

Optimality DTU Bellmans optimality equations \mathbf{E} Suppose π_* is the policy corresponding to the optimal value function $v_*(s)$
$v_*(s) = \max_a q_{\pi_*}(s, a)$ = $\max_a \mathbb{E} \left[R + v_{\pi_*}(S') s, a \right]$
Bellmans optimality equations • Recursion of optimal value function v_* : Given any V $v_*(s) = V(s) \leftarrow \max_a \mathbb{E} [R_{t+1} + \gamma v_*(S_{t+1})V(S_{t+1}) S_t = s, A_t = a]$ (3)
• Recursion of optimal action-value function q_* : $q_*(s,a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1},a') S_t = s, A_t = a\right] $ (4)
Theorem: v_* (or q_*) satisfies the above recursions if (and only if) they corresponds to the optimal value function DTU Compute Lecture 9 4 April, 2025

