2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

Synthesis and Stabilization of Complex Behaviors through
Online Trajectory Optimization

Yuval Tassa, Tom Erez and Emanuel Todorov
University of Washington

Abstract— We present an online trajectory optimization
method and software platform applicable to complex humanoid
robots performing challenging tasks such as getting up from
an arbitrary pose on the ground and recovering from large
disturbances using dexterous acrobatic maneuvers. The result-
ing behaviors, illustrated in the attached video, are computed
only 7 x slower than real time, on a standard PC. The video
also shows results on the acrobot problem, planar swimming
and one-legged hopping. These simpler problems can already
be solved in real time, without pre-computing anything.

I. INTRODUCTION

Online trajectory optimization, also known as Model-
Predictive Control (MPC), is among the most powerful
methods for automatic control. It retains the key benefit of
the optimal control framework: the ability to specify high-
level task goals through simple cost functions, and synthesize
all details of the behavior and control law automatically. At
the same time MPC side-steps the main drawback of dynamic
programming — the curse of dimensionality. This drawback
is particularly problematic for humanoid robots, whose state
space is so large that no control scheme (optimal or not) can
explore all of it in advance and prepare suitable responses
for every conceivable situation.

MPC avoids the need for extensive exploration by post-
poning the design of the policy until the last minute, and
thereby finding controls only for the states that are actu-
ally visited. This is done by re-optimizing the movement
trajectory and associated control sequence at each time step
of the control loop, always starting at the current state
estimate. The first control signal is applied to the system, the
next state is measured/estimated, and the procedure is then
repeated. The trajectory optimizer is warm-started with the
solution from the previous time step, which greatly speeds
up the method and often yields convergence after a single
(re)optimization step. The trajectory being optimized extends
to some pre-defined horizon; thus this approach is also
known as receding-horizon control. A short horizon reduces
the amount of computation but results in myopic behaviors.

In domains such as chemical process control where the
dynamics are sufficiently slow and smooth — and thus online
trajectory optimization is already feasible — MPC is the
method of choice [1]. In robotics, however, the typical
timescales of the dynamics are orders of magnitude faster.
Furthermore, many robotic tasks involve contact phenomena
that present a serious challenge to optimization-based ap-
proaches. As a result, MPC is rarely used to control dexterous
robots. This is not because robotics researchers are unaware

978-1-4673-1736-8/12/S31.00 ©2012 IEEE

of it or unwilling to use it, but simply because they lack the
tools to make it work. While recent examples demonstrate
the power of MPC applied to robotics [2], [3], much work
remains to be done before it becomes a standard off-the-shelf
tool. When it does, we believe it will revolutionize the field
and enable control of complex behaviors currently only seen
in movies.

A. Specific contributions

The results presented here are enabled by advances on
multiple fronts. Our new physics simulator, called Mu-
JoCo, was used to speed up the computation of dynamics
derivatives. MuJoCo is a C-based, platform-independent,
multi-threaded simulator tailored to control applications. We
detail several improvements to the iterative LQG method for
trajectory optimization [4] that increase its efficiency and
robustness. We present a simplified model of contact dy-
namics which yields a favorable trade-off between physical
realism and speed of simulation/optimization. We introduce
cost functions that result in better-behaved energy landscapes
and are more amenable to trajectory optimization. Finally,
we describe a MATLAB-based environment where the user
can modify the dynamics model, cost function or algorithm
parameters, while interacting in real time with the controlled
system. We have found that hands-on familiarity with the
various strengths and weaknesses of the MPC machinery is
invaluable for proper control design.

These advances have enabled us to synthesize complex
humanoid behaviors, like getting up from the ground from an
arbitrary initial pose and recovering from large disturbances,
in near real-time. As we show in the attached video, we can
easily solve commonly-studied problems like the “acrobot”,
and also more challenging ones like swimming and one-
legged hopping. These simpler problems can already be
solved in real time, without pre-computing anything and
without specifying heuristic approximations to the value
function. We show both robustness to state perturbations,
a generic feature of the online approach, since it always
optimizes the trajectory starting at the present (possibly
perturbed) state, and robustness to modeling errors — by op-
timizing trajectories with respect to one model and applying
the resulting controls to a different model

II. ONLINE TRAJECTORY OPTIMIZATION

MPC is based on repeatedly solving a finite-horizon op-
timal control problem. This is done here using a trajectory
optimization method (iterative LQG) which is the control

4906

analog of the Gauss-Newton method for nonlinear least-
squares optimization. Below we provide some background
on finite-horizon optimal control and trajectory optimization,
and then focus on the specific improvements we have made
here.

A. Finite-Horizon Optimal Control
The discrete-time dynamics
Xir1 = £(xi,15) (1

describe the evolution of the state x given the control u.
The rotal cost Jy is the sum of running costs ¢ and final cost
l¢, incurred when starting from state xo and applying the

control sequence U = {up,u; ..., ux_1} until the horizon
is reached:
N-1
Jo(x,U) = > b(xi,w) + £p(xn),
i=0

where the x; for ¢+ > 0 are given by (1). The solution of the
optimal control problem is the minimizing control sequence

U*(x) = argmin Jy(x, U).
U

By trajectory optimization, we mean finding U*(x) for a
particular x, rather than for all possible initial states!.

B. Trajectory Optimizer

In the experiments described below we used the iferative
Linear Quadratic Gaussian (1ILQG) trajectory optimizer [4].
iLQG is a variant of the classic Differential Dynamic Pro-
gramming (DDP) algorithm [5], the main difference being
that only first rather than second derivatives of the dynamics
are used. This means that iLQG no longer exhibits the
quadratic convergence properties of DDP, however in the
MPC context the minimum is a moving target and con-
vergence never actually happens, so the benefits of having
faster dynamics evaluation greatly outweigh the decrease
in performance. In our version of iLQG, we implemented
several improvements to the regularization and line-search
aspects of the algorithm.

Let U; = {u;,u4y1 ..., uy_1} and define the cost-fo-go
J; as the partial sum of costs from ¢ to N:

N—-1
Ji(x,Ug) = > 0(xj,15) + L5 (xn).
Jj=t

The Value at time i is the cost-to-go given the minimizing
control sequence

V(x,i) = I%in Ji(x,Uy).

Setting V(x,N) = {;(xn), the Dynamic Programming
Principle reduces the minimization over an entire sequence
of controls to a sequence of minimizations over a single
control, proceeding backwards in time:

V(x,i) = m&n[((x, u) + V(f(x,u),i+1)] (2)

!Other trajectory optimization schemes interpret Eq. (1) as a constraint
and optimize over both states and controls.

Define the argument of the minimum in (2) as a function
of perturbations around the i-th (x,u) pair:

Q(dx,0u) = £(x + ox,u + du,i) — £(x,u,1)
+ V(f(x+ ox,u+du),i+1) — V(f(x,u),i+1) (3)

and expand to second order

L1170 ef Qi1
=~ 3 0x Qx OQxx OQxul |0x|. 4)

u| |Qu Qux Quul |du

The expansion coefficients are’

Qx = Ux +£]1V! (5a)
Qu =ty +fIV! (5b)
Qxx = lux HET VL £ 4+ V- £ (5¢)
Quu = buu IV o + V] - fuu (5d)
Qux = Lux+EI V] Fu + VI - fux. (5e)

The last terms in (Sc, 5d, 5e), which denote contraction with
a tensor, are ignored in iLQG (but not in DDP). Since the
step computed by DDP is nearly identical to the full Newton
step (see e.g. [6]), iterative LQG can be seen to correspond
to the Gauss-Newton Hessian approximation.

Minimizing (4) WRT du we have

du* = argmin Q(6x, 6u) = —QuL(Qu + Quxdx), (6)
ju

giving us an open-loop term k = —Q;1Q, and a feedback
gain term K = —Q,}Qux. Plugging the policy into (4), we
now have a quadratic model of the Value at time :

AV(i) = —5QuQuuQu (7a)
Vx(l> = Qx *QuQ;&qu (7b)
Vxx(i) - Qxx_quQ;l}qu- (7C)

Recursively computing the local quadratic models of V' (4)
and the control modifications {k(¢), K(¢)}, constitutes the
backward pass. Once it is completed, a forward pass com-
putes a new trajectory:

x(1) =x(1) (8a)
(i) = u(i) + k(i) + K(i)(%(i) — x(i)) (8b)
x(i+1) = £(x(7),a(4)) (8c)

C. Improved Regularization

It has been shown [6] that the steps taken by DDP are
comparable to or better than a full Newton step for the
entire control sequence. And as in Newton’s method, care
must be taken when the Hessian is not positive-definite or
when the minimum is not close and the quadratic model
inaccurate. The standard regularization, proposed in [5] and
further explored in [7], is to add a diagonal term to the local
control-cost Hessian

éuu = Quu + ﬂIm, (9)

2Dropping the index i, primes denoting the next time-step: V/ = V (i+1).

4907

where p plays the role of a Levenberg-Marquardt param-
eter. This modification amounts to adding a quadratic cost
around the current control-sequence, making the steps more
conservative. The drawback to this regularization scheme is
that the same control perturbation can have different effects
at different times, depending on the control-transition matrix
f.. We therefore introduce a scheme that penalizes deviations
from the states rather than controls:

Quu = luu + £1 (VL + pln)fy + Vi - fun (10a)
Qux = lux + £T (VL + pI) i + Vi, - fux (10b)
k = —QuaQu (10c)
K = —QuaQux (10d)

This regularization amounts to placing a quadratic state-cost
around the previous sequence. Unlike the standard control-
based regularization, the feedback gains K do not vanish as
1 — oo, but rather force the new trajectory closer to the old
one, significantly improving robustness.

Finally, we make use of the improved Value update
proposed in [4]. Examining (4, 6, 7), we see that several
cancelations of)y, and its inverse have taken place, but
since we are modifying this matrix in (9) or (10a), making
those cancelations induces an error. The improved Value
update is therefore

AV (i) = +2k" Quuk+k' Qu (11a)
V(i) = Qx +K Quuk +K'Qu +Qixk (11b)
Vix (1) = Qux K QuuK+K Qux+Q1 K. (llc)

D. Improved Line Search

The forward pass of iLQG/DDP, given by Egs. (8) is
the key to the algorithm’s fast convergence. This is because
the feedback gains in (8b) generate a new control sequence
that takes into account the new states as they are being
integrated. For example when applying the algorithm to a
linear-quadratic system, even a time-varying one, an exact
solution is obtained after a single iteration. The caveat is
that for a general non-linear system, when the new trajectory
strays too far from the model’s region of validity, the cost
may not decrease, and divergence may occur. The solution is
to introduce a backtracking line-search parameter 0 < a < 1
and integrate using

u(i) = u(i) + ak(i) + K(4)(x(7) — x(7))

For a« = 0 the trajectory would be unchanged, but for
intermediate values the resulting control step is not a simple
scaled version of the full step, due to the presence of
feedback. As advocated in [5], we use the expected total-
cost reduction in the line-search procedure, but using the
improved formula (11a), we can derive a better estimate:

(12)

9 N—1

N-1
. . « . . .
AJ(a)=a > k(i) Qu(i) + - D k(i) Quul(i)k(i).
i=1 i=1
When comparing the actual and expected reductions

z=[J(ur.no1) — J (A1 n)] /AT (),

we accept the iteration only if

0<c <z (13)

E. Trajectory Optimizer Summary
A single iteration of iLQG is composed of 3 steps:

1. Derivatives: Given a nominal (x, u,¢) sequence, com-
pute the derivatives of ¢ and f in the RHS of Eq. (5). This
step is parallelized for all 7 across all available CPU cores.

2. Backward pass: Iterate Egs. (5, 10, 11) for decreasing
i=N-—1,...1. If a non-PD @, is encountered, increase
1 and restart the backward pass. If successful, decrease .

3. Forward pass: Set a = 1. Iterate (12) and (8c) to
compute a new nominal sequence. If the integration diverged
or condition (13) was not met, decrease « and restart the
forward pass.

F. Regularization Schedule

The fast and accurate modification of the regularization
parameter p in step 2 turns out to be quite important
due to three conflicting requirements. If we are near the
minimum we would like u to quickly go to zero to enjoy
fast convergence. If the back-pass fails (a non-PD Quy), we
would like it to increase very rapidly, since the minimum
value of p which prevents divergence is often very large.
Finally, if we are in a regime where some p > 0 is required,
we would like to accurately tweak it to be as close as possible
to the minimum value, but not smaller. Our solution is to use
a quadratic modification schedule. Defining some minimal
value fimin (We use fimin = 107%) and a minimal modification
factor Ay (we use Ag = 2), we adjust p as follows:

increase
A+ maX(Ao, A - Ao)
ft 4= max(fimin, p4 - A)

decrease pu:
A min(AiO, AAO)
if po A > fimin,

e A
o= .
0 if p A < fimin-

G. Policy-Lag and Asynchronous Control

The experiments described below are performed in sim-
ulation using two instantiations of the dynamics. One is
used by the controller for MPC while a different one is
used to simulate the robot. A clear advantage of this is
that we can easily introduce “modeling errors” to quantify
robustness. However, the most important quantity this allows
us to examine is the policy-lag, i.e. the time required by the
controller to complete one MPC iteration, and its effect on
performance. During this time the previous policy is used,
and at some point it stops being a good one. Note that this is
a very problem-dependent quantity, since it is closely related
to the time-variation of the policy — a smooth policy would be
less sensitive to lag than a rapidly changing one. We quantify
the effects of policy lag by running the controller and

4908

simulation asynchronously on different execution threads; if
performance is unacceptable, we artificially slow down the
plant simulation. As it slows, new policies effectively arrive
earlier and performance improves. Once the performance of
the controller is acceptable, the slowdown coefficient answers
the question “How much faster should our computer be so
that this controller would work on a real robot?”

A side benefit of this architecture is that because the sep-
arate execution threads communicate over TCP/IP sockets,
it is trivial to run them on two different machines. In this
scenario a small, cheap CPU running on the robot performs
estimation, while an MPC “policy server” runs on a more
powerful machine.

IIT. DYNAMICS MODELING AND SIMULATION

Online trajectory optimization is only possible when the
dynamics and its derivatives can be evaluated very quickly.
While some work has been done on analytical differentiation
[8], it is limited to smooth dynamics and does not apply to
general physics engines that must deal with collision de-
tection, computation of contact interaction forces, enforcing
nonlinear equality constraints etc. Therefore the derivatives
have to be approximated using finite-differencing. Indeed
this is where almost all the CPU time is spent. How many
dynamics evaluations does MPC require? Suppose we have a
system with 20 dofs (and so the state space is 40 dimensional
because it includes positions and velocities) and the horizon
is 50 time steps of 10ms each. Thus approximating the first
derivative at each point along the trajectory (the quantity
fx above) using centered finite differencing requires 4,000
dynamics evaluations per time step of the control loop. A
sequential real-time simulation of these time-steps would
take 4 seconds, but a typical maximal policy-lag (e.g. for
our humanoid problem) was on the order of 10ms, so the
physics engine must run at least 4,000 faster than real-time!
Existing engines are not designed for such speed, and so we
had to implement a new full-featured physics engine from
scratch (see below). Apart from careful implementation and
choice of contact simulation methods, we use parallel pro-
cessing, which is well-suited for finite differencing because
the dynamics at many states can be evaluated in parallel,
without need for synchronization or exchange of data.

A. The MuJoCo physics engine

The simulations described in this paper were carried out
using MuJoCo [9], which stands for Multi Joint dynamics
with Contact. This engine will soon be made publicly
available and will be free for academic research. MuJoCo is
a platform-independent physics simulator tailored to control
applications. Multi-joint dynamics are represented in joint
coordinates and computed via recursive algorithms. The
computation is O(n®) because the inverse inertia matrix
is needed (to compute contact responses), however due to
tree-induced sparsity, performance is comparable to O(n)
algorithms in typical usage scenarios (e.g. simulating a
humanoid). Geometry is modeled using a small library of
smooth shapes allowing fast and accurate collision detection.

Contact responses are computed by efficient new algorithms
[10]-[12] that appear to be faster and more accurate than
LCP-based methods, and are suitable for numerical opti-
mization. Models are specified using either a high-level C++
API or an XML file. A built-in compiler transforms the
user model into an optimized data structure used for runtime
computation. This data structure contains a scratchpad where
all routines write their output. In this way all intermediate
results are accessible to the user, making it easy to add
functionality. The user can modify all real-valued model
parameters in runtime without recompiling. To facilitate
optimal control applications, MudJoCo provides routines for
parallel computation of the cost of a given trajectory as well
as the gradient and a Gauss-Newton approximation to the
Hessian. The engine can be used either as a library linked
to a user program, or via a MATLAB interface. A utility for
interactive 3D rendering is also provided.

B. Contact Modeling

Frictional contact is perhaps the most difficult aspect of
dynamics modeling. In the physical world contact phenom-
ena are very stiff, i.e. they happen on very short time-scales.
When bodies are modeled as infinitely stiff, the simulation
becomes discontinuous. It is possible to model compliant
bodies, but this adds many degrees-of-freedom to the model.
Because trajectory optimizers require derivatives of the dy-
namics, discontinuous models cannot be used. Differentiable
contact models for rigid bodies fall into two categories. The
first type attempt to model the physics as closely as possible,
e.g. with Hertz-Hunt-Crossley spring-dampers. These models
are indeed accurate, but their stiffness demands extremely
small time-steps, on the order of microseconds, and are
therefore prohibitively expensive. The second type of models
are based on time stepping integrators [13], which attempt to
model the effects of contact and friction impulses over fixed,
relatively large time-steps. Because many contacts can occur
in each time-step (typically on the order of 10ms), these
integrators need to consider all contacts at once, usually by
solving a Linear Complementarity Problem. Some smooth
variants of the time stepping approach such as [10] and [12]
solve an optimization problem rather than an LCP, but the
result is the same — small but cheap time-steps are exchanged
for larger but more expensive ones. Here we introduce a new
contact model, based on the time stepping formulation, that
attempts to find a balance between these two types. It is as
cheap to compute as spring-damper models, yet not as stiff,
producing realistic behavior for time-steps in the range of
1-10ms.

C. Time-Stepping
The state x of a mechanical system is a set of generalized

positions q and velocities v. The dynamics are given by the
equations of motion

Mv=r+u

qQ=YV,

4909

where M = M(q) is the mass matrix, r = r(q, v) the vector
of total external forces (gravity, drag, centripetal, coriolis
etc.) and u is the applied control (e.g. motor torques). For
a timestep h, a semi-implicit Euler integration step (primes
denoting the next time step) is:

Mv' = h(r + u) + Mv
q =q+hv.
The unilateral constraint vector function ¢(q) is a signed
distance between objects — positive for separation, zero for

contact and negative for penetration. We therefore search for
impulses A such that

o(d') = ¢(q) + hIv' >0,

where J = V¢(q). This leads to a mixed complementarity
problem for v/ and A:

MV’ =h(r+u) +Mv+I")N (l4a)

A >0, (14b)

#(q) + hIv' >0, (14c)

A (p(q) + hIV') = 0. (14d)

Conditions (14b) and (14c) are read element-wise, and re-
spectively constrain the contact impulse to be non-adhesive,
and the distance to be non-penetrating. Condition (14d)
asserts that ¢(q’) > 0 (broken contact) and A > 0 (collision
impact), are mutually exclusive. Since the mass matrix is
always invertible, we can solve (14a) for v/, and plug into
(14c). Defining

A=JM1JT (152)

b=¢(a)/h+I(v+hM " (r+u)), (I5b)
we can now write (14) in standard LCP form:

Find A st. 0<XA L AN+Db>0. (16)

D. Diagonal Approximation

Instead of solving (16) simultaneously for all the impulses
A, we first take the diagonal approximation to A, and solve
independently for each component?:

\i = —bi/As.

The)\; are the impulses that would make the ¢; vanish,
regardless of sign. We now scale these by some factor 0 <
1 < 1 and make them positive with a smooth approximation
to max(-,0):

Ai = smax(n;, 3) (17)

The function smax(x, 3) is shown in Figure 1.

In order to incorporate the frictional impulses v, we need
to use the Coulomb friction law ||v|| < pA, where u is the
friction coefficient. Similarly to the procedure for the normal

3Here ¢ indexes over the contacts.

2 -
max(x,0) /o/
—-p=l /.
...... B=5 /.
1 ——B=2 /;
./ o
'/ »"
i)
—_—" - - y
P et RTELL
-2 -1 0 1 2

Fig. 1. The smooth-max function smax(z, 3) = (\/z2 + 82 + z)/2.

impulses, we first find those frictional impulses which would
make the sliding velocity vanish

i1 =—-bi1/Aii1
Uio=—b;o/Ayo

s

Here the subscripts 1,2 indicate the two components tan-
gential to J = V¢(q) at the contact, and the vector b and
matrix A are computed using the tangent Jacobians. We then
smooth-clamp the frictional impulses to lie inside the friction
cone: _
Vi . _
v; = — smin(||7;]|, uA;).

7]

Where the function smin(z, 3) = — smax(—z,) is a
smooth approximation to min(z, 3).

IV. COST FUNCTION DESIGN

As with any control framework, synthesizing a good con-
troller involves iterations of control design. In the Optimal
Control context the designer must specify the cost-function,
the horizon length, and dynamical parameters like the con-
troller’s time-step, contact-model parameters etc. A tangible
benefit of the MPC framework is the fast control-design
loop. Any change to the design parameters is immediately
reflected in the performance of the controller. This is in
contrast to offline optimization-based approaches such as
policy-gradient or global dynamic programming, where data
must be collected and/or expensive computations performed
before the effects of design choices can be appreciated. In
order to maximize these benefits, our graphical user interface
allows us to change the most important parameters on-the-
fly, while the controller is running (Fig. 4).

A. Cost design

Two important parameters which have a direct impact on
performance are the simulation time-step dt and the horizon
length T'. Since speed is of the essence, the goal is to
choose those values which minimize the number of steps
in the trajectory, i.e. the largest possible time-step and the
shortest possible horizon. The size of dt is limited by our
use of Euler integration; beyond some value the simulation
becomes unstable. The minimum length of the horizon T'
is a problem-dependent quantity which must be found by
trial-and-error. Quadratic functions are most likely the first
choice when selecting state-cost and control-cost terms, due
to their familiarity from the LQR framework. We started by

4910

using these, but have subsequently come to prefer different
functions.
For the state-cost, we use the “smooth-abs” function

lz) =Va*+a?—a.

This function, shown in Figure 2, is smooth in an a-
sized neighborhood of the origin, and then becomes linear
further away. The linear regime offers two advantages. The
first is that in the finite-horizon formulation, a change in
x integrated over the trajectory leads to a fixed change
in total cost, and therefore encourages periodic behaviour.
For example if x is the distance from some target, the
same behaviour would emerge at different distances. The
second benefit has to do with the relative weighting of state-
cost terms. Because the linear regime is unit-preserving, the
relative weight of different cost terms maintains the original
relationship of the underlying units. For example if one cost
term encodes reaching a target in the xy plane while another
encodes keeping the torso at certain height z, it is easier to
find the appropriate weights for these terms because their
contribution, in the linear regime, is proportional to distance.

IxI

-—--0=2
""" o=1 ||
=2

Fig. 2. The smooth-abs cost function ¢(z) = vz2 + a2 — a.

For the control-cost term the quadratic works well in
the sense of finding a solution, however that solution is
not always desirable. It is often the case that controls are
inherently limited and ideally one would want a control cost
that grows to infinity at these limits. The problem with such
functions is that the trajectory optimizer will often try to
specify a control that is outside the limits, leading to infinite
or undefined total cost and wasting an MPC iteration. Instead,
we use the function

{(u) = a*(cosh(u/a) — 1).

This function, shown in Figure 3, has a second-derivative of
1 at the origin and then grows exponentially beyond an a-
sized neighborhood. By varying «, we can easily limit the
controls to a particular volume of w-space, without risking
undefined or infinite values.

w2
-—--o=1
------ a=3 (]
o=.1

1 2 3

Fig. 3. The control-limiting cost function £(u) = a?(cosh(u/a) — 1).

B. Interactive GUI

We implemented a MATLAB-based GUI shown in Figure 4.
It enabled us to explore the effects of dynamics and algorithm
parameters interactively. The ability to modify the parameters
in real time and observe their effect on the controller proved
to be invaluable for proper tuning. Note that we have two sets
of dynamics parameters, one used by the optimizer and the
other by the simulator. By setting them to different values,
we can simulate the effects of model errors.

V. RESULTS

The power of our resulting controller can only be fully
appreciated by watching the video, also available here:

www.cs.washington.edu/homes/tassa/media/IROS12.mp4

As seen in the video, we experimented with several control
problems, but due to space constraints we will focus here
only on the most challenging one — a 22-DoF humanoid
model. It is 1.6m tall and weighs 55Kg. The hip, shoulder
and abdomen joints are 2-DoF while elbows, knees and
ankles are 1-DoF, see Fig 4.

[T simulator [controller

problem:

3d humanoid ~ ~ plots [T async
infe
bodies: 12 positions:23 velocities:22
controls:16 j-limits: 38 contacts: 41
mulator parameter
frame time 8 s
slowdown 1
timestep 2 s
control noise 0
wind [0 o] N s]
contact solver [4 2 0.003 1
total mass &0 Kg
air viscosity 0.1 Tmog
joint stiffness 0 N/rad
joint damping 0.5 Nes/ra
gravity 9.8 m/s"2
ontroller parameter
timestep g ms
horizon 400 s
delay 8 ms
prediction 0 ms
control cost 2
state cost [1 0.5 0.01
final cost 20
ssivaien 3] s
fin-diff step size 27-14
fin-diff order 0 (0:4)
iterations 1 e
use feedback [el
contact solver [120.02 1]
total mass 60 Eg
air viscosity 0.1 Pa-s
joint stiffness 0 N/rad
joint damping 0.5 Nes/ra
gravity S.8 m/s"2

Fig. 4. Left: Our MATLAB-based GUI for real-time exploration of problem
and algorithm parameters. Right: the 22-DoF humanoid model at its initial
configuration, with visualization of the 16 joints.

The state-cost is composed of 4 terms. The first term
penalizes the horizontal distance (in the xy-plane) between
the center-of-mass (CoM) and the mean of the feet positions.
The second term penalizes the horizontal distance between
the torso and the CoM. The third penalizes the vertical
distance between the torso and a point 1.3m over the mean of
the feet. All three terms use the smooth-abs norm (Figure 2).

4911

Getting up. In the first frame the controller is off. The blue line shows the planned position of the torso. This sequence is at 3m50s in the video.

Fig. 6. Getting up from a different initial pose. This sequence is shown at 3m19s in the video.

4912

The fourth state-cost term is a quadratic penalty on the
horizontal CoM velocity. We tried several combinations of
state-cost terms, all designed so that cost is small when the
humanoid is standing still. Though we finally picked the one
described above, it was not difficult to find a cost which
would promote getting-up, and other variations worked well.

The dynamics of the controller and the simulator were
different in two important respects. First, the time step of the
simulator was 2ms while the controller’s was 8ms. Second,
we used = 0.7 for the simulator and 7 = 0.4 for the
controller (see Eq. (17), we used 5 = 1 for both models).
Both of these choices had the effect of stiffer contact in
the plant than in the model. Stiff contact and small time
steps in the plant led to realistic contact and friction, while
larger time steps and smoother contact for the led to an easier
optimization problem for the controller.

The planning horizon was 500 milliseconds. Performance
degraded for shorter horizons, but did not qualitatively im-
prove for longer ones.

The most significant fact about our parameter choices was
that they were fairly arbitrary. Performance was qualitatively
similar for wide range of parameters for both the cost
and dynamics. Additionally, the sequences shown in the
video and in Figures 5 and 6, were not exceptional or
carefully selected. They show the typical performance of the
controller.

The maximal policy-lag which admitted a qualitatively
reasonable policy was about 20ms. Since the actual iteration
time was 140ms, the required slowdown was X 7.

VI. FUTURE DIRECTIONS

One way to speed up MPC is to provide an approximation
to the optimal value function, and use it as final cost applied
at the horizon. Specifically, this makes it possible to use
shorter horizons while avoiding myopic behavior. If the exact
optimal value function is available, MPC will return the
optimal controls, but in that case we do not it, because
one-step greedy optimization recovers the optimal controls
given the optimal value function. Better approximations will
generally yield better performance. An example of such
approximation is computer chess, where simple heuristics
for evaluating board configurations are very effective when
combined with sufficiently-deep search. A robotics example
is [14], where ball-bouncing is achieved via MPC, using a
heuristic that specifies what is a good way to hit a ball. Such
approximations can clearly help, however they are orthogonal
to the issue of efficient trajectory optimization in the MPC
context. Therefore in this paper we avoided using informative
final costs; instead we simply set the final cost equal to the
running cost. Thus the results reported here are in some sense
worst-case results, and the performance of our method can
be improved by using domain-specific approximations to the
optimal value function. Nevertheless we found it useful to
focus on this worst case, because it enables us to isolate
the trajectory optimization machinery and refine it, and also
because we prefer methods that are fully automated and do
not rely on a fortuitous guess of the optimal value function.

VII. CONCLUSION

We presented an MPC method applicable to humanoid
robots performing complex tasks such as getting up from
the ground and rejecting large perturbations. We were able
to achieve near-real-time performance on a standard desktop
machine, without using any approximations to the optimal
value function — which can presumably speed up our method
even further. This was possible due to multiple improvements
throughout the MPC pipeline, including the trajectory op-
timization algorithm, the physics engine, and cost function
design. With some additional refinements, we believe that our
MPC methodology will be applicable to complex humanoid
robots. This of course requires a sufficiently accurate dynam-
ics model, which is beyond the scope of the present paper.
We show however that our approach is reasonably robust
to model errors and state perturbations. How well it will
work on physical robots performing different tasks remains
to be seen, and the answer may depend on the hardware and
task. Nevertheless, having the tools to apply MPC to complex
robots is likely to enable many robotic control tasks that are
beyond the reach of existing methods for real-time feedback
control.

REFERENCES

[1] M. Diehl, H. Ferreau, and N. Haverbeke, “Efficient numerical methods
for nonlinear mpc and moving horizon estimation,” Nonlinear Model
Predictive Control, p. 391, 2009.

[2] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of
reinforcement learning to aerobatic helicopter flight,” in Advances in
Neural Information Processing Systems 19: Proceedings of the 2006
Conference, 2007, p. 1.

[3] T. Erez, Y. Tassa, and E. Todorov, “Infinite horizon model predictive
control for nonlinear periodic tasks,” Manuscript under review, 2011.

[4] E. Todorov and W. Li, “A generalized iterative LQG method for
locally-optimal feedback control of constrained nonlinear stochastic
systems,” in Proceedings of the 2005, American Control Conference,
2005., Portland, OR, USA, 2005, pp. 300-306.

[5] D. H. Jacobson and D. Q. Mayne, Differential Dynamic Programming.
Elsevier, 1970.

[6] L. Z. Liao and C. A. Shoemaker, “Advantages of differential dynamic
programming over newton’s method for discrete-time optimal control
problems,” Cornell University, Ithaca, NY, 1992.

, “Convergence in unconstrained discrete-time differential dy-

namic programming,” IEEE Transactions on Automatic Control,
vol. 36, no. 6, p. 692, 1991

[8] G. Sohl and J. Bobrow, “A recursive multibody dynamics and sensi-
tivity algorithm for branched kinematic chains,” Journal of Dynamic
Systems, Measurement, and Control, vol. 123, p. 391, 2001.

[9] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: a physics engine for
model-based control,” in Proceedings of the 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2012.

[10] Y. Tassa and E. Todorov, “Stochastic complementarity for local control
of discontinuous dynamics,” in Proceedings of Robotics: Science and
Systems (RSS), 2010.

[11] E. Todorov, “Implicit nonlinear complementarity: a new approach
to contact dynamics,” in International Conference on Robotics and
Automation, 2010.

, “A convex, smooth and invertible contact model for trajectory
optimization,” in 2011 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, May 2011, pp. 1071-1076.

[13] D. E. Stewart, “Rigid-body dynamics with friction and impact,” SIAM
Review, vol. 42, no. 1, pp. 3-39, Jan. 2000

[14] P. Kulchenko and E. Todorov, “First-exit model predictive control
of fast discontinuous dynamics: Application to ball bouncing,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, 2011, p. 21442151.

[7]

[12]

4913

