
02465: Introduction to reinforcement learning and control

Bellmans equations and exact planning

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)

Lecture Schedule

Dynamical programming

1 The finite-horizon decision problem
7 February

2 Dynamical Programming
14 February

3 DP reformulations and introduction to
Control
21 February

Control

4 Discretization and PID control
28 February

5 Direct methods and control by
optimization
7 March

6 Linear-quadratic problems in control
14 March

7 Linearization and iterative LQR
21 March

Reinforcement learning

8 Exploration and Bandits
28 March

9 Bellmans equations and exact
planning
4 April

10 Monte-carlo methods and TD learning
11 April

11 Model-Free Control with tabular and
linear methods
25 April

12 Eligibility traces
2 May

13 Deep-Q learning
9 May

Syllabus: https://02465material.pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn

2 DTU Compute Lecture 9 4 April, 2025

 https://02465material.pages.compute.dtu.dk/02465public

Reading material:
• [SB18, Chapter 3; 4]

Learning Objectives
• Markov decision process
• Value/action value function and other tools
• Dynamical programming for policy evaluation and control

3 DTU Compute Lecture 9 4 April, 2025

Housekeeping
Housekeeping

• Feedback on project 2 in about 2 weeks
• Project 3 is online
• Due to a combination of illness+baby I might have opened but not answered

some emails. Please contact me again if I do not respond timely.

4 DTU Compute Lecture 9 4 April, 2025

The reinforcement-learning problem
Today: Dynamical programming...again!

Environment
The robot

Actions

Le
ar

ni
ng

State

Dynam
ics

Internal state

The Interpreter

Observation

Cost

• Last time: Exploration and exploitation (+No effects)
• This time: Value functions and recursions (+Known dynamics)
• Next time: The full reinforcement-learning problem

5 DTU Compute Lecture 9 4 April, 2025

The reinforcement-learning problem
Markov decision process

• Agent/system interacts at times t = 0, 1, 2, . . .

• Agent observes state St ∈ S
• Agent takes action At ∈ A(St)
• Agent obtains a reward Rt+1 ∈ R; time increments to t + 1

• Dynamics described using conditional probabilities

p (s′, r|s, a) = Pr {St+1 = s′, Rt+1 = r | St = s, At = a}
= Pr {w | s.t. s′ = ft(s, a, w) and r = −gt(s, a, w)}

• If the environments stops we call it episodic

s unf_gridworld.py

6 DTU Compute Lecture 9 4 April, 2025

The reinforcement-learning problem
Markov decision process (MDP)

Assumptions in a Markov Decision Process
• S,A(s) are finite
• Markov property

Pr {St+1, Rt+1 | St, At} = Pr {St+1, Rt+1 | S0, A0, . . . , St, At}

• The transition probabilities are stationary (time-independent)

p(st+1, rt+1|st, at) = p(st′+1, rt′+1|st′ , at′)

7 DTU Compute Lecture 9 4 April, 2025

The reinforcement-learning problem
Markov decision process (MDP)

Markov Decision Process - practically speaking
• A function that says which actions are available in a given state A(s)
• The transition probability p(s′, r|s, a)
• The initial state s0

• A function which determines
• if a state is non-terminal, st ∈ S
• or terminal, sT /∈ S

• S,A(s) are finite

An episode is S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT , ST

8 DTU Compute Lecture 9 4 April, 2025

The reinforcement-learning problem
Policy

Policy
A policy is a distribution over actions

π(a|s) = Pr {At = a | St = s}

• Policy is time-independent
• Now a Distribution rather than function a = π(s) because we want to explore

9 DTU Compute Lecture 9 4 April, 2025

The reinforcement-learning problem
Return and discount

Return
For 0 ≤ γ ≤ 1 and any t we define the accumulated γ-discounted return

Gt
.= Rt+1 + γRt+2 + γ2Rt+3 + · · · =

∞∑
k=0

γkRt+k+1

• Equivalent to:

lim
N→∞

[
γN gN (xN) +

N∑
k=0

γkgk(sk, ak, wk)
]

• Fancy rationale for γ < 1:
• Don’t worry about the far and uncertain future

• Actual rationale for γ < 1:
• Avoids infinities when γ = 1; simpler convergence theory

• tl;dr: Use γ > 0.9 unless you have good reasons not to.

10 DTU Compute Lecture 9 4 April, 2025

Value and action-value function
The state-value function vπ(s) is the expected return starting in s and assuming
actions are selected using π:

vπ(s) = Eπ [Gt|St = s] , At ∼ π(·|St)

The action-value function qπ(s, a) is the expected return starting in s, taking
action a, and then follow π:

qπ(s, a) = Eπ [Gt|St = s, At = a]

Gt
.= Rt+1 + γRt+2 + γ2Rt+3 + · · ·

Note that Jπ(s) = −vπ(s)

11 DTU Compute Lecture 9 4 April, 2025

The reinforcement-learning problem
Where we want to end up

Bellman equation Learning algorithm

Bellman expectation equation for vπ

vπ(s) = Eπ [R + γvπ (S′) |s]

Iterative policy evaluation to learn vπ

V (s)← Eπ [R + γV (S′) |s]

Bellman expectation equation for qπ

qπ(s, a) = Eπ [R + γqπ (S′, A′) |s, a]

Iterative policy evaluation to learn qπ

Q(s, a)← Eπ [R + γQ (S′, A′) |s, a]

Policy iteration: Use policy evaluation to estimate vπ or qπ

Improve by acting greedily: π′(s)← arg maxa qπ(s, a)

Bellman optimality equation for v∗

v∗(s) = maxa E [R + γv∗(S′)|s, a]

Value iteration

V (s)← maxa E [R + γV (S′)|s, a]

Bellman optimality equation for q∗

q∗(s, a)=E [R+γ maxa′ q∗(S′, a′)|s, a]

Q-value iteration

Q(s, a)←E [R+γ maxa′ Q(S′, a′)|s, a]

12 DTU Compute Lecture 9 4 April, 2025

The reinforcement-learning problem
Fundamental properties of value function

Fundamental properties of value/action-value functions
• Fundamental recursion

Gt = Rt+1 + γGt+1

• Action-value to value function

vπ(s) = Ea∼π(s) [qπ(s, a)]

• value-function to action-value

qπ(s, a) = E [Rt+1 + γvπ (St+1) |St = s, At = a] (1)

13 DTU Compute Lecture 9 4 April, 2025

sutton2018_84

sutton2018_84

The reinforcement-learning problem
Two first two Bellman equations

Bellman equations
• Recursive decomposition of value function. V : S 7→ R initialized randomly

vπ(s)V (s) =←E [Rt+1 + γvπV (St+1) |St = s]

• Recursive decomposition of action-value function (Q initialized randomly)

qπ(s, a) = Q(s, a)← E [Rt+1 + γqπ(St+1, At+1)Q(St+1, At+1)|St = s, At = a]

s unf_policy_evalution_stepwise_gridworld.py14 DTU Compute Lecture 9 4 April, 2025

bellmanfirsttwo

bellmanfirsttwo

The reinforcement-learning problem
Task 1: Evaluate a policy

Iterative policy evaluation
• Given a policy π, initialize V randomly. For all s perform updates:

V (s)←
∑

a

π(a|s)
∑
s′,r

p (s′, r|s, a) [r + γV (s′)]

until terminal condition is met. V (s) will converge to vπ(s)
• Initialize Q randomly. For all s, a perform updates:

Q(s, a)←
∑
s′,r

p (s′, r|s, a)
[

r + γ
∑
a′

π(a′|s′)Q (s′, a′)
]

until terminal condition is met. Q will converge to qπ

s unf_policy_improvement_gridworld.py

15 DTU Compute Lecture 9 4 April, 2025

The reinforcement-learning problem
Quiz: Policy evaluation

The environment has a living reward
of R = 1 and if it moves into the wall
it stays in the current state.

The value function vπ for the policy
π(a|s) = 1

4 is is estimated using
Policy Evaluation with γ = 0.9.
What is the value function in the
state indicated by Pacman in the next
step?
a. 3.41
b. 3.39
c. 3.31
d. 3.28
e. Don’t know.

16 DTU Compute Lecture 9 4 April, 2025

Optimal value function
The optimal state-value function v∗ is the maximum value function over all policies

v∗(s) = max
π

vπ(s)

The optimal action-value function q∗ is the maximum action-value function over all
policies

q∗(s, a) = max
π

qπ(s, a)

We define a partial ordering over policies as

π ≥ π′ if for all s: vπ(s) ≥ vπ′(s)

17 DTU Compute Lecture 9 4 April, 2025

Optimality
Value/action value to policy

• Given any function q : S ×A 7→ R we can define the greedy policy π′ wrt. q

π′(s) = arg max
a

q(s, a)

• Given any function v : S 7→ R we can define greedy policy π′ wrt. v

π′(s) = arg max
a

Es′,r [r + γv(s′)|s, a]

18 DTU Compute Lecture 9 4 April, 2025

Optimality
Policy improvement theorem

Policy improvement theorem
Let π and π′ be any pair of deterministic policies such that for all s ∈ S:

qπ

(
s, π′(s)

)
≥ vπ(s) (2)

Then π′ ≥ π meaning for all s ∈ S

vπ′(s) ≥ vπ(s)

Inequality is strict if any inequality in eq. (2) is strict.

19 DTU Compute Lecture 9 4 April, 2025

Optimality
Idea

Given vπ, define new policy π′ to be greedy with respect to vπ. Then:

vπ(s) = Ea∼π(s) [qπ(s, a)]
≤ max

a
qπ(s, a), True by simple properties of expectations

= qπ(s, a∗), a∗ = arg max
a

qπ(s, a)

= qπ(s, π′(s)), π′ greedy policy wrt. vπ

Observations:
• Being greedy wrt. π means π′ ≥ π by the policy-improvement theorem

20 DTU Compute Lecture 9 4 April, 2025

Optimality
Quiz: Optimal action-value function (Exam spring 2023)

Let v∗, q∗ be the optimal value and action-value functions of an MDP, let π
be any policy and finally let vπ and qπ be the value/action-value function
associated with π. Which one of the following statements are true in
general?
a. maxs q∗(s, a) = v∗(a)
b. There is a policy π, a state s and an action a so that q∗(s, a) < qπ(s, a)
c. For all π and a it is true that q∗(s, a) > qπ(s, a)
d. There is a policy π and state s so that maxa q∗(s, a) = vπ(s)
e. Don’t know.

21 DTU Compute Lecture 9 4 April, 2025

Optimality
Policy iteration

• Given initial policy π

• Compute vπ using policy evaluation
• Let π′ be greedy policy vrt. vπ

• Repeat until vπ = vπ′

s lecture_09_policy_improvement.py

22 DTU Compute Lecture 9 4 April, 2025

Optimality
Policy iteration algorithm

• In each step, the PI theorem guarantees that π ≤ π′

• There is a limited number of policies so improvement cannot continue
• If π = π′, then the policy is in fact optimal

• (it satisfy the Bellman optimality equation as we will see in a moment)

23 DTU Compute Lecture 9 4 April, 2025

Optimality
Bellmans optimality equations
Suppose π∗ is the policy corresponding to the optimal value function v∗(s)

v∗(s) = max
a

qπ∗(s, a)

= max
a

E
[
R + vπ∗(S′)|s, a

]

Bellmans optimality equations
• Recursion of optimal value function v∗: Given any V

v∗(s) = V (s)←max
a

E [Rt+1 + γv∗(St+1)V (St+1)|St = s, At = a] (3)

• Recursion of optimal action-value function q∗:

q∗(s, a) = E
[
Rt+1 + γ max

a′
q∗(St+1, a′)|St = s, At = a

]
(4)

• Theorem: v∗ (or q∗) satisfies the above recursions if (and only if) they
corresponds to the optimal value function

24 DTU Compute Lecture 9 4 April, 2025

Optimality
Value Iteration
Bellmans optimality equations Value Iteration
• Recursion of optimal value function v∗: Given any V

v∗(s) = V (s)←max
a

E [Rt+1 + γv∗(St+1)V (St+1)|St = s, At = a] (5)

• Recursion of optimal action-value function q∗: Given any Q

q∗(s, a) = Q(s, a)←E
[
Rt+1 + γ max

a′
q∗(St+1, A′

t+1)Q(St+1, At+1)|St = s, At = a
]

(6)

• Theorem: VI converge to optimal v∗ (or q∗)

s lecture_09_vi_v.py25 DTU Compute Lecture 9 4 April, 2025

Dimitri P Bertsekas and Huizhen Yu.
Distributed asynchronous policy iteration in dynamic programming.
In 2010 48th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pages 1368–1375. IEEE, 2010.

Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.
(Freely available online).

26 DTU Compute Lecture 9 4 April, 2025

Appendix
Note from lecture 3: Stationary problem = stationary policy

Jk(xk) = min
uk

E [Jk+1 (fk(xk, uk, wk)) + gk (xk, uk, wk)]

Assume the problem is independent of k:

Jk(x) = min
u

E [Jk+1 (f(x, u, w)) + g (x, u, w)]

• It will be true that J0 ≈ J1 ≈ J2 etc.
• Policies will be the same initially π0 ≈ π1 etc.

In fact just iterate to convergence:

J(x)← min
u

E [J (f(x, u, w)) + g (x, u, w)]

This is in fact value iteration

27 DTU Compute Lecture 9 4 April, 2025

Appendix
Note from lecture 3: Action-value formulation

Jk(xk) = min
uk

E[Jk+1(fk(xk, uk, wk))+gk (xk, uk, wk)]

We want to remove the green part

Jk(xk) = min
uk

Q(xk, uk)

Q(xk, uk) = E[Jk+1(fk(xk, uk, wk))︸ ︷︷ ︸
=minuk+1 Q(xk+1,uk+1)

+gk(xk, uk, wk)]

Substituting, the entire equation becomes red:

Q(xk, uk) = E
[
min
uk+1

Q (fk(xk, uk, wk), uk+1) + gk (xk, uk, wk)
]

• Simply VI for Q-functions!

28 DTU Compute Lecture 9 4 April, 2025

Appendix
Asynchronous updates

• In synchronous updates, we do
• For each s ∈ S compute:

v′
π(s)← Eπ[R + γvπ(S′)|s]

• When done, set vπ ← v′
π

• In asynchronous updates, we re-use the updated values within one sweep
• For each s ∈ S compute:

vπ(s)← Eπ[R + γvπ(S′)|s]

Both converge: You implement the asynchronous version, but most
analysis is done in the synchronous version. It is also possible to structure
sweeps for efficiency (see [BY10])

29 DTU Compute Lecture 9 4 April, 2025

Appendix
Convergence results
We will focus on the value function as the action-value results are very
similar. First we define the operators T and Tπ:

(Tπv)(s) = Eπ
[
R + γv(S′)|s

]
(7)

(T v)(s) = max
a

E
[
R + γv(S′)|s, a

]
(8)

If the state space is discrete S = {s1, . . . , sN} we can define the vector

vi = v(si)

then the operators act on these vectors T : RN → RN

Fixed-point theorem
Let T : A 7→ A be a function and A ⊂ Rn a compact subset of Rn. Then if for all
x, z ∈ A

∥T (x)− T (z)∥ ≤ γ∥x− z∥, 0 ≤ γ < 1

then repeatedly applying T to any x will converge to a single, unique fixed point
x∗ = T (x∗)

30 DTU Compute Lecture 9 4 April, 2025

Other subjects
Asynchronous updates

• In synchronous updates, we iterate for all s ∈ S:

v′
π(s)← Eπ[R + γvπ(S′)|s]

then vπ ← v′
π

• In synchronous updates, we re-use the updated values within one sweep

vπ(s)← Eπ[R + γvπ(S′)|s]

Both converge. It is also possible to structure sweeps for efficiency (see
[BY10])

31 DTU Compute Lecture 9 4 April, 2025

Other subjects
Existence of solutions to Bellmans equations

• Both the operators T and Tπ are contractions in the max-norm
∥x∥∞ = maxi |xi|. Example:

∥Tπv − Tπw∥∞ = max
i
|Eπ [R + γv(S′)|si]− Eπ [R + γw(S′)|si]| (9)

= max
i

∣∣∣∣∣∑
s′

p(s′|si, a) (γv(s′)− γw(s′))

∣∣∣∣∣ (10)

≤ γ max
i

∑
s′

p(s′|si, a) |v(s′)− w(s′)| (11)

≤ γ max
i

∑
s′

p(s′|si, a) ∥v −w∥∞ = γ ∥v −w∥∞ (12)

• Consequence: Repeatedly applying Bellmans operators will lead to a single, fixed
point policy T v∗ = v∗ and Tπvπ = vπ

• Therefore, PE/PI converge to vπ. VI also converges, but does it converge to the
maximum?

32 DTU Compute Lecture 9 4 April, 2025

Other subjects
VI and maximum

• We know: Value iteration converge to a unique fixed point

v∗ = (T T · · · T)(v)

• Maximum value function is defined as

ṽ(s) = max
π

vπ(s)

• It could be the case that ṽ(s) = vπ(s), ṽ(s′) = vπ′(s′), and neither was equal to
v∗(s), v∗(s′)

33 DTU Compute Lecture 9 4 April, 2025

Other subjects
Value iteration solution corresponds to a policy

Show that v∗(s) ≤ ṽ(s)
• Value iteration gives us v∗ as a fixed point
• From v∗ we can construct the action-values

q∗(s, a) = E[R + γv∗(S′)|s, a]

• From these we can define the greedy policy π∗

π∗(s) = arg max
a

q∗(s, a)

• By definition now v∗(s) = (Tv∗)(s) = (Tπ∗v)(s)
• Therefore v∗ is the value function of the policy π∗, and so v∗(s) ≤ ṽ(s) for all s

34 DTU Compute Lecture 9 4 April, 2025

Other subjects
Value iteration is optimal

Show that v∗(s) ≥ ṽ(s)
• Assume v∗(s) < ṽπ(s) for a specific s, π

• Let π1 be the greedy policy according to ṽπ. We know that

ṽπ ≤ vπ1

by the policy improvement theorem
• Therefore, v∗(s) < ṽπ(s) ≤ vπ1(s)
• Repeat again to obtain π2 and notice we are doing policy iteration
• Since we are doing policy iteration eventually πk → π∞

• It must be the case vπ∞ is a fixed-point of T , otherwise by the policy
improvement theorem we could select a better (greedy) policy
• Since the fixed point is unique, vπ∞ = v∗, which is a contradiction

35 DTU Compute Lecture 9 4 April, 2025

	Housekeeping
	Markov Decision Processes
	The reinforcement-learning problem
	Optimality
	Appendix
	Other subjects

