}(x_{ij})$$

subject to: $\sum_{j} x_{ij} = s_{i} \quad \forall i$
 $\sum_{i} x_{ij} = d_{j} \quad \forall j$
 $x_{j} \geq 0 \quad \forall i, j$

max.
$$f(x)$$
, s.t. $g(x) \ge 0$ and $h(x) = 0$

Transportation problem

- Cost of shipping one extra unit: stair-case constant
- Cost of shipping y units: c(y), piecewise linear
- x_{ij} : The volume shipped from source i to destination j

maximize
$$\sum_{i} \sum_{j} C_{ij}(x_{ij})$$

subject to: $\sum_{j} x_{ij} = s_{i} \quad \forall i$
 $\sum_{i} x_{ij} = d_{j} \quad \forall j$
 $x_{j} \geq 0 \quad \forall i,$

max.
$$f(x)$$
, s.t. $g(x) \ge 0$ and $h(x) = 0$

Transportation problem

- Cost of shipping one extra unit: stair-case constant
- Cost of shipping y units: c(y), piecewise linear
- x_{ij} : The volume shipped from source i to destination j

maximize
$$\sum_{i} \sum_{j} C_{ij}(x_{ij})$$

subject to: $\sum_{j} x_{ij} = s_{i} \quad \forall i$
 $\sum_{i} x_{ij} = d_{j} \quad \forall j$
 $x_{j} \geq 0 \quad \forall i, j$

max.
$$f(x)$$
, s.t. $g(x) \ge 0$ and $h(x) = 0$

Transportation problem

- Cost of shipping one extra unit: stair-case constant
- Cost of shipping y units: c(y), piecewise linear
- x_{ij} : The volume shipped from source i to destination j

maximize
$$\sum_{i} \sum_{j} C_{ij}(x_{ij})$$

subject to: $\sum_{j} x_{ij} = s_{i} \quad \forall i$
 $\sum_{i} x_{ij} = d_{j} \quad \forall j$
 $x_{j} \geq 0 \quad \forall i, j$

max.
$$f(x)$$
, s.t. $g(x) \ge 0$ and $h(x) = 0$

Transportation problem

- Cost of shipping one extra unit: stair-case constant
- Cost of shipping y units: c(y), piecewise linear
- x_{ij} : The volume shipped from source i to destination j

maximize
$$\sum_{i} \sum_{j} C_{ij}(x_{ij})$$

subject to: $\sum_{j} x_{ij} = s_{i} \quad \forall i$
 $\sum_{i} x_{ij} = d_{j} \quad \forall j$
 $x_{j} \geq 0 \quad \forall i, j$

max.
$$f(x)$$
, s.t. $g(x) \ge 0$ and $h(x) = 0$

- Share price of stock j: p_j
- Return on one share of stock j is a random variable with mean μ_j and variance σ_{jj}
- Covariance between stock returns of two stocks i and j: σ_{ij}
- Portfolio is to consist of x_j shares of stock $j \quad \forall j$
- Mean of portfolio return:

$$\sum_{j} \mu_{j} x_{j}$$

Variance of portfolio return:

$$\sum_{i} \sum_{j} \sigma_{ij} x_i x_j$$

- Share price of stock j: p_i
- \bullet Return on one share of stock j is a random variable with mean μ_j and variance σ_{jj}
- ullet Covariance between stock returns of two stocks i and j: σ_{ij}
- Portfolio is to consist of x_j shares of stock $j \quad \forall j$
- Mean of portfolio return:

$$\sum_{j} \mu_{j} x_{j}$$

Variance of portfolio return:

$$\sum_i \sum_j \sigma_{ij} x_i x_j$$

- Share price of stock j: p_i
- \bullet Return on one share of stock j is a random variable with mean μ_j and variance σ_{jj}
- Covariance between stock returns of two stocks i and j: σ_{ij}
- Portfolio is to consist of x_j shares of stock $j \quad \forall j$
- Mean of portfolio return:

$$\sum_{j} \mu_{j} x_{j}$$

• Variance of portfolio return:

$$\sum_{i} \sum_{j} \sigma_{ij} x_i x_j$$

- Share price of stock j: p_j
- \bullet Return on one share of stock j is a random variable with mean μ_j and variance σ_{jj}
- ullet Covariance between stock returns of two stocks i and j: σ_{ij}
- Portfolio is to consist of x_i shares of stock $j \quad \forall j$
- Mean of portfolio return:

$$\sum_{j} \mu_{j} x_{j}$$

• Variance of portfolio return:

$$\sum_{i} \sum_{j} \sigma_{ij} x_i x_j$$

- Share price of stock j: p_j
- \bullet Return on one share of stock j is a random variable with mean μ_j and variance σ_{jj}
- Covariance between stock returns of two stocks i and j: σ_{ij}
- Portfolio is to consist of x_j shares of stock $j \quad \forall j$
- Mean of portfolio return:

$$\sum_{j} \mu_{j} x_{j}$$

Variance of portfolio return:

$$\sum_{i} \sum_{j} \sigma_{ij} x_{i} x_{j}$$

- Share price of stock j: p_j
- ullet Return on one share of stock j is a random variable with mean μ_j and variance σ_{jj}
- Covariance between stock returns of two stocks i and j: σ_{ij}
- Portfolio is to consist of x_j shares of stock $j \quad \forall j$
- Mean of portfolio return:

$$\sum_{j} \mu_{j} x_{j}$$

• Variance of portfolio return:

$$\sum_{i} \sum_{j} \sigma_{ij} x_i x_j$$

- We usually want a high return with a low risk
- Minimum acceptable expected return: r
- Maximum budget available: b

```
minimize \sum_{i} \sum_{j} \sigma_{ij} x_{i} x_{j}subject to: \sum_{j} \mu_{j} x_{j} \geq r\sum_{j} p_{j} x_{j} \leq b
```

- Non-negativity constraints?
- ullet Parametric programming on r yields the efficient frontier

- We usually want a high return with a low risk
- ullet Minimum acceptable expected return: r
- Maximum budget available: b

```
minimize \sum_{i} \sum_{j} \sigma_{ij} x_{i} x_{j}
subject to: \sum_{j} \mu_{j} x_{j} \ge r
\sum_{j} p_{j} x_{j} \le b
```

- Non-negativity constraints?
- \bullet Parametric programming on r yields the efficient frontier

- We usually want a high return with a low risk
- ullet Minimum acceptable expected return: r
- Maximum budget available: b

```
minimize \sum_{i} \sum_{j} \sigma_{ij} x_{i} x_{j}
subject to: \sum_{j} \mu_{j} x_{j} \ge i
\sum_{j} p_{j} x_{j} \le i
```

- Non-negativity constraints?
- ullet Parametric programming on r yields the efficient frontier

- We usually want a high return with a low risk
- ullet Minimum acceptable expected return: r
- Maximum budget available: b

$$\begin{array}{ll} \text{minimize} & \sum_{i} \sum_{j} \sigma_{ij} x_{i} x_{j} \\ \text{subject to:} & \sum_{j} \mu_{j} x_{j} & \geq r \\ & \sum_{j} p_{j} x_{j} & \leq b \end{array}$$

- Non-negativity constraints?
- ullet Parametric programming on r yields the efficient frontier

- We usually want a high return with a low risk
- ullet Minimum acceptable expected return: r
- Maximum budget available: b

$$\begin{array}{ll} \text{minimize} & \sum_i \sum_j \sigma_{ij} x_i x_j \\ \text{subject to:} & \sum_j \mu_j x_j & \geq r \\ & \sum_j p_j x_j & \leq b \end{array}$$

- Non-negativity constraints?
- ullet Parametric programming on r yields the efficient frontier

- We usually want a high return with a low risk
- ullet Minimum acceptable expected return: r
- Maximum budget available: b

$$\begin{array}{ll} \text{minimize} & \sum_i \sum_j \sigma_{ij} x_i x_j \\ \text{subject to:} & \sum_j \mu_j x_j & \geq r \\ & \sum_j p_j x_j & \leq b \end{array}$$

- Non-negativity constraints?
- ullet Parametric programming on r yields the efficient frontier

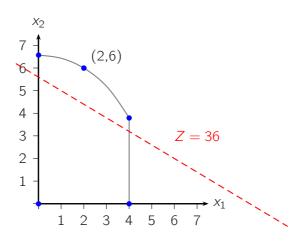
- We usually want a high return with a low risk
- ullet Minimum acceptable expected return: r
- Maximum budget available: b

$$\begin{array}{ll} \text{minimize} & \sum_i \sum_j \sigma_{ij} x_i x_j \\ \text{subject to:} & \sum_j \mu_j x_j & \geq r \\ & \sum_j p_j x_j & \leq b \end{array}$$

- Non-negativity constraints?
- ullet Parametric programming on r yields the efficient frontier

Non-Linear Programming Example 1

$$\begin{pmatrix}
\text{maximize} & Z = 3x_1 +5x_2 \\
\text{subject to:} & x_1 & \leq 4 \\
& 9x_1^2 +5x_2^2 \leq 216 \\
& x_1 & \geq 0 \\
& x_2 \geq 0
\end{pmatrix}$$



- The optimal solution remains unchanged
- It is NOT a corner point of the feasible region
- Depending on the objective function a corner point can be optimal
- We cannot limit the search to just corner points

- The optimal solution remains unchanged
- It is NOT a corner point of the feasible region
- Depending on the objective function a corner point can be optimal
- We cannot limit the search to just corner points

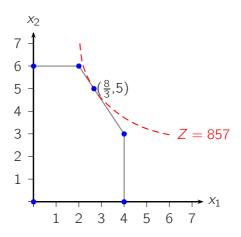
- The optimal solution remains unchanged
- It is NOT a corner point of the feasible region
- Depending on the objective function a corner point can be optimal
- We cannot limit the search to just corner points

- The optimal solution remains unchanged
- It is NOT a corner point of the feasible region
- Depending on the objective function a corner point can be optimal
- We cannot limit the search to just corner points

- The optimal solution remains unchanged
- It is NOT a corner point of the feasible region
- Depending on the objective function a corner point can be optimal
- We cannot limit the search to just corner points

Non-Linear Programming Example 2

$$\begin{pmatrix}
\text{maximize} & Z = 126x_1 - 9x_1^2 + 182x_2 - 13x_2^2 \\
\text{subject to:} & x_1 & \leq 4 \\
& 2x_2 \leq 12 \\
& 3x_1 & +2x_2 \leq 18 \\
& x_1 & \geq 0 \\
& x_2 \geq 0
\end{pmatrix}$$



- The optimal solution is also not a corner point
- ullet The locus of points with Z=857 intersects the feasible region at this point only
- ullet The locus of points with Z>857 does not intersect the feasible region at all

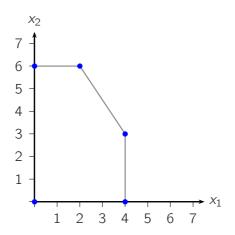
- The optimal solution is also not a corner point
- ullet The locus of points with Z=857 intersects the feasible region at this point only
- \bullet The locus of points with Z>857 does not intersect the feasible region at all

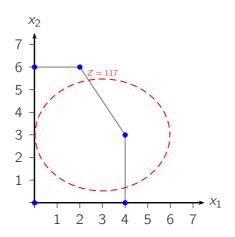
- The optimal solution is also not a corner point
- ullet The locus of points with Z=857 intersects the feasible region at this point only
- ullet The locus of points with Z>857 does not intersect the feasible region at all

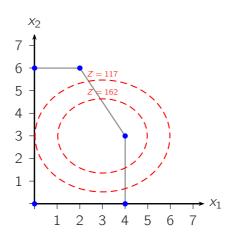
- The optimal solution is also not a corner point
- ullet The locus of points with Z=857 intersects the feasible region at this point only
- \bullet The locus of points with Z>857 does not intersect the feasible region at all

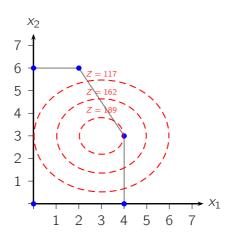
Non-Linear Programming Example 3

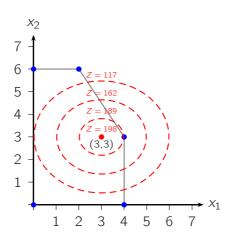
$$\begin{pmatrix}
\text{maximize} & Z = 54x_1 - 9x_1^2 + 78x_2 - 13x_2^2 \\
\text{subject to:} & x_1 & \leq 4 \\
& 2x_2 \leq 12 \\
& 3x_1 & +2x_2 \leq 18 \\
& x_1 & \geq 0 \\
& x_2 \geq 0
\end{pmatrix}$$











- The optimal solution is an interior point of the feasible region
- Solution to the unconstrained global maximum
- A general solution approach needs to consider all points

Graphical Illustration (2)

- The optimal solution is an interior point of the feasible region
- Solution to the unconstrained global maximum
- A general solution approach needs to consider all points

Graphical Illustration (2)

- The optimal solution is an interior point of the feasible region
- Solution to the unconstrained global maximum
- A general solution approach needs to consider all points

Graphical Illustration (2)

- The optimal solution is an interior point of the feasible region
- Solution to the unconstrained global maximum
- A general solution approach needs to consider all points

- Convex Function
- Concave Function
- Convex Set
- Pseudoconvex Function
- Quasiconvex Function
- Local Optimum
- Global Optimum

- Convex Function
- Concave Function
- Convex Set
- Pseudoconvex Function
- Quasiconvex Function
- Local Optimum
- Global Optimum

- Convex Function
- Concave Function
- Convex Set
- Pseudoconvex Function
- Quasiconvex Function
- Local Optimum
- Global Optimum

- Convex Function
- Concave Function
- Convex Set
- Pseudoconvex Function
- Quasiconvex Function
- Local Optimum
- Global Optimum

- Convex Function
- Concave Function
- Convex Set
- Pseudoconvex Function
- Quasiconvex Function
- Local Optimum
- Global Optimum

- Convex Function
- Concave Function
- Convex Set
- Pseudoconvex Function
- Quasiconvex Function
- Local Optimum
- Global Optimum

- Convex Function
- Concave Function
- Convex Set
- Pseudoconvex Function
- Quasiconvex Function
- Local Optimum
- Global Optimum

Convex Programming Problem

maximize
$$f(x)$$

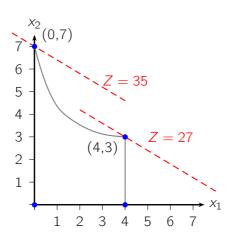
subject to: $g_i(x) \le b_i \quad \forall i$
 $x \ge 0$

- f is concave, each g_i is convex
 - ightarrow a local maximum is also global

Non-Linear Programming Example 4

$$\begin{pmatrix}
\text{maximize } Z = 3x_1 +5x_2 \\
\text{subject to:} & x_1 & \leq 4 \\
8x_1 - x_1^2 +14x_2 - x_2^2 & \leq 49 \\
x_1 & \geq 0 \\
x_2 & \geq 0
\end{pmatrix}$$

Graphical Illustration (1)



Problem Types

- Unconstrained Optimization
 - No constraints
- Linearly Constrained Optimization
 - linear constraints
- Quadratic Programming
 - quadratic objective function, linear constraints
- Convex Programming
 - minimize a convex function on a convex set
- Separable Programming
 - objective function and constraints are separable i.e. sum of functions of individual decision variables

Class Exercises

Problem 1

minimize
$$(x_1 - 255)^2 + 10(x_1 - 220)$$

 $+(x_2 - x_1)^2 + 10(x_2 - 240)$
 $+(x_3 - x_2)^2 + 10(x_3 - 200) + (255 - x_3)^2$
subject to: $x_1 \ge 220$ $x_2 \ge 240$ $x_3 \ge 200$

Problem 2

maximize
$$36x_1 + 9x_1^2 - 6x_1^3 + 36x_2 - 3x_2^3$$

subject to: $x_1 + x_2 < 3, x_1 > 0, x_2 > 0$

Richard M. Lusby
DTU Management Engineering, Technical University of Denmark

Building 424, Room 208 rmlu@dtu.dk 2800 Kgs. Lyngby, Denmark phone +45 4525 3084 http://www.man.dtu.dk