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Lecture Schedule

Dynamical programming
@ The finite-horizon decision problem
7 February
@® Dynamical Programming
14 February
© DP reformulations and introduction to
Control
21 February
Control
@ Discretization and PID control
28 February
@ Direct methods and control by
optimization
7 March
@ Linear-quadratic problems in control
14 March

@ Linearization and iterative LQR
21 March
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Reinforcement learning

@ Exploration and Bandits
28 March

© Bellmans equations and exact
planning
4 April

@ Monte-carlo methods and TD learning
11 April

@® Model-Free Control with tabular and
linear methods
25 April

@ Eligibility traces
2 May

® Deep-Q learning

9 May

Syllabus: https://02465material . pages. compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn
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Reading material:
® [SB18, Chapter 3; 4]
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Learning Objectives

® Markov decision process
® Value/action value function and other tools

® Dynamical programming for policy evaluation and control
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Housekeeping

M

® Feedback on project 2 in about 2 weeks
® Project 3 is online

® Due to a combination of illness+baby | might have opened but not answered
some emails. Please contact me again if | do not respond timely.
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Today: Dynamical programming...again! =
Observation
Cost
o3
o ) 2
£ The Interpreter Environment ",
< 7z
& The robot
o
~ \
N
7 | Internal statew

N

\ Actions / State

® | ast time: Exploration and exploitation (+No effects)
® This time: Value functions and recursions (4+Known dynamics)

® Next time: The full reinforcement-learning problem
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Markov decision process

NaYs

S)—x;

® Agent/system interacts at times ¢t =0,1,2,...

M

® Agent observes state S; € S
® Agent takes action A; € A(S;)
® Agent obtains a reward R;;1 € R; time increments to ¢t + 1

® Dynamics described using conditional probabilities
p(s',r|s,a) =Pr{S;;1 =8, Riy1=7| S =s,A =a}
=Pr{w]|st s = fi(s,a,w) and r = —gi(s,a,w)}
® |f the environments stops we call it episodic

+ ) unf_gridworld.py
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Markov decision process (MDP)

)
o |
=

M

Assumptions in a Markov Decision Process

® S, A(s) are finite
® Markov property

Pr{Sii1, Rit1 | St, Ar} = Pr{Sit1, Rey1 | So, Ao, - -

® The transition probabilities are stationary (time-independent)

P(St41, Teg1|se, ar) = p(spr1, 4180, ap)

. StaAt}
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Markov decision process (MDP)

)
o |
=

M

Markov Decision Process - practically speaking

® A function that says which actions are available in a given state A(s)
® The transition probability p(s’, r|s, a)

® The initial state s

® A function which determines

® if a state is non-terminal, s, € S
® or terminal, sy ¢ S

e S, A(s) are finite

An episode is Sy, Ag, R1,51, A1, Ra, ..., 571, Ar—1, Ry, St
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Policy

M

A policy is a distribution over actions

w(als) =Pr{A; =a| S; = s}

® Policy is time-independent

® Now a Distribution rather than function a = 7(s) because we want to explore
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Return and discount

M

For 0 <~ <1 and any t we define the accumulated -discounted return

o0
Gy = Riy1 +yRip2 + 7V’ Rigs + -+ = Z Y Ris ks
k=0
® Equivalent to:
N
Jim Mgy (en) + ;Wkgk(% e, W)

® Fancy rationale for v < 1:
® Don't worry about the far and uncertain future
® Actual rationale for v < 1:
® Avoids infinities when v = 1; simpler convergence theory

® tl;dr: Use v > 0.9 unless you have good reasons not to.
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Value and action-value function

| M

The state-value function v (s) is the expected return starting in s and assuming
actions are selected using 7:

Uﬂ—(S) = ]Eﬂ— [Gt|St = S] y At ~ 7T(|St)

The action-value function ¢, (s, a) is the expected return starting in s, taking
action a, and then follow :

G (s,a) = E; [G¢|S: = s, Ay = a]

Gy = Rip1 +YRipo + YRy + -
Note that J;(s) = —v(s)
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Where we want to end up =
Bellman equation Learning algorithm
Bellman expectation equation for v Iterative policy evaluation to learn v,
vr(s) = Ex [R + 70r (") |s] V(s) - Ex [R4+7V (S") s
Bellman expectation equation for ¢ Iterative policy evaluation to learn g
gr(s,a) = Ex [R+ vgr (S, A") |s, a) Q(s,a) < Ex [R+~vQ (S, A") s, qa]

Policy iteration: Use policy evaluation to estimate v, or ¢r

Improve by acting greedily: 7/(s) +— argmax, gr (s, a)

Bellman optimality equation for v Value iteration
v« (s) = maxq E [R + v« (S’)|s, a] V(s) < max, E[R+~V(5)]s, qa]
Bellman optimality equation for g« Q-value iteration

qx (57 a’) =E [RJ’_A/ maXgs s (Slv a,)|57 a’} Q(Sv a) «~E [R+'Ymaxa’ Q(S,a al)‘sr a]
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Fundamental properties of value function

Fundamental properties of value/action-value functions

® Fundamental recursion

M

Gt = Rip1 +7Geq

® Action-value to value function

U (8) = Eqmr(s) 19 (5, 0)]

S
taken with Ur (S)
probability 7(als)
o Ir(s,0)

[ ] [ ]
ay a3 as
® value-function to action-value
4r(8,a) = E[Rit1 + yvr (Si41) [Se = 5, Ay = d (1)
58 4a(s,a)
expected !
rewards  rq ro| ™
O ou)
s sh sS4
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sutton2018_84

V() = E[Riy1 +7Giqa|s] = E
Two first two Bellman equations

Rip1 +7E[Grqalsis] 5‘:| []TU

g o
=0n(Se1) -—
>

Bellman equations

® Recursive decomposition of value function. V' : S — R initialized randomly
’U,T(S)V(S) =<+E [Rt+1 + ’}/Uﬂ-v (St+1) |St = S]
® Recursive decomposition of action-value function (Q initialized randomly)

qn(s,a) = Q(s,a) < E[Re1 4+ 7Gx (St41, A1) Q(St41, Ae1)|S: = 5, Ay = a]

m o pabiey_evalution_stepwise_gridworld.py Lecture 9 4 April, 2025
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Task 1: Evaluate a policy

Iterative policy evaluation

® Given a policy m, initialize V' randomly. For all s perform updates:

V(s) Z m(als) Zp (s',7[s,a) [r +~V (s")]

until terminal condition is met. V(s) will converge to v, (s)

® |nitialize () randomly. For all s,a perform updates:

Q(s,a) Zp (s',r|s,a) |7+ WZ m(ad'|s)Q (s',a’)

until terminal condition is met. @ will converge to g,

+ ) unf_policy_improvement_gridworld.py
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Quiz: Policy evaluation

M

The value function v, for the policy
m(als) = 1 is is estimated using
Policy Evaluation with v = 0.9.

What is the value function in the
state indicated by Pacman in the next
step?

a. 3.41

b. 3.39

c. 331

d. 3.28

e. Don't know.

Policy evaluation after 3 steps

The environment has a living reward
of R =1 and if it moves into the wall
it stays in the current state.
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Optimal value function

| M

The optimal state-value function v, is the maximum value function over all policies
v4(8) = max vy (s)
™
The optimal action-value function ¢, is the maximum action-value function over all

policies
g«(s,a) = Max gr (s,a)

We define a partial ordering over policies as

7> 7 if for all s v (s) > v (s)

17 DTU Compute Lecture 9 4 April, 2025
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Value/action value to policy

M

e Given any function ¢ : S x A — R we can define the greedy policy 7’ wrt. ¢

7'(s) = arg max ¢(s, a)

® Given any function v : S — R we can define greedy policy 7’ wrt. v

7'(s) = argmax Ey . [r + yv(s')|s, a]
a

18 DTU Compute Lecture 9 4 April, 2025
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Policy improvement theorem

Policy improvement theorem

Let w and 7’ be any pair of deterministic policies such that for all s € S:
4x (5,7 (5)) = vr(s) (2)
Then ' > m meaning for all s € S
Unr (8) 2 vr(s)

Inequality is strict if any inequality in eq. (2) is strict.
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Idea
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Given v,, define new policy 7’ to be greedy with respect to v,. Then:

Uﬂ(s) = Ear\/ﬂ(s) [QTF(‘S? a)]

< max¢r(s,a), True by simple properties of expectations
a
= ¢r(s,a"), a* =argmaxq:(s,a)
a

= gr(s,7'(s)), 7 greedy policy wrt. v

Observations:

® Being greedy wrt. m means ' > 7 by the policy-improvement theorem

20 DTU Compute Lecture 9 4 April, 2025
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Quiz: Optimal action-value function (Exam spring 2023)

Let v, g« be the optimal value and action-value functions of an MDP, let 7
be any policy and finally let v, and g, be the value/action-value function
associated with 7. Which one of the following statements are true in
general?

a. max;s ¢« (s, a) = vi(a)

b. There is a policy 7, a state s and an action a so that ¢.(s,a) < ¢z(s,a)
c. For all m and a it is true that ¢.(s,a) > ¢x(s,a)

d. There is a policy 7 and state s so that max, g.(s,a) = v, (s)

e. Don't know.

21 DTU Compute Lecture 9 4 April, 2025



Policy iteration

starting v
V T n*
=
® Given initial policy 7
® Compute v, using policy evaluation
® Let 7’ be greedy policy vrt. v,
® Repeat until v; = v,/
lecture_09_policy_improvement.py
22 DTU Compute Lecture 9
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Policy iteration algorithm
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Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7.

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € 8

V(s) < > g, p(s,7]s,m(s)) [T + q'V(s’)]
A« max(A, [v — V(s)])

until A < 6

2. Policy Evaluation 3. Policy Improvement
Loop: /_\ policy-stable < true
A+0
Loop for each s € 8:
v+ V(s)

For each s € 8:
old-action < (s)
n(s) < argmax, >, p(s',7|s,a) [r + vV (s)]
If old-action # ©(s), then policy-stable + false
If policy-stable, then stop and
return V ~ v, and 7 &~ 7.; else go to 2

® |n each step, the Pl theorem guarantees that 7 < 7’/

® There is a limited number of policies so improvement cannot continue

e |f 1 = 7/, then the policy is in fact optimal

® (it satisfy the Bellman optimality equation as we will see in a moment)
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Bellmans optimality equations

M

Suppose 7, is the policy corresponding to the optimal value function v.(s)
.(s) = max g (5,0)

— !
= max (R + vz, (S)]s,a]

Bellmans optimality equations

® Recursion of optimal value function v,:

v, (8)

Given any V

= V(G) %m{?XE [Rt+1 + ’}/U*(St+1)V(St+1)‘St =s,A; = a]

(3)

® Recursion of optimal action-value function g,:
0.(5,0) = E [Ruy1 +ymax q. (e, @)|Si = 5, 4 = a

® Theorem: v, (or ¢.) satisfies the above recursions if (and only if) they
corresponds to the optimal value function

y
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Value lteration
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Bellmans optimality equations Value Iteration

® Recursion of optimal value function v,: Given any V'

ve(s) =V (s) (*IH(?XE [Riy1 + Y0 (St41)V (Se41)|Se = s, Ar =a]  (5)

® Recursion of optimal action-value function g.: Given any @

q«(s,a) = Q(s,a) < E | Rypq + ’Ymaé}X Q*(St+1,A;+1)Q(St+17At+1)|St =5, A =

® Theorem: VI converge to optimal v, (or ¢.)

(6)

S

Value Iteration, for estimating 7 ~ .,

Initialize V (s), for all s € 81, arbitrarily except that V (terminal) = 0
Loop:
| A«0
| Loop for each s € 8:
| v+ V(s)
| V(s) < maxg Y-, p(s', 75, a) [r+V(s")]
| A+ max(A, [v — V(s)])
until A < 6
Output a deterministic policy, 7 &~ ., such that
m(s) = argmax, > . p(s', 7|5, a) [r+2V(s)]

Algorithm parameter: a small threshold 6 > 0 determining accuracy of estimatio:

OB BT Cere 69_vi_v.py
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[4 Dimitri P Bertsekas and Huizhen Yu.
Distributed asynchronous policy iteration in dynamic programming.
In 2010 48th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pages 1368-1375. IEEE, 2010.

[4 Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.
(Freely available online).
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Note from lecture 3: Stationary problem = stationary policy

Jr () = min E [Jet1 (fr(@r, wrs wi)) + gr (@, wr, wi)]
Assume the problem is independent of k:

Jk(x) = mgn]E [Jk-i-l (f(x,u,w)) +9 (x7uvw)]

® |t will be true that Jy =~ J; = Js etc.

® Policies will be the same initially my ~ 7 etc.

In fact just iterate to convergence:
J(z) < minE [J (f(z,u,w)) + g (z,u, w)]
u
This is in fact value iteration

27 DTU Compute Lecture 9
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Note from lecture 3: Action-value formulation

Ji(zr) = min E[Jer1(fe(@r, uk, we))+gx (Tk, vk, wy)]
We want to remove the green part

Jk(mk) = H&inQ(mka uk)

Qzk, ug) = B[ Jpr1 (fru(@p, up, wi)) +9x (Tr, ug, wi))

=miny,  ; Q(@Tk41,uk+1)

Substituting, the entire equation becomes red:

Q(zg,up) =E %H}Q (fr(zp, w, wi ), upg1) + gr (Th, up, Wi

® Simply VI for Q-functions!
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Asynchronous updates

M

® |n synchronous updates, we do

® For each s € S compute:
Un(8) ¢ Ex[R + yvx(S')|5]

® When done, set v, + vl
® In asynchronous updates, we re-use the updated values within one sweep

® For each s € § compute:
vr(8) < Er[R+yvx(5)]s]

Both converge: You implement the asynchronous version, but most
analysis is done in the synchronous version. It is also possible to structure
sweeps for efficiency (see [BY10])
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Convergence results

We will focus on the value function as the action-value results are very
similar. First we define the operators 7 and 7:

(Trv)(s) = Ex [R +y0(5")]s]
(Tw)(s) = max [R+~v(5')|s, a]

—~~
oo ~
N— —

If the state space is discrete S = {s1,...,sn} we can define the vector
v; = v(8;)

then the operators act on these vectors 7 : RV — RV

Fixed-point theorem

Let T': A~ A be a function and A C R™ a compact subset of R™. Then if for all
r,z€ A

IT(x) =T(2)| <vle—z[, 0<y<1

then repeatedly applying T to any @ will converge to a single, unique fixed point
z* =T (x*)
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Asynchronous updates

M

® In synchronous updates, we iterate for all s € S:
v (8) < Ex[R + yvr(S")]s]
then v, + vl

® In synchronous updates, we re-use the updated values within one sweep

Ur(8) = Ex[R + yvr(S')|s]

Both converge. It is also possible to structure sweeps for efficiency (see
[BY10])

31 DTU Compute Lecture 9 4 April, 2025
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Existence of solutions to Bellmans equations =
® Both the operators 7 and 7, are contractions in the max-norm
l¢]|co = max; |z;|. Example:
[T2v = Trwlloo = max [Ex [R +yv(S")[si] — Ex [R+ yw(S")|si]] (9)
= max | > p(s'[si, a) (yo(s') — yw(s')) (10)
< ymax Y p(s'|si,a) [o(s') — w(s)| (11)

< ymax ) p(s']si,a) v - wll =vllv—wl,  (12)
S/

® Consequence: Repeatedly applying Bellmans operators will lead to a single, fixed
point policy Tv, = v, and T v, = v,

® Therefore, PE/PI converge to v,. VI also converges, but does it converge to the
maximum?

32 DTU Compute Lecture 9 4 April, 2025



=
—
=

VI and maximum

M

® We know: Value iteration converge to a unique fixed point
v =(TT---T)(v)
® Maximum value function is defined as

o(s) = max v ($)

® It could be the case that 9(s) = v, (s), 9(s") = vy (s'), and neither was equal to
0a(5), (5

33 DTU Compute Lecture 9 4 April, 2025
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Value iteration solution corresponds to a policy

M

Show that v.(s) < 9(s)
® Value iteration gives us v, as a fixed point

® From v, we can construct the action-values
q*(S, a) = ]E[R + ’YU*(S/)LS, a’]
® From these we can define the greedy policy 7,

m(s) = argmax ¢.(s, a)

® By definition now v.(s) = (Tw.)(s) = (Tx-v)(s)

® Therefore v, is the value function of the policy ., and so v.(s) < (s) for all s

34 DTU Compute Lecture 9 4 April, 2025
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Value iteration is optimal

M

Show that v.(s) > 0(s)
® Assume v, (s) < Ur(s) for a specific s, 7

® L et m; be the greedy policy according to ©,. We know that
U < Upy

by the policy improvement theorem
® Therefore, v, (s) < U(s) < v, (8)
® Repeat again to obtain 75 and notice we are doing policy iteration
® Since we are doing policy iteration eventually 7 — 7o

® |t must be the case v, is a fixed-point of T, otherwise by the policy
improvement theorem we could select a better (greedy) policy

® Since the fixed point is unique, v = v, which is a contradiction
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