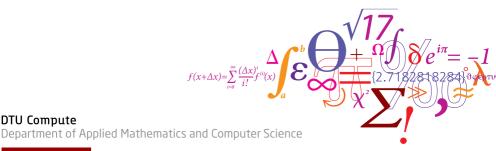
02465: Introduction to reinforcement learning and control

Exploration and Bandits

Tue Herlau

DTU Compute

DTU Compute, Technical University of Denmark (DTU)



Lecture Schedule

Dynamical programming

1 The finite-horizon decision problem 7 February

2 Dynamical Programming 14 February

3 DP reformulations and introduction to Control

21 February

Control

- Discretization and PID control
 28 February
- **5** Direct methods and control by

optimization

7 March

- 6 Linear-quadratic problems in control
- Linearization and iterative LQR

21 March

Syllabus: https://02465material.pages.compute.dtu.dk/02465public Help improve lecture by giving feedback on DTU learn

Reinforcement learning

- 8 Exploration and Bandits 28 March
- Bellmans equations and exact planning 4 April
- Monte-carlo methods and TD learning ^{11 April}
- Model-Free Control with tabular and linear methods

25 April

Eligibility traces

2 May

Beep-Q learning

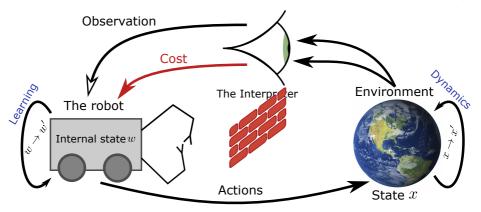
9 May

Reading material:

• [SB18, Chapter 1; Chapter 2-2.7; 2.9-2.10] Only as background

Learning Objectives

- Exploration/exploitation problem
- Bandits as a simplified reinforcement learning setting
- Formalizing the bandit problem
- Algorithms for solving the bandit problem



- Dynamics of world not known
- Simultaneously learn the environment and maximize expected reward
- Balance exploration and exploitation

Bandit studies this in an idealized setting

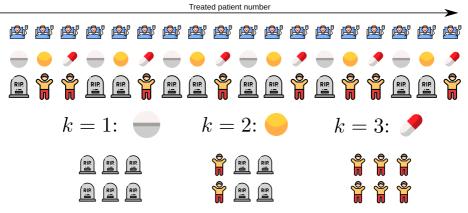
4 DTU Compute

Bandits, examples

- \bullet Suppose you have a large number of patients $t=1,2,\ldots$ with the same disease
- You have access to k drugs $a=0,1,\ldots,k-1$ with different outcome probabilities
- Outcome of treatment is either that the patient recovers, $R_t = 1$, or not $R_t = 0$
- Goal is to maximize $\sum_{t=1}^{T} R_t$

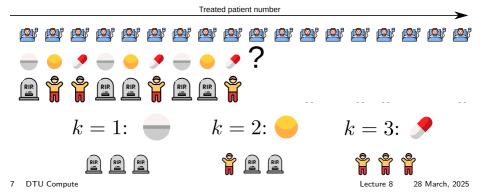
Idea 1: Statistics!

- Divide first T patients into K groups of $S = \frac{T}{K}$ patients
- Administer drugs to each group
- observe results



Bandit approach

- After t-1 choices of actions A_1, \ldots, A_{t-1} and observed rewards R_1, \ldots, R_{t-1}
- Decide next action A_t to maximize reward
- **Bandit assumption:** Action A_t only affects R_t
 - Personalized medicine
 - Evaluating similar, approved drugs (low risk)
 - SMART trials/JITAIs



Example: An opinion columnist

Suppose you are writing for a major newspaper which relies on social media to get as many reads as possible. You can choose between 5 headlines, and your job is to get as many clicks as possible:

- k=0: "With less destructive nukes on the way, it's time for the left to say good-bye to those annoying non-proliferation treaties. "
- k=1: "Opinion | The upside of nuclear war? Making popcorn without a microwave."
- k=2: "Joe Biden has prevented a nuclear holocaust. But how will that play with suburban moms this fall?"
- k = 3: "Opinion | Nuclear war may not be woke. But it's not a war crime."
- k=4: "Opinion \mid With rising temperatures, would a nuclear winter really be that bad?"

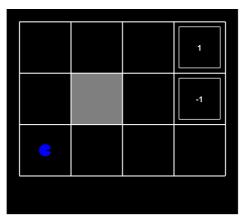
But which one to choose?

Example: An opinion columnist

- For each exposure t = 1, 2, ... on twitter, selects a headline $A_t = 0, \ldots, k-1$
- Observe whether the user clicks the story $R_t \in \{0,1\}$
- Use this to select the next headline for the next user $A_{t+1} = a$
- You want to maximize total clicks, knowing the story has a finite lifespan:

Looking ahead: Reinforcement learning

- In a state s, select optimal action a, then observe what reward we get
- It is like a bandit problem in each state (but more about that in a few weeks)



Sequentially take decisions A_1, A_2, \ldots and observe rewards R_1, R_2, \ldots

Stationary In a stationary bandit the reward distribution does not change Nonstationary The environment can change (but not as consequence of our actions) Contextual You get a bit of information to make your decision

Structured Reward of different arms can be inferred from each other (Bayesian black box optimization)

Stationary bandits

- Action at time step $t = 1, 2, \ldots$ is A_t
- Reward is R_t
- Observations available to make action at t:

$$H_t = (A_1, R_1, A_2, R_2, \dots, A_{t-1}, R_{t-1})$$

• Actions are generated from a **policy** π which we learn based on H_t :

$$A_t \sim \pi_t(\cdot)$$

• Value of an action is

$$q_*(a) = \mathbb{E}[R_t | A_t = a], \quad a = 0, \dots, K - 1$$

- Optimal strategy at t is to select action with highest value
- Our learned estimate of $q_*(a)$ at time t is $Q_t(a)$

Exploit Select action a with highest estimate of $Q_t(a)$ Explore Do something else to learn more about $Q_t(a)$

- Note bandit methods can be classified according to what they learn about $Q_t(a)$
- 12 DTU Compute

Bandit objective and definitions

Objective 1: Average reward at time t and total reward up to time T

$$\mathbb{E}_{\pi}\left[q_{*}(a_{t})\right], \quad \sum_{t=1}^{T} \mathbb{E}_{\pi}\left[q_{*}(a_{t})\right]$$

Optimal value and optimal action

$$V^* = \max_{a} [q_*(a)], \quad a_t^* = \arg\max_{a} [q_*(a)]$$

Objective 2: Fraction optimal actions

$$P_{\pi}(A_t = a_t^*)$$

Gab

$$\Delta_a = V^* - q_*(a)$$

Objective 3: Cumulative regret

$$l_t = \mathbb{E}[V^* - q_*(a_t)], \quad L_T = \sum_{t=1}^T l_t$$

Goal is to maximize cumulative reward \leftrightarrow minimize total regret

13 DTU Compute

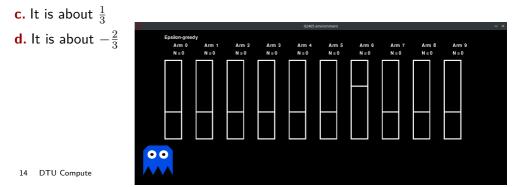
Lecture 8 28 March, 2025

Quiz: What is the regret?

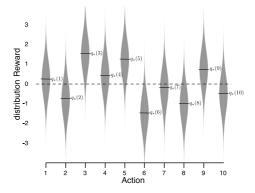
- Reward $R_t = 1$ on win and $R_t = 0$ on loss.
- The win probabilities are shown by horizontal lines
- What is the regret for a policy which always select a = 3? $(\pi(a = 3) = 1)$

$$l_t = \mathbb{E}[V^* - q_*(a_t)], \quad V^* = \max_a [q_*(a)]$$

- **a.** It is a random quantity (either zero or 1)
- b. It depends on how many actions we have taken



The k = 10-armed testbed



- Let k=10 and select each $q_*(a) \sim N(\mu=0,\sigma^2=1)$
- for each action *a*, select reward

$$R_t | a \sim \mathcal{N}(\mu = q_*(a), \sigma^2 = 1)$$

- Let each agent interact for a number of steps ~ 1000
- \bullet Repeat procedure for $2000 \ {\rm runs}$ to calculate average agent performance
- 15 DTU Compute

Making it practical: A bandit problem

```
# bandits.py
1
     class BanditEnvironment(Env):
2
         def __init__(self, k : int):
3
             super().__init__()
 4
             self.observation_space = Discrete(1) # Dummy observation space with a single o
             self.action space = Discrete(k)
                                                    # The arms labelled 0, 1, \ldots, k-1.
6
 7
             self.k = k # Number of arms
 8
9
         def reset(self):
10
             raise NotImplementedError("Implement the reset method")
11
12
13
         def bandit_step(self, a):
             reward = 0 # Compute the reward associated with arm a
14
             gab = 0 # Compute the gab, by comparing to the optimal arms reward.
15
             return reward, gab
16
17
         def step(self, action):
18
             reward, gab = self.bandit_step(action)
19
             info = {'gab': gab}
20
             return None, reward, False, False, info
21
```

DTU

Action-value method

Idea: approximate $q_*(a)$ by keeping track of $Q_t(a)$

$$Q_t(a) \doteq \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbf{1}_{A_i=a}}{\sum_{i=1}^{t-1} \mathbf{1}_{A_i=a}} = \frac{S_t(a)}{N_t(a)}$$

Explore with probability ϵ

- Action selection π
 - With probability ϵ select random action
 - With probability 1ϵ select $a^* = \arg \max_a Q_t(a)$
- As only one entry A_t of Q_t change at a time track number of times a was selected n = N(a):

$$Q_n \doteq \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1} = \frac{S_n(a)}{N(a)}$$
(1)

One can show that:

$$Q_{n+1} = Q_n + \frac{1}{n} [R_n - Q_n]$$

- Given observed $a = A_t$, $r = R_t$ update:
- 17 DTU Compute

Lecture 8 28 March, 2025

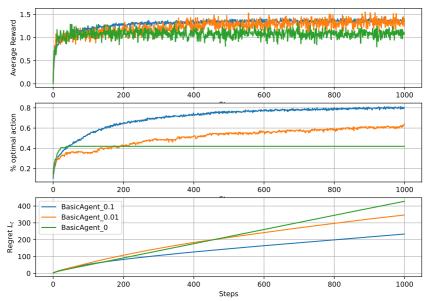
Simple action-value bandit algorithm

A simple bandit algorithm

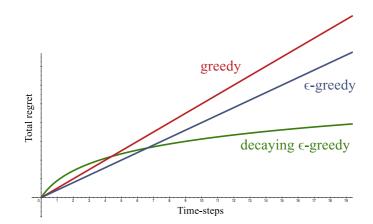
 $\begin{array}{l} \text{Initialize, for } a=1 \text{ to } k: \\ Q(a) \leftarrow 0 \\ N(a) \leftarrow 0 \end{array} \\ \text{Loop forever:} \\ A \leftarrow \left\{ \begin{array}{l} \operatorname*{argmax}_a Q(a) & \text{with probability } 1-\varepsilon \\ a \text{ random action } \text{with probability } \varepsilon \end{array} \right. \\ R \leftarrow bandit(A) \\ N(A) \leftarrow N(A) + 1 \\ Q(A) \leftarrow Q(A) + \frac{1}{N(A)} [R - Q(A)] \end{array} \right. \\ \left. \begin{array}{l} Q_{n+1} = Q_n + \frac{1}{n} \Big[R_n - Q_n \Big] \end{array} \right. \end{array} \right.$

Results: action-value bandit

Evaluated on StationaryBandit_0 for 150 episodes



Regret asymptotics



- Fixed- ε algorithms have linear regret
- With decreasing ε it is possible to get sub-linear regret, but only by assuming we know things about the reward distribution
 - Theoretically best possible bandit method has logarithmic regret.

Confidence-bound methods

• Estimate an upper confidence bound $\hat{U}_t(a)$ for $q_*(a)$ st.

 $q_*(a) \le \hat{U}_t(a) + Q_t(a)$

with high probability

- Generally
 - If $N_t(a)$ low $\rightarrow \hat{U}_t(a)$ high
 - If $N_t(a)$ high $\rightarrow \hat{U}_t(a)$ low
- Select actions to maximize

$$\arg\max_{a} \left[\hat{U}_t(a) + Q_t(a) \right]$$

- Intuitively reflects this logic
 - An actions is good if $Q_t(a)$ is high (it just always give good values and deserves **exploitation**)
 - An action is good if we know so little about it $(U_t(a) \text{ high})$ that it *might* be good and deserves **exploration**

UCB1

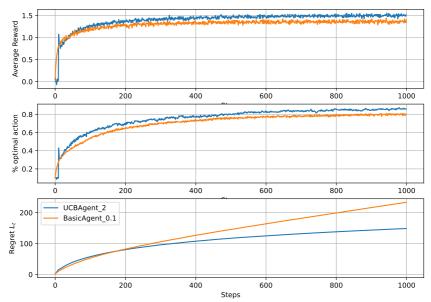
$$A_t = \underset{a}{\operatorname{argmax}} \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right]$$

Asymptotic logarithmic regret when $R_t \in [0,1]$

$$\lim_{t \to \infty} L_t \le \sum_{a \ne a^*, \Delta_a > 0} \left(\frac{4 \ln t}{\Delta_a} + 2\Delta_a \right)$$

• The variant UCB-normal obtains logarithmic regret on normal reward distributions

Evaluated on StationaryBandit_0 for 2000 episodes



Quiz: How does UCB explore?

Consider the update rule for UCB1:

$$A_t = \underset{a}{\operatorname{argmax}} \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right]$$

Which one of the following statements is true about UCB1?

- a. UCB1 requires that the rewards are positive
- **b.** If one arm give a much higher reward than the other, UCB1 will eventually only select this arm
- **c.** If one arm is much, much worse than the others, UCB1 will eventually stop selecting that arm
- **d.** It is possible to predict which arms UCB1 will select k steps in the future
- e. At least one of the upper-confidence estimates $\hat{U}_t(a)$ will converge to 0.
- f. Don't know.

Non-stationary bandits

• These is a (hidden) state S_t which evolves as:

 $P(S_{t+1}, R_t | S_t = s, A_t = a) = P(S_{t+1} | S_t = s) P(R_t | S_t = s, A_t = a)$

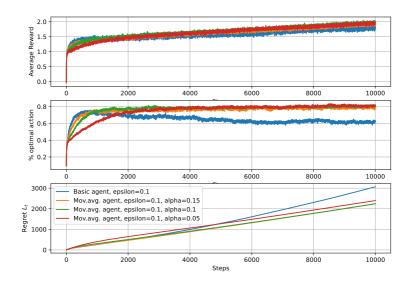
- Example: Add normal noise to $q_*(a)$ at each time step
- One idea is to replace $\frac{1}{n}$ with $\alpha_t(a)$ and use scheduling:

Previous update:
$$Q_{n+1} = Q_n + \frac{1}{n} [R_n - Q_n]$$

New update: $Q_{n+1} = Q_n + \alpha [R_n - Q_n]$

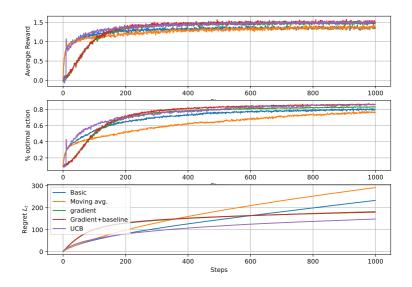
- Constant α means fast adaption but no convergence
- Typically chose

$$\sum_{n=1}^\infty \alpha_n(a) = \infty \quad \text{ and } \quad \sum_{n=1}^\infty \alpha_n^2(a) < \infty$$

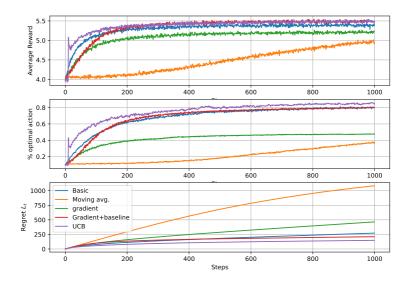


Evaluated on NonstationaryBandit_0_0.01 for 2000 episodes

Stationary bandit (no offset)



Stationary bandit (with offset)



Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. The MIT Press, second edition, 2018. (Freely available online).

Appendix Appendix: Probability-matching methods

- \bullet Our goal is to find the optimal probability distribution π
- We can parameterize any distribution as

$$\pi(a) = \frac{e^{H_a}}{\sum_{b=1}^k e^{H_b}}$$

for a weight-vector $H \in \mathbb{R}^k$

 \bullet Optimal π is the one maximizing expected reward

$$\mathbb{E}_{\pi}\left[R_{t}\right] = \sum_{a} \pi_{t}(a; H)q_{*}(a) = E(H)$$

- This is a function of H
- Let's just do gradient descent, WCGW?

$$H_{t+1} \leftarrow H_t - \alpha \nabla_H E(H)$$

Appendix Gradient bandit: Derivation

$$\frac{\partial}{\partial H}E(H) = \sum_{a} \pi(a; H)q^{*}(a)\frac{\partial \log \pi(a; H)}{\partial H}$$
(2)

We can sample from $\pi(a)$ and then our environment will give an estimate of $q^\ast(a)$

$$\sum_{a} \pi(a; H) q^{*}(a) \frac{\partial \log \pi(a; H)}{\partial H} \approx \frac{1}{S} \sum_{s=1}^{S} R_{t}(a_{s}) \frac{\partial \log \pi(a_{s}; H)}{\partial H}$$
(3)

 \bullet Nobody has told us we cannot use S=1

$$\nabla E(H) \approx R_t \frac{\partial \log \pi(a_t; H)}{\partial H}$$

$$\begin{split} H_{t+1}\left(A_{t}\right) &\doteq H_{t}\left(A_{t}\right) + \alpha R_{t}\left(1 - \pi_{t}\left(A_{t}\right)\right), \quad \text{and} \\ H_{t+1}(a) &\doteq H_{t}(a) - \alpha R_{t}\pi_{t}(a), \qquad \qquad \text{for all } a \neq A_{t} \end{split}$$

31 DTU Compute

Lecture 8 28 March, 2025

Appendix Math facts used in derivation

Kullback-Leibner divergence Given discrete probability distribution p and q:

$$\mathrm{KL}[p;q] = \sum_{i=1}^{n} p(x_i) \log \frac{q(x_i)}{p(x_i)}$$

The logarithm trick for $q(x, \theta) > 0$

$$\frac{\partial}{\partial \theta} \int q(x,\theta) f(x) dx = \int q(x,\theta) \frac{\partial \log q(x,\theta)}{\partial \theta} f(x) dx$$

Appendix Gradient bandits

- Let \bar{R}_t be the average reward over $0,\ldots,t-1$
- Update weights as

$$\begin{aligned} H_{t+1}\left(A_{t}\right) &\doteq H_{t}\left(A_{t}\right) + \alpha\left(R_{t} - \bar{R}_{t}\right)\left(1 - \pi_{t}\left(A_{t}\right)\right), & \text{ and} \\ H_{t+1}(a) &\doteq H_{t}(a) - \alpha\left(R_{t} - \bar{R}_{t}\right)\pi_{t}(a), & \text{ for all } a \neq A_{t} \end{aligned}$$

- Why? **legal** because they do not change the gradient, **sensible** because they can reduce variance/promote exploration
- To my knowledge, no theoretical analysis exists
- This gradient-trick is basis of **policy gradient** methods for reinforcement learning

Appendix Results

Evaluated on StationaryBandit_4 for 100 episodes

