
25/03/2020 Signe Winther Hasler, s134628

Nerve fiber segmentation using deformable
models

For segmenting the nerves fibers a deformable model was chosen as the method used. The
deformable model relies on the Mumford-Shah functional and the Chan-Vese algorithm for solv-
ing the functional, and uses snakes (parametric) as curve representation.

The nerve fibers were segmented and tracked one at a time, where inputs to the developed
function was the initial placement of the circular snake. The function then deformed the snake
in five iterations for each image slice. For the next image slice, the last snake from the previous
slice was used as the initial snake. The function was able to track a nerve until a node of
Ranvier, where the nerve fiber disappears. A simple method for continuing the algorithm is
implemented: if the snake gets out of bound in the image, then the snake from 20 slices back
is used as initializing snake. When the nerve fiber begins to "grow back", the nerve fibers are
segmented correctly again.

Six nerve fibers were segmented. Parameters used in the algorithm were as follows min =

30,min = 150, α = 0.2, β = 0.2 and τ = 0.005. Below is seen a slice of segmented nerve fibers,
and a 3D model.

Nerve 3 (yellow) at some point is close to another nerve, and the algorithm then includes
the other nerve in the segmentation. Nerve 5 and 6 (magenta and cyan) at some point are
detected as the same nerve. This problem should be accounted in further improvements of the
segmentation algorithm. In several cases (especially after a node of Ranvier) the algorithm only
segment part of the myelin sheath, and not the whole nerve fiber with the high intensity middle,
which also should be corrected by altering the deformation criteria, which currently is based on
mean intensities.

(a) 1st slice with the six segmented nerves. (b) 3D view of the segmented nerve fibers.

1

i
i “output” — 2020/4/1 — 7:04 — page 1 — #1 i

i

i
i

i
i

Using Geometric Priors For
Volumetric Segmentation

Pernille Kliving, Danjal Berg, Eigil Yuichi Hyldgaard Lippert

Technical University of Denmark, Earth and Space Physics Engineering

1 Introduction

Two methods, Markov Random Fields (MRF)
and Chan-vase deformable models are used for
volumetric segnemtation. The data are of myeli-
nated nerves and the objective is to obtain a 3D
model of the nerves. To visualise the nerves are
a cross section showed in the following example.

Figure 1: Example of one slice of the (1024, 350, 350) volumetric image.

2 MRF

In MRF are energy terms calculated for the one-
clique and two-clique potential. The one-clique
potential is the likelihood energy and the two
clique potential is the prior. The sum of these
energies gives the posterior energy that we want
to minimize for a given configuration.

Figure 2: Histogram of one slice of the (1024, 350, 350) volumetric raw image.

The images of the myelinated nerves are very
noisy. Values close to 0 are black and close to
255 are white. To preprocces the images are all
values of the image above a pixel intensity of 100
set to 255 to achieve a white background and
better contrast.
Graph cuts are used to get a smooth result. A
smoothness parameter � is set to 100 in the
[�, y] direction and 500 in the z direction.
The smoothing parameter are able to remove

most of the remaining noise but not everything.
Dependent on the value of the smoothing param-
eter is there a trade-off. If the myelinated nerves
are very close to each other they "merge" to-
gether as can be seen in figure 3.

Figure 3: Graph cut of one slice of the volumetric preprocessed image.

3 Deformable models

The first 500 nerve images was normalised to
floats between 0 and 1 as a preproccing step
and used in the following. The approach used
is a Chan-Vese approach combined with a para-
metric curve as described in the course notes.
The parameters used for the process was: � =
.25,� = .05, number of curve points was
n = 75. For the first slice of the nerve image the
step size was 30, with 40 iterations, and for the
subsequent slices the step size was 20 and the
number of iterations reduced to 10. All curves
were initialised with different radii to enclose the
nerve of interest but not hit its neighbors.
In Figure 4 we see how the evolution of the snakes
enables a 3d model of the nerves, with the curves
which performed poorly in the background and
the good ones in front. The cyan and blue curves
did really well, and it can be seen how they both
catch a node of Ranvier each, for the cyan curve
this occurs around z = 400 and for the blue
curve around z = 200. The performance of the
curves was mainly assessed through the video in
the appendix, but three snapshots from the video
are seen in Figure 5.

Figure 4: The evolution of curves segmenting nerves

Especially the yellow and black curves are not
performing very well and gets stuck on neigh-
boring nerves. The red encloses the neighbor in
z = 250 and between that point and z = 480
it has a short period of enclosing the nerve per-
fectly. This was also observed for the yellow
curve, although briefly.

Figure 5: Segmented nerves at slice 0, 250 and 480

Various things where tried out to improve the re-
sult for example an additional term to the update
term which made a step in the negative gradient
direction, which proved to cause too many insta-
bilities in the end. Another idea was to stop up-
dating after some condition was met. The most
promising condition was computing the mean in a
thin band just inside the curve, and stopping the
updates as this mean became stable. While it
seemed to work for a single curve, it proved diffi-
cult to implement for all curves due to complexity
and probably lack of generality of this fix.

02506: Advanced Image

Analysis Exercise 7
Charlotte Friis Theisen, 01/04/2020

1. Introduction

The purpose of exercise 7 is to find interesting properties of

human peripheral nerves. Of interest are the nerve density

count, the myelin density, the average nerve area and the

average nerve radius. These will be examined using two ap-

proached, namely a Markov random field (MRF) model and

deformable models (DM).

2. Method

2.1 3D -MRF-model

The 3D MRF model is used to segment the image of the

nerves into two classes. Class one is myelin and class two is

everything else (includes background and axon). The MRF-

model is used with graph-cuts to get the optimal segmenta-

tion. The pixel intensity of class 1 is determined to be ap-

proximately 40 and of class 2 it is determined to be 150.

The likelihood energy is used as weights from sink and

source to each node and all neighboring nodes are linked

by an edge. This includes neighbors in both x-, y- and z-di-

rection. The weight of these edges are in the x- and y-direc-

tion set to 100 and in the z-direction to 1,000. To incur a

higher degree of smoothing in the z-direction. Only a subset

of the first 100 images was used to reduce computation.

2.2 Deformable models

The deformable models are implemented using snakes to

trace eight different clearly defined nerves throughout the

volume. The model is initialized as round circles with 100

points equidistantly along the snake. They are manually ini-

tialized as shown in Figure 2. The same pixel intensities are

used to determine the threshold which is calculated as de-

scribed in the course note. The force is also calculated ac-

cording to the course note. The pixel intensity values under

the snake is determined as the intensity of the nearest pixel

by rounding the non-integer snake-values. To regularize the

snake without shrinkage an implicit smoothing was used,

where alpha was set to 0 and beta to 20. The stepsize is set

to 2. The new snake is calculated again according to the

course note and the points are redistributed equidistantly

along the snake and intersections are removed. The algo-

rithm is run 150 iteration on the first/bottom image to fit all

snakes well to the nerves. Afterwards the algorithm is run

10 iterations for each image allowing the snakes to adapt

slightly to any changes in the nerves.

3. Results

The result of the MRF-model is showed in Figure 1. Here

two slices of the volume are visualized. On the left is the

original slice and, on the right, it is overlaid with the seg-

mentation in red. As seen the segmentation is quite good,

only missing a few of the very small nerves. Some cluttering

is apparent in the areas with small entangled nerves. The

deformable models are fitted well to the first image (see

Figure 2) and adapts to the changes in the nerves through-

out the volume. However, by inspecting every 20th image in

the volume it is clear that most of the snakes at some point

diverges from the nerve, typically because the nerve be-

comes narrow. The snake captures the narrow part but

does not adapt well as the nerve radius increases again.

Only the well-behaved snakes are used in the following cal-

culations.

The myelin density is estimated from the MRF model by cal-

culating the pct of pixels segmented as myelin, this is found

to be 25.9%. The average nerve area is divided into average

myelin area and average axon area. This is found by apply-

ing the snakes as a mask to the segmentations, such that

only the areas inside snakes are used. This gives a myelin

area of 9.55 ∙ 106 𝑛𝑚2 and an axon area of 28.2 ∙ 106 𝑛𝑚2.

If we by approximation assume the nerves to be circular,

this is equivalent to an average axon radius of 21.2 ∙

102 𝑛𝑚 and average myelin thickness of 3.32 ∙ 102 𝑛𝑚.

4. Discussion and conclusion

Both of the models could be improved. The parameters

could be tweaked to get improved performance. In the de-

formable models the image could be unwrapped to calcu-

late a better direction of movement and the in and out

pixel intensities could be dynamically updated. In Figure 3

an example of when the deformable model fails is shown.

However, we also get information about this probably be-

ing a node of Ranvier, which is also of interest.

Figure 1: Result of MRF model on image slice 80.

Figure 2: Deformable model. Initial state and snakes adapted to
nerve image 1.

Figure 3: DM loosing track of a nerve.

 Jacob Fiskaali Hertz

Cell segmentation by using deformable model

The snakes forming the deformable models
are first initialized as approximated circles
that are manually positioned around the cells
to be tracked in the first image layer. Each
snake has a set of 20 joints.
 By using a fixed threshold for 𝑚"# and 𝑚$%&
with values of 70 and 140 respectively the
snakes are pre-adjusted to fit the cells by
running multiple deformation steps on the
same initial image.
 The procedure is now continued by applying a single deformation step for each image layer in the
voxel, but in addition to regulating each joint in accordance to its corresponding image intensity, the
snake is further adjusted to the edge of the cell by differentiating the image.
 This is done by first unwrapping the snake along its normal vectors, applying a simple 5-by-5
vertical oriented Sobel filter and then extracting the maximum values. After smoothing the contour,
the row-index of these max-values determines the normal forces for the snake adjustments.

Running this algorithm on the four selected cells results in the following 3D model.

As seen in the orange cell contour, the method is able – though with some difficulties – to track the
node of Ranvier. It’s the unwrapping techniques that allows the snake to adjust to the rapid change
in the size around this point. However, to improve the robustness of this method, when finding the
unwrapped cell edge, the contour change should be taken into account instead of solely relying on
the max values.

Using the MRF GraphCut function from week 5 I was able to get decent segmentations of the nerves.

Setting each pixels neighbours to the adjacent pixels in the pixels own slice, and the slice above and

below. After normalizing the data I made a histogram of the whole .tiff which can be seen below.

From the histogram I set mu for the two

classes to 0.3 and 0.55. Through a bit of

trial and error I set beta to 0.0005.

I couldn’t find a good way to plot the 3D segmentation in MATLAB, and did not look into ParaView.

So I just plotted the first and last slice of the segmentation of get an idea of the quality of the

segmentation. The segmentation of these slices can be seen below.

We can see that the big nerves are segmented well while the patches of smaller nerves are not

segmented as well. Probably because of the darker background in these patches.

Week 7 - onepager - Deformable model

s164205

01/04 2020

Given the shape of the nerve cells, a strict Chan-Vese algorithm wasn’t used, as the mean
value inside the curve doesn’t accurately represent the inside of what the curve will be bor-
dering. Instead, intensity values are found manually and used as a constant.

Figure 1: To the left, the curve ’imploding’ on the axon. On the right, the curves including
parts of respective bordering axons.

Solving this problem with one parameter set (per axon) turned out to be hard to fine tune.
Choosing a high τ will result in the curve being to found of expanding to other axons as it
moves up the nerve. Setting it low or increasing the smoothing makes the curve ’implode’
i.e. form around the rim of the axon, instead of the whole structure.

Here, a measure was found, indicating the change of area created by the curve. When
this measure exceeds a certain threshold, the algorithm is stopped. Were one to desire the
full estimation of the axon, one would need to re-calibrate the parameters from this point.

Figure 2: The final (badly plotted) estimation of a hand full of axons. Some are cut short, as
the deformable curve no longer gives reliable information after a certain number of slices.

1

02506 Advanced Image Analysis F20
s173949 Thor Christiansen

1 Introduction

This paper investigates volumetric segmentation
of nerve cells by using deformable surfaces.

1.1 Data

The data in consideration for this exercise is a
volumetric image of size 350 x 350 x 1024 of
nerve fibres imaged using X-ray phase constrast
zoom tomography.1

1.2 Method

The method deformable surfaces is used to seg-
ment the nerve fibres in each of the layers of the
volumetric image. The objective of this method
is minimize the segmentation energy.

2 Results

The inital segmentation of five of the nerve cells
is seen in figure 1.

Figure 1: Intial Segmentation of five nerve cells
in the first layer of the 3D image

As can be seen from figure 1 the shapes sur-
rounding the nerve cells do not appear to be very
smooth. The resulting segmentation of the volu-
metric image is depicted in figure 2.

1Dahl Bjorholm, Anders & Andersen Dahl, Vedrana
”Advanced Image Analysis Selected Topics”, pp. 59-61,
March 25, 2020, DTU Compute

Figure 2: Segmentation of five nerve cells in a
volumetric image. The five nerce cells are clearly
seen as a group of 3 to the left and the pair of
nerce cells to the right

2.1 Parameters

For the segmentation of the nerve fibres in the
volumetric image using deformable surfaces the
following parameters were used:

• For smoothing the curve, the following pa-
rameters were chosen: α = 3.5, β = 0.8 and
λ = 1

• Time step for displacement τ = 30;

• Number of points = 157

3 Further improvements

For further improvements of the segmentation of
nerve fibres in the volumetric image, the follow-
ing can be optimized:

• Use of bilinear interpolation when finding
the image intensity at snake coordinates,
which are not integers.

• Increase of robustness by implemeting a
feature such that the curve moves the point
where the intensity in the normal direction
is high. 2

2Dahl Bjorholm, Anders & Andersen Dahl, Vedrana
”Advanced Image Analysis Selected Topics”, p. 61, March
25, 2020, DTU Compute

02506 Advanced Image Analysis - one pager

Nicolai Piet Dittmann (s170589), Mikkel Mathiasen (s174344)

March 2020

Markov Random Fields (MRF) is applied in order to segment nerve cells in a volumetric x-ray

image.

A 3D implementation of MRF is applied, where neighbours in the plane and in z-direction, the

nerves direction, are penalized if they are not from the same class. In order to make this approach

a subset of the 1024 image slices are chosen (20-40 slices) and loaded in at once and flattened.

Each neighbour in the z-direction are found through the image length and the coordinate in the

given image.

The mean of the of the nerve cells and the background intensities are found through flattening

the volumetric image and computing a histogram, as can be seen below.

Figure 1: Histogram of image intensities

The mean of the background intensity is then computed as the highest peak in the histogram.

The mean of the nerve cell intensities are computed as the second highest peak.

The slices have been normalized by dividing each image slice with the maximum pixel intensity

in the given image slice.

In order to remove the small nerves, the intensity mean of the background and the nerve cells

are fine-tuned. The mean of the background was lowered as this removed more of the small

insignificant nerves.

The result of this segmentation strategy is shown in figure 2 below:

1

Figure 2: Caption

In order to optimize this segmentation more smoothing in the z-direction should be applied.

2

Markov Random Fields deliverable: Week 7

Frederik Hartmann, S174471

For this small deliverable, I worked with a binary segmentation of nerves
in a 3D volumetric dataset. I predefined the mean-values of the myelin and
background/axon (66 for myelin, 136 for background) from the histogram of
the image. Those mean values I used to setup my s-t graph, by defining the
weight from the source as the squared distance from the specific pixel-values in
the image to the mean pixel-value of the background/axon. The sink weights
were defined as the squared distance from the specific pixel values in the image
to the mean pixel-value of the myelin. Those weights I use to define my terminal
and internal matrices, that defines my s-t graph.

With this s-t graph set up, I used the graph-cut code given in week 5/6 (I
can’t remember), to find the optimal binary segmentation. The above proce-
dure was done in every layer to get a 3D segmentation of the axons.

Below we see the results of doing the above.

Figure 1: (Left) A binary segmentation of the first layer using the graph-cut
method described above. To the right we see a 3D visualization of the binary
segmentation done throughout the 3D dataset. It is hard to distinguish the
individual axons from each other, since this method is binary (and not a
multi-label approach).

As we see, the MRF problem solved with an s-t graph cut approach results
in a pretty decent binary segmentation. However one might seek to use a multi
label approach, since it is hard to distinguish the individual nerves from each
other.

I refer to ITK-Snap as the 3D visualization tool used to create both figures
in figure 1.

1

02506, Advanced Image Analysis 01.04.2020

Deliverable, week 7
Jens Christian Bang Gribsvad, s174477

Deformable model approach
Below is illustrated my results of segmenting nerve cells by using deformable models in terms

of snakes. Though the initial goal was to segment the nerves through a volume I only managed

to segment the nerves in 2D:

From the above it can be seen the deformable model sort of works. The green and yellow

snake succeeds in enclosing the myelin-boundary well while the red snake almost succeeds.

Unfortunately, the blue snake doesn’t seem to detect the axon at all as it just shrinks in and

doesn’t fold around the myelin. A difficulty of working with this data set is the change of

myelin pixel intensity and the varying thickness of the myelin. As I have run my snakes on the
same parameters this could explain the different outputs in detecting the axons.

My approach:

1. Determine the center of the initial circle for the snake along with the radius and

number of points in the circle (I’ve chosen 200 points).

2. Compute the outward normal vectors for each point on the circle.

3. Locating the pixels inside and outside the circle and computing the mean value.

4. Creating an energy function consisting of the mean values and outward normal vectors

(ie. Equation 6.1 in the notes).

5. Computing a regularization matrix (same procedure as from week 1).

6. Finally, the curve is updated by using equation 6.3 in the notes.

When working with this approach I found that the regularization parameters played a

somewhat big role for how quick the snake would converge around the axon. I played around

with it quite a bit and found the best parameters to be: 𝛼 = 12 and 𝛽 = 5 (see page 12 for

explanation about regularization).

Furthermore I just realized it might be a good idea in step 3 in my approach to just limit the

outside pixels to a slightly larger area around the snake instead of take all the pixels in the in

the image which is outside the snake. This adjustment could perhaps solve the issue with the
blue snake as it would make the difference between the mean inside and mean outside larger.

Week 7 - onepager Viktor Stenby (s174483) and Bjørn Dahl (s174480)

Chan-Vese snake segmentation

For the Chan-Vese snake segmentation, the algorithm was initialized at the first layer. The two means of the

inside (the bright inner axons) and the outside were set to µin = 0.4 and µout = 0.3 respectively in order to

help the solution converge. The regularization matrix had the parameters ↵ = 0.1 and � = 0.5. Furthermore,

the stepsize ⌧ was set to 25.

The snakes were initialized on the first frame with 10 iterations in order to fit the inner axons, and then for

each frame, one iteration was run with the snake from the previous frame used as starting point. This gave us

the following segmentation of the nerves:

As seen above, we only included some of the axons since some of the snakes would have undesired behaviour

i.e. ”explode”.

MRF segmentation

For the MRF segmentation, a full 3D MRF segmentation was implemented where each direction (x, y, and z) had

its own smoothness prior parameter penalizing change in labels. This was done specifically to ensure increased

smoothness of the segmentation along the z-axis which is the direction in which the nerves are elongated. The

MRF segmentation problem was modelled as a directed graph and solved by finding the minimum cut in this

graph.

Pixel values were used for the MRF segmentation rather than double values between 0 and 1. Due to this, the

hyperparameters are fairly large: The smoothness prior parameters were set to 2200, 2200, and 10000 for the

x-, y-, and z-direction respectively. The mean of the background (not nerves) and foreground (nerves) was set

to 150 and 25 respectively in order to segment the darkest thickest nerves more easily.

Below, three center slices of the resulting MRF segmentation, one seen from each axis, have been shown alongside

the corresponding original image slices. The 3D image was limited to a size of 350x350x350 in order to speed

up computations. It can be seen that some work still needs to be done in order to make the segmentation really

good. For instance, a median filter or morphological operations could be applied to the segmentation in order

to remove noise and unclear nerves.

Week 7 - onepager Viktor Stenby (s174483) and Bjørn Dahl (s174480)

XY-slice (idx = 175) XZ-slice (idx = 175) YZ-slice (idx = 175)

XY-slice (idx = 175) XZ-slice (idx = 175) YZ-slice (idx = 175)

Danmarks Tekniske Universitet

02506 ADVANCED IMAGE ANALYSIS

Image Analysis with Geometric Priors

Nicolai Pleth s174503

Mikkel Kofoed Pedersen s174485

Lucas Alexander Sørensen s174461

1 MRF Results

To get our MRF results for the nerves images, we used the template given, ”gender labelling.m”. We read the

first image of the nerves, and saved it as a 350x350 matrix with values between 0 and 1. We then chose our mean

values as µ = [µ1 µ2]
T

= [0.44 0.27]T . These values were chosen to match the ”background” and the myelin

intensities. We then started checking for di↵erent values of prior term weight, �. We got our best result when

choosing � = 0.01. This can be seen in the following figure:

 = 0.01

Figure 1: Visual result of MRF

From this result we can directly get the myelin density, by summing up the number of pixels classified as myelin

and divide this by the size of the image (350x350), for volumetric data, this should just be done for all images in

the sequence. The remaining microstructural measurements would need further processing of the images, by use of

a BLOB detection e.g.

2 Deformable surfaces

To get our deformable surface results, we chose three nerves to compute our snakes around. We computed the

snakes individually, so the parameters could be di↵erent for each snake. As the form of the nerves is not the same

for all images in the sequence, the parameters also needed to be changed for di↵erent sub-sequences. Through trial

and error we found the parameters to give us the results shown in the following figure.

(a) Axons segmented using deformable
curves visualized on a single slice.

(b) 3D visualization of axons seg-
mented using deformable curves.

(c) Same 3D visualization of axons
segmented, but from a di↵erent view
point.

If we were to make deformable surfaces for all nerves, and make it on both the inside and outside of the myelin, we

could get multiple microstructural measurements. We would have the nerve density count, as all nerves would be

found. We could find the myelin density by use of the area covered in the rings formed between the inner and outer

snakes. The average myelin could be calculated by use of the myelin density and nerves density count. The average

axon density could be found by use of the area covered by the inner snake and the nerves density count. We could

then approximate the average nerve radius, by assuming the nerves as perfect circles and using the average nerve

area results.

1

02506 Advanced Image Analysis
Elika Araghi, Monika Frolcova

Binary segmentation of myelinated nerves using Markov random fields

Segmentation strategy

At first, we applied 2D gaussian smoothing to each slice to avoid modelling the small nerves which create
clutter in the segmentation.
We estimated the mean pixel intensities of myelin and the background using a histogram of intensities.
Then for each slice, we used the MRF method and optimized it by building the s-t graph and applying the
maximum flow algorithm to find the minimum cut to create the segmentation.
We have processed each slice independently and therefore we included only the neighbouring pixels within
each slice in the smoothness prior.
After obtaining the segmentations, we exported the images as .png files and used ParaView software to create
the 3D model.

Possible improvements

3D smoothness
We have modelled smoothness prior using neighbouring pixels within the slices. We could further improve our
model by taking the fully 3D approach and including the neighbours from the previous and following slices in
the z direction.

Segmentation of small nerves
We have used 2D gaussian smoothing on each slice to avoid modelling the smallest nerves. We could further
improve the segmentation by applying other approaches such as changing the pixel intensities.
The differences in intensities of the foreground and background pixels could become more significant using
non-linear transformation.

One-pager of Jules Belveze s182291

1 Markov Random Field results

One possible strategy to segment myelinated nerves is to use Markov Random Field. This will enable
us to label each pixel as either background or stained myelin sheaths. To do so, I first plotted the pixel
intensity distribution in order to estimate the mean intensity of each class µi. Afterwards, we formulate the
likelihood energy and construct the corresponding graph: labels are the sink and the source, the weights
between neighbouring pixels are assigned by using 2-clique potentials and the weights to the source and
sink correspond the probability of the pixel to belong to each class. We show below the best obtained
segmentation after tuning the smoothing parameter β and the two mean intensity values. We can see that

the obtained is a bit rough. It succeeds at identifying big isolated and cluster of small nerves but fails to
separate nerves that are close to each other. In addition, the noisiness of the segmentation was limited by
the factor β. The segmentation could probably be improved by removing the small nerves, which would
prevent the formation of clutters. However, this segmentation can give a good approximation of the myelin
density.

2 Deformable surfaces results

In this section we use a different approach for segmentation that uses deformable models. In order to obtain
the desired segmentation we initialize a snake as a circle and iteratively deforms it with respect to both
external and internal energies. The results when trying to segment 4 nerves are shown below, the left
one depicting the best obtained segmentation. Even though, the results are promising it requires a lot of
parameter tweaking. The right image illustrates what happen when the circle are initialized with a bigger
radius. We can see that the deformable surfaces tend to wrap neighbouring cells. In opposition to the results
obtained with MRF, this segmentation could be used to extract the average nerve area and the average nerve
radius.

In addition, deforming the surfaces along the z − axis also gave promising results with the right param-
eters.

1

Week7_MRF

March 31, 2020

1 Week 7 - Advanced Image Analysis

Authors: Nikolay Dobrev and David Vinje March 2020

1.1 1 Introduction

In the following exercise we will look at segmentation of myelinated axons basedon volumetric
data. To achieve this we will use Markov Random Fields (MRF) optimised using a graph cut
algorithm implemented in Python.

1.2 2 Methods

Optimizing a MRF can be done in different ways: manually trying out differ-ent labels configu-
rations (not very efficient), using iterated conditional modes,Gibbs sampling algorithm, or, as we
will use, a graph cut algorithm.

[1]: from IPython.display import Image
Image("1.jpeg",width=400)

[1]:

1

The goal of the graph cut is to minimize the cost separating the source (also known as fore-
ground) from the sink (or background), which in this case is separating myelin sheated axons
from a background. The cost of one such cut equates to the posterior energy of the corresponding
configuration.

1.3 3. Results

Four microstructural measurements were extracted from the volumetric data.
[2]: import numpy as np

import PIL
import maxflow
from scipy import ndimage
from skimage import measure
import matplotlib.pyplot as plt
from scipy.signal import find_peaks

We now load N frames from the tiff image
[3]: number_of_frames = 100

2

[4]: img = PIL.Image.open('nerves_part.tiff')
frame = np.array(img)
img_frames = np.empty(shape=(number_of_frames,frame.shape[0],frame.shape[1]))

for i in range(number_of_frames):
img.seek(i)
img_frames[i,:,:] = np.array(img)

We found the mean intensities so we can perform MRF segmentation
[5]: uniq, counts = np.unique(frame, return_counts=True)

counts, bins = np.histogram(frame.flatten(),len(uniq))

[6]: mu = [63,133]
labels = [1,0]

[7]: beta = 1
beta_z = 10

[8]: single_image_length = len(frame.flatten())
img_flatten = img_frames.flatten()
N = len(img_flatten)

[9]: G = maxflow.Graph[int](N,N)
vertices = G.add_nodes(N)

create the edges between each neighboring and between the corresponding
vertices between the frames
for z in range(number_of_frames):

for i in range(single_image_length):
if(i + 1 < single_image_length):

G.add_edge(vertices[z*i + i],vertices[z*i + i+1],beta,beta)
if(z + 1 < number_of_frames):

G.add_edge(vertices[z*single_image_length + i],
vertices[(z+1)*single_image_length + i],beta_z,beta_z)

for i in range(N):
G.add_tedge(vertices[i],(img_flatten[i]-mu[0])**2,

(img_flatten[i]-mu[1])**2)

G.maxflow()

[9]: -51871027

[10]: segmentation = np.zeros(img_flatten.shape)
for i in range(N):

segmentation[i] = G.get_segment(vertices[i])

We now reshape back the segmentation to the original volume sizes
[11]: first_segmented = np.array(segmentation[:single_image_length])

first_segmented = first_segmented.reshape(frame.shape)

3

segmentation = segmentation.reshape((number_of_frames,
frame.shape[0],frame.shape[1]))

[12]: fig = plt.figure(figsize=(9,4.5))
ax = fig.add_subplot(1,2,1)
im = ax.imshow(first_segmented)
ax.set_title("Segmentation")

ax = fig.add_subplot(1,2,2)
im = ax.imshow(frame)
ax.set_title("Image")
fig.tight_layout()
plt.show()

1.3.1 1. Nerve density count: Number of axons per area of nerve-fibre crosssection. Measured
in number per area.

[13]: def get_cutted_image(image,area):
cutted_part = image
if(area != 0):

top_left = area[0]
buttom_right = area[1]
cutted_part = image[top_left[0]:buttom_right[0],top_left[1]:

↪→buttom_right[1]]
return cutted_part

[14]: def get_nerve_density_count(segmented_image,real_image,area):
cutted_part = get_cutted_image(segmented_image,area)

4

real_image = get_cutted_image(real_image,area)
plt.imshow(cutted_part)
plt.title("Cutted area")
plt.show()

filled_holes = ndimage.binary_fill_holes(cutted_part)
plt.imshow(filled_holes)
plt.title("We fill the axons")
plt.show()

nerves = real_image*filled_holes
plt.imshow(nerves)
plt.title("We segment only the nerves")
plt.show()

we take only the axons and make the image binary
axons = nerves*(1-segmented_image)
axons[axons > 1] = 1

axon_area = (axons == 1).sum()

props = measure.regionprops(measure.label(axons))

area_threshold = 20

valid_axons = []

for prop in props:
if(prop.area > area_threshold):

valid_axons.append(prop)

number_of_axons = len(valid_axons)

plt.imshow(axons)
plt.title("Binary axons with the centroids of the props found")
for prop in valid_axons:

plt.plot(prop.centroid[1],prop.centroid[0],'*')
plt.show()

return number_of_axons, axon_area

5

1.3.2 2. Myelin density: A fraction of nerve cross-section corresponding to myelin. Expressed
as dimensionless fraction (a number between 0 and 1), or a percentage

[15]: def get_myelin_area(segmented_image, area):
cutted_part = get_cutted_image(segmented_image,area)
num_of_myelin_pixels = (cutted_part == 1).sum()

return num_of_myelin_pixels,cutted_part

[16]: def get_myelin_density(segmented_image, area):

num_of_myelin_pixels,cutted_part = get_myelin_area(segmented_image,area)
num_of_all_pixels = len(cutted_part.flatten())
return num_of_myelin_pixels/num_of_all_pixels

[17]: top_left = (100,50)
buttom_right = (300,250)
area = [top_left,buttom_right]
print('Myelin density in the given area is␣

↪→',get_myelin_density(first_segmented,area))

Myelin density in the given area is 0.34305

1.3.3 3. Average nerve area: Average area of nerves, broken down into average axon area, and
average myelin area. This measure is very related to average nerve radius.

[18]: def get_avg_nerve_area(segmented_image,real_image,area):
myelin_area, cutted_part = get_myelin_area(segmented_image,area)

number_of_axons, axon_area =␣
↪→get_nerve_density_count(segmented_image,real_image,area)

avg_axon_size = axon_area/number_of_axons
avg_mealin_size = myelin_area/number_of_axons

return avg_axon_size,avg_mealin_size

[19]: get_avg_nerve_area(first_segmented,frame,0)

6

7

[19]: (297.86486486486484, 950.918918918919)

8

1.3.4 4. Average nerve radius: Average radius of nerves, broken down into average axon ra-
dius, and average myelin thickness. This measure is very related to average nerve area.

[20]: def get_avg_nerve_radius(segmented_image,real_image,area):
avg_axon_area, avg_myelin_area =␣

↪→get_avg_nerve_area(segmented_image,real_image,area)

S = pi r ^2
avg_axon_radius = np.sqrt(avg_axon_area / np.pi)
avg_myelin_wall_thickness = np.sqrt(avg_myelin_area/np.pi) - avg_axon_radius

return (avg_axon_radius, avg_myelin_wall_thickness)

[21]: get_avg_nerve_radius(first_segmented,frame,0)

9

10

[21]: (9.737213730492174, 7.660685362533238)

11

Volumetric Segmentation

s182820 // s182706

April 2020

Brief Description of Results

We have attempted to implement both binary segmentation using MRF and volumetric segmentation using deformable models.
The results for binary segmentation can be seen in figure where we have shown three consecutive images from the image stack.
This was obtained using a beta value of 30. It is clear that we do obtain segmentations of the myelin sheets, but we also observe
quite a lot of noise in the segmentations.

Figure 1: Three consecutive images from the image stack with their respective binary segmentations using MRF.

Hereafter we performed volumetric segmentation using deformable models.This was performed using fixed values for min and
mout estimated from the pictures. Note that the model is made as to sketch the inside of the myeline. To make this work the
snakes has to be initialized with extreme care. The results can be seen in figure.

Figure 2: Three consecutive images from the image stack with their respective volumetric segmentations using deformable
models.

Extraction of Microstructural measurements

We have not been able to extract the microstructural measurements within the timeframe, but here discuss how we would
perform each of them:

• Nerve density count - We expect that nerve density count could be performed simply by counting the number of blobs in
a cross section. We would set a threshold on blob size in order to remove artifacts occuring from noise.

• Myelin Density and nerve area - Using deformable models, we would count the white area (Myelin) within a volumetric
segmentation and then divide the number of white pixels by the total number of pixels within the volumetric segmentation.
The white pixels would be the area of the myelin, and the area of the axon would be the total area−myelin area.

• Average nerve radius - Average nerve radius can be found by doing scale space detection on each cross section as we did in
exercise 2. We would first perform scale space detection to find the radius of a whole nerve. Hereafter we would perform
scale space detection to find the radius of the axon. The thickness of the myelin is then total radius− radius axon.

1

Jakob Lønborg Christensen (s183985) 02506 Advanced Image Analysis
01/04-2020 One page deliverable

Myelin and axon volumetric segmentation

I attempted 2 methods, the first being a
Chan-Vese snake segmentation of the nerves.
I chose to segment the bright inner axons as
the snakes were too eager to segment multiple
nerves if the darker myelin was included. Even
with data transformations it seemed impossible
to prevent this, and i would have to code no
overlapping snakes to stop it. The results were
decent for axon segmentation, however about
half of the snakes lost their nerve and
expanded. The ones that did not lose their
nerve are plotted. I used means of
mu_in = 0.4 and mu_out = 0.3.

Figure 1: One layer of the Chan-Vese snakes
that did not explode.

The second strategy was a 3D MRF
segmentation which worked to visualize all the
dark myelin but could not separate nerves that
were too close. I used a higher beta value
(0.01 compared to 0.002) in the Z-direction as
the nerves were elongated in this direction. For
MRF i used double pixel values of
mu_1 = 0.48 and mu_2 = 0.24.

The data was downscaled for both these
problems as it was quite expensive for my
laptop.

Figure 2: The 3-D segmentation of axons
using Chan-Vese snakes.

Figure 3: The 3-D segmentation of Myelin
using MRF. Nerves of the same color were
connected.

Deformable Models

Fabian Mager - s190212

March 2020

In the following, I will briefly describe my approach to the segmentation of

nerves. The segmentation has been achieved using deformable models, referred

to as ”snakes”. The snakes have been initialized using rotated ellipses, as the

nerves have rather an elliptic than a round shape. First, the intensities to

calculate the external forces have been hard coded. Looking at the normalized

grey-scale image, the values have been set to mIn = 0.4 and mOut = 0.55. A

”inner snake”, deforming along the inner myelin surface was then initialized.

After deforming, the updated intensities have been calculated, using the area

formed by the inner snake as mOut, and the area formed by the outer snake

minus the area formed by the inner snake as mIn. It is worth mentioning, that

in order for the inner snake to ”press” against the myelin ring, mIn and mOut

have to be switched for the calculation of Fext. A regularization matrix B has

been used for the deformation of snakes. It has been observed that the inner

snake is needs to be less regularized, as it is restricted by the closed form of the

myelin rings anyway. Setting the parameter for the outer snakes seems to be

more di�cult. The values for B are: ↵in,out = 0.02, �in = 0.02 and �out = 0.11.
When nerves seem to ”touch” each other, the outer snakes tend to overlap.

This issue could not be avoided. However, the inner snakes seem to be more

consistent. I used this property and restricted the outer snake not to overlap

with the inner snake. This seemed to work quite well, as it was holding the outer

snake in place, which eventually recovers as the nerves grow apart. I specified

a margin between the outer and inner snake of three times the norm-vector

perpendicular to the outer snakes.

The results as shown in the figures below show room for improvement. Similar

to the restriction described above, one could restrict the outer snakes making

overlapping between them impossible. Another way might be to set a maximum

margin between the inner and outer snake. Furthermore, optimal values for B

need to be investigated. The current choice is quite arbitrary, and found due to

trial and error. Micro-structural properties were not included.

1

Figure 1: Segmentation of snakes, including norm-vectors perpendicular to the

curvature. The image on the right shows the common problem of overlapping

snakes.

Figure 2: 3d view of segmentation results after all 1024 images.

2

Ionela Marinuta s190388

Platon Woxler s196660

Nerve Segmentation with MRF

For the task of segmenting the myelin sheaths on the provided nerve fibers we used MRF

with graph cut optimization. We processed the volume slice-by-slice, without smoothness in

the z direction.

Before starting the segmentation we plotted the

histograms of a selection of slices to see how well

the myelin intensities are separated from the

surrounding intensities. We visually determined that

the mean intensities do not vary highly along the

slices. We discussed implementing some kind of

peak detection of the histograms so that the means

could be calculated for every slice, but ultimately

decided to use hardcoded values.

We tried a few Beta penalization values for the

MRF algorithm and settled on 100 as it gave the

best result in terms of maxflow as well as the most

satisfactory visual inspection. Another thing we

tried was to increase the contrast of the images

before segmenting, however that yielded poorer

results that also reflected in the maxflow capacity.

Trying to show a 3D-view of the data gave us pretty poor results due to the picture

containing a lot of noise. It still shows some potential though and some of the visualization

“problems” might be solved by just knowing one’s way around the visualization tool.

Interestingly, the clearest segmentation we got

came from simply thresholding the image on

intensity 100, which can be seen in figure 3. This

would probably not work on just any data but

happened to give a better segmentation in this

case.

Future improvements:

● compute mean intensities for each slice

● smooth along the z-axis

● try ICM optimization

Figure 2 Segmentation with MRF

Figure 3 Segmentation using thresholding

Figure 1 Segmentation of single slice

MRF result on nerves

Paul Senty (192701)

Figure 1. Slice visualization of the original image and the segmentation

(a) View from side (b) View from above
Figure 2. 3D visualization of the nerves segmentation on Paraview

These results were obtained by using Markov random fields or, more precisely, through a graph cut t-s algorithm. I assigned
each pixel to one of the folowing two classes : myelin or non-myelin.
The image histogram is bimodal, the first peak can be interpreted (appoximated) as the mean intensity of the myelin area and
the second (and higher peak) as the mean of the rest of the image. I defined the distance of each pixel to both of these classes as
the difference in intensity between the pixel and the peaks (it could be improved by considering approximating the histogram as
a sum of two Gaussian distributions with different standard deviation and then take the deviation into account to compute the
distance).
For the s-t graph-cut algorithm, we need to define two matrices : the terminal energy and the internal energy. The terminal en-
ergy matrix can easily be deduced from the distances explained previously. The internal energy links each pixel in three dimen-
sions to its 6 nearest neighbors (the value of the link β is the same for all the neighbors and is adjusted to have a good trade-off
between internal and external contributions). We see easily on the slice that the algorithm struggles to identify groups of thin
nerves as distinct nerves as the myelin area is not necessarily closed. We could add constraints (new cliques) to force it to be
closed and define a more subtle terminal energy (distance to local peaks on the histogram instead of global peaks for instance).

DTU 02506 - Segmentation of myelinated nerves

Miklós Kristóf Jásdi - s192748

March 31, 2020

1 Problem statement
Modern technologies, such as X-ray tomog-

raphy have given us the ability to produce vol-
umetric images of human tissue. One poten-
tial use of the aforementioned technology is the
analysis of the axons of diabetes-affected pe-
ripheral neurons. While researchers have the
tools to extract the 3D image of the given
tissue, they are particularly interested in the
radius, trajectory and organization of axons,
that can not be directly inferred from the raw
volumetric scan. In this short report I repre-
sent an image processing approach to extract
the segmentation of these nerves for easier
analysis, based on an example volume shown
in Figure 1.

Figure 1: The example volume at Z=0.

2 Proposed solution
There are multiple approaches to this

problem, such as Deformable Models, or
Markov Random Fields (MRF). I have chosen
the latter technique, as it requires less manual
initialization to yield acceptable results. The
MRF technique involves the representation
of the segmentation task as an optimization
problem, where each pixel and its neighbor-
hood is assigned a certain amount of energy. It
is up to us to define a suitable energy function
for the given domain. In image segmentation,
it comprises the prior energy and likelihood
energy. The former represents the difference
between a given pixel and its neighborhood,

while the latter represents how far the given
pixel’s intensity is from the mean intensities
(µ) that characterize the segmentation classes.
We can obtain the best segmentation by
minimizing this energy function.

There are multiple methods that can ac-
complish this, but for our two-class (nerve and
background) segmentation task, I have used
the so-called max-flow min-cut algorithm. As
an input for this algorithm, the image can be
modelled as a graph, where each of the nodes
represent a pixel. Each node is connected to
all other nodes representing its X, Y and Z
pixel neighbors. The weight of these edges
(β) denote the prior term. Each node is also
linked to a distinct source and terminal node,
via edges that represent the likelihood term.
The algorithm yields an s-t graph cut with
the minimum edge weights, representing a
segmentation with the optimal energy.

Due to my limited access to computing
power, I had to downscale the volume by a
factor of 2 along the X and Y axes, and take a
section between Z=0 and Z=300. After sev-
eral test runs, I have settled at β = 500,
µ(myelin) = 50, µ(background) = 140 to ob-
tain the final segmentation shown in Figure 2.

Figure 2: The completed segmentation.

Volumetric Segmentation of nerves using deformable model

Xiaoran Ma

(Ⅰ)

The deformable model function that I define

has the following format:

deform(D,img,iter_time,tau,alpha,beta)

returns the updated coordinates of points

·The meaning of parameters of the function:

D:

The initialized coordinates of the points.

img:

The target image

iter_time:

The iteration time of deform algorithm

tau:

parameter of model which indicates the step

of updating points.

alpha & beta:

parameter of the smoothing process

(Ⅱ)

Steps for building a 3D visualization of

nerve cells

① Initializing points which is close to the center

of a single cell

② Conducting the iteration of deformable model

by 300 steps on the first frame. (The iteration

time is relatively large to reach a good result

because it’s the first frame, in which the

initialized points are in shape of circles)

③ Reading in the next frame, using the points of

the former frame as the initial points of the

new frame. (The iteration time is set to 10

because there is just slight change between

two neighbor frames)

Adding the result of the returned updated

coordinates of points to a 3D array.

④ Repeating the third step frame by frame until

it reaches the last frame, and all the results are

saved in the 3D array.

⑤ Visualizing the results which are saved in the

3D array by using a library called mayavi.

W��� � - M���������

Joscha Erbis 22/03/2020

Method
In this report, I explore the adaptability of a 3D-MRF-implementation for the provided 3D-nerve-image. The

goal is to achive the best possible segmentation and to illustrate the impact of di�erent parameters of the

algorithm. In order to increase the distinguishability between the nerves and the background, the contrast

of every slice was increased using the imadjust-function in MATLAB. To reduce complexity, only a subset

of slices was used (every fourth slice, 20 slices in total). The 3D-implementation was done by including

neighbourhood across slices (pixel same location in next slice) into the 2-clique-potential in the prior-energy.

Di�erent weights are used for in-slice and slice-to-slice neighbours. This leaves us with four parameters to

tune: The mean intensities of the foreground and the background µ, the in-slice-neighbour-weight �s and

the slice-to-slice weight �z.

Results
Di�erent mean intensities
The first sequence in Fig. 1 shows the first frame with di�erent values for the mean-intensities of the fore-

and background. For visualization, the segmentation is plotted in white on top of the original image. As it can

be seen in the first row, reducing the foreground-intensity to lower values leads to a cleaner segmentation

of the bigger nerves. Segmenting smaller nerves as well leads to high levels of noise and to bigger nerves

growing together. After a good foreground level is found, the segmentation is fine-tuned with the background

intensity in the second row. As it is highlighted with the red ellipsoids, varying this parameter can help in

reducing the number of grown-together segmentations.

Figure 1: First frame with di�erent combinations of the mean intensities. Better segmentation with less

noise from smaller nerves is obtained with smaller values.

Di�erent �z-values
The impact of the slice-to-slice weight �z becomes apparent in the sequence in Fig. 2. The first row

shows the first, middle and last slice of the set segmentat with a low �z-value of 0.05 and is compared to a

segmantation with a higher value of 0.2 in the second row. A high value punishes changes in a pixel�s class

between slices, so the segmentation will react slower to changes in the image. This can be seen in the red

marked areas in the last frame. In the second row, the underlying myelin becomes visible as a dark shadow

1

Figure 2: First frame with di�erent combinations of the mean intensities. Better segmentations with less

noise from smaller nerves are obtained with smaller values.

because the segmented shape does not follow the movement between the slices. No general statements

can be made whether a smaller or higher value is better to prevent the growing together of segmented

nerves since in both rows examples of nerves growing together can be found (see green markers).

Conclusion
With the MRF-segmentation-framework, a relatively well segmentation can be achieved. By extending the

implementation to 3D, the segmentation can be further improved. However, segmenting both the smaller

and bigger nerves without them growing together is impossible. It is believed that even better results can

be obtained by implementing di�erent energies which not only consider the pixel intensities but the local

image structure as well.

2

	s134628_deliverable_s134628
	s143277_AIM_volumetric_segmentation
	s143922_ex7_deliverable
	s153770_OnePaperHandIn_s153770
	s164034_one_pager
	s164205_One-Pager -s164205
	s173949_Advanced_Image_Analysis - One Paper Deliverable - Exercise 7 - Thor Christiansen - s173949
	Introduction
	Data
	Method

	Results
	Parameters

	Further improvements

	s174344_OP_Billed_analyse___one_pager
	s174471_Small_deliverable_MRF
	s174477_Deliverable
	s174480_OP_Week_7___onepager
	s174503_OP_ImageAnalysis1
	s181740_AIA One_pager
	s182291_OnePager
	s182578_OP_Week7_MRF (2)
	s182820_One_Pager_Volumetric_Segmentation
	s183985_Deliverable _1_VB
	s190212_OP_Deformable_Models_FM
	s190388_week_7_onepager
	s192701_MRF_nerves___SENTY
	s192748_assignment7
	Problem statement
	Proposed solution

	s196275_Deformable model_Xiaoran Ma
	s196540_OP_AdvImageAnalysis_Week7_Minireport_JE_s196540

