
02465: Introduction to reinforcement learning and control

Exploration and Bandits

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)

Lecture Schedule

Dynamical programming

1 The finite-horizon decision problem
7 February

2 Dynamical Programming
14 February

3 DP reformulations and introduction to
Control
21 February

Control

4 Discretization and PID control
28 February

5 Direct methods and control by
optimization
7 March

6 Linear-quadratic problems in control
14 March

7 Linearization and iterative LQR
21 March

Reinforcement learning

8 Exploration and Bandits
28 March

9 Bellmans equations and exact planning
4 April

10 Monte-carlo methods and TD learning
11 April

11 Model-Free Control with tabular and
linear methods
25 April

12 Eligibility traces
2 May

13 Deep-Q learning
9 May

Syllabus: https://02465material.pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn

2 DTU Compute Lecture 8 28 March, 2025

Reading material:
• [SB18, Chapter 1; Chapter 2-2.7; 2.9-2.10] Only as background

Learning Objectives
• Exploration/exploitation problem
• Bandits as a simplified reinforcement learning setting
• Formalizing the bandit problem
• Algorithms for solving the bandit problem

3 DTU Compute Lecture 8 28 March, 2025

Environment
The robot

Actions

Le
ar

ni
ng

State

Dynam
ics

Internal state

The Interpreter

Observation

Cost

• Dynamics of world not known
• Simultaneously learn the environment and maximize expected reward
• Balance exploration and exploitation

Bandit studies this in an idealized setting
4 DTU Compute Lecture 8 28 March, 2025

wall

Bandits, examples

• Suppose you have a large number of patients t = 1, 2, . . . with the same disease
• You have access to k drugs a = 0, 1, . . . , k − 1 with different outcome

probabilities
• Outcome of treatment is either that the patient recovers, Rt = 1, or not Rt = 0
• Goal is to maximize

∑T
t=1 Rt

5 DTU Compute Lecture 8 28 March, 2025

ill1ill2ill3ill4ill5ill6

Idea 1: Statistics!

• Divide first T patients into K groups of S = T
K patients

• Administer drugs to each group
• observe results

6 DTU Compute Lecture 8 28 March, 2025

drugsA

Bandit approach

• After t− 1 choices of actions A1, . . . , At−1 and observed rewards R1, . . . , Rt−1

• Decide next action At to maximize reward
• Bandit assumption: Action At only affects Rt

• Personalized medicine
• Evaluating similar, approved drugs (low risk)
• SMART trials/JITAIs

7 DTU Compute Lecture 8 28 March, 2025

drugsB

Example: An opinion columnist

Suppose you are writing for a major newspaper which relies on social media
to get as many reads as possible. You can choose between 5 headlines, and
your job is to get as many clicks as possible:
• k = 0: "With less destructive nukes on the way, it’s time for the left to say

good-bye to those annoying non-proliferation treaties. "
• k = 1: "Opinion | The upside of nuclear war? Making popcorn without a

microwave."
• k = 2: "Joe Biden has prevented a nuclear holocaust. But how will that play

with suburban moms this fall?"
• k = 3: "Opinion | Nuclear war may not be woke. But it’s not a war crime."
• k = 4: "Opinion | With rising temperatures, would a nuclear winter really be that

bad?"

But which one to choose?

8 DTU Compute Lecture 8 28 March, 2025

Example: An opinion columnist

• For each exposure t = 1, 2, ... on twitter, selects a headline At = 0, . . . , k − 1
• Observe whether the user clicks the story Rt ∈ {0, 1}
• Use this to select the next headline for the next user At+1 = a

• You want to maximize total clicks, knowing the story has a finite lifespan:

2-3 days?∑

t=1
Rt

9 DTU Compute Lecture 8 28 March, 2025

Looking ahead: Reinforcement learning

• In a state s, select optimal action a, then observe what reward we get
• It is like a bandit problem in each state (but more about that in a few weeks)

10 DTU Compute Lecture 8 28 March, 2025

Many types of bandits

Sequentially take decisions A1, A2, . . . and observe rewards R1, R2, . . .

Stationary In a stationary bandit the reward distribution does not change
Nonstationary The environment can change (but not as consequence of our

actions)
Contextual You get a bit of information to make your decision
Structured Reward of different arms can be inferred from each other

(Bayesian black box optimization)

11 DTU Compute Lecture 8 28 March, 2025

Stationary bandits
• Action at time step t = 1, 2, . . . is At

• Reward is Rt

• Observations available to make action at t:

Ht = (A1, R1, A2, R2, . . . , At−1, Rt−1)

• Actions are generated from a policy π which we learn based on Ht:

At ∼ πt(·)

• Value of an action is

q∗(a) = E [Rt|At = a] , a = 0, . . . , K − 1

• Optimal strategy at t is to select action with highest value
• Our learned estimate of q∗(a) at time t is Qt(a)

Exploit Select action a with highest estimate of Qt(a)
Explore Do something else to learn more about Qt(a)

• Note bandit methods can be classified according to what they learn about Qt(a)
12 DTU Compute Lecture 8 28 March, 2025

Bandit objective and definitions
Objective 1: Average reward at time t and total reward up to time T

Eπ [q∗(at)] ,
T∑

t=1
Eπ [q∗(at)]

Optimal value and optimal action
V ∗ = max

a
[q∗(a)] , a∗

t = arg max
a

[q∗(a)]

Objective 2: Fraction optimal actions
Pπ(At = a∗

t)
Gab

∆a = V ∗ − q∗(a)
Objective 3: Cumulative regret

lt = E [V ∗ − q∗ (at)] , LT =
T∑

t=1
lt

Goal is to maximize cumulative reward ↔ minimize total regret
13 DTU Compute Lecture 8 28 March, 2025

Quiz: What is the regret?
• Reward Rt = 1 on win and Rt = 0 on loss.
• The win probabilities are shown by horizontal lines
• What is the regret for a policy which always select a = 3? (π(a = 3) = 1)

lt = E [V ∗ − q∗ (at)] , V ∗ = max
a

[q∗(a)]

a. It is a random quantity (either zero or 1)
b. It depends on how many actions we have taken
c. It is about 1

3

d. It is about −2
3

14 DTU Compute Lecture 8 28 March, 2025

bandit_cure

The k = 10-armed testbed

• Let k = 10 and select each q∗(a) ∼ N(µ = 0, σ2 = 1)
• for each action a, select reward

Rt|a ∼ N (µ = q∗(a), σ2 = 1)

• Let each agent interact for a number of steps ∼ 1000
• Repeat procedure for 2000 runs to calculate average agent performance
15 DTU Compute Lecture 8 28 March, 2025

Making it practical: A bandit problem

1 # bandits.py
2 class BanditEnvironment(Env):
3 def __init__(self, k : int):
4 super().__init__()
5 self.observation_space = Discrete(1) # Dummy observation space with a single observation.
6 self.action_space = Discrete(k) # The arms labelled 0,1,...,k-1.
7 self.k = k # Number of arms
8
9

10 def reset(self):
11 raise NotImplementedError("Implement the reset method")
12
13 def bandit_step(self, a):
14 reward = 0 # Compute the reward associated with arm a
15 gab = 0 # Compute the gab, by comparing to the optimal arms reward.
16 return reward, gab
17
18 def step(self, action):
19 reward, gab = self.bandit_step(action)
20 info = {'gab': gab}
21 return None, reward, False, False, info

16 DTU Compute Lecture 8 28 March, 2025

Action-value method
Idea: approximate q∗(a) by keeping track of Qt(a)

Qt(a) .= sum of rewards when a taken prior to t

number of times a taken prior to t
=

∑t−1
i=1 Ri · 1Ai=a∑t−1

i=1 1Ai=a

= St(a)
Nt(a)

Explore with probability ϵ

• Action selection π

• With probability ϵ select random action
• With probabilty 1− ϵ select a∗ = arg maxa Qt(a)

• As only one entry At of Qt change at a time track number of times a was
selected n = N(a):

Qn
.= R1 + R2 + · · ·+ Rn−1

n− 1 = Sn(a)
N(a) (1)

One can show that:
Qn+1 = Qn + 1

n
[Rn −Qn]

• Given observed a = At, r = Rt update:
17 DTU Compute Lecture 8 28 March, 2025

Simple action-value bandit algorithm

18 DTU Compute Lecture 8 28 March, 2025

Results: action-value bandit

0 200 400 600 800 1000
Steps

0.0

0.5

1.0

1.5

Av
er

ag
e

Re
wa

rd

0 200 400 600 800 1000
Steps

0.2

0.4

0.6

0.8

%
 o

pt
im

al
 a

ct
io

n

0 200 400 600 800 1000
Steps

0

100

200

300

400

Re
gr

et
 L

t

BasicAgent_0.1
BasicAgent_0.01
BasicAgent_0

Evaluated on StationaryBandit_0 for 150 episodes

19 DTU Compute Lecture 8 28 March, 2025

Regret asymptotics

• Fixed-ε algorithms have linear regret
• With decreasing ε it is possible to get sub-linear regret, but only by assuming

we know things about the reward distribution
• Theoretically best possible bandit method has logarithmic regret.

20 DTU Compute Lecture 8 28 March, 2025

osvg-9

Confidence-bound methods
• Estimate an upper confidence bound Ût(a) for q∗(a) st.

q∗(a) ≤ Ût(a) + Qt(a)

with high probability
• Generally

• If Nt(a) low → Ût(a) high
• If Nt(a) high → Ût(a) low

• Select actions to maximize

arg max
a

[
Ût(a) + Qt(a)

]

• Intuitively reflects this logic
• An actions is good if Qt(a) is high (it just always give good values and

deserves exploitation)
• An action is good if we know so little about it (Ut(a) high) that it might be

good and deserves exploration

21 DTU Compute Lecture 8 28 March, 2025

UCB1

At = argmax
a

[
Qt(a) + c

√
ln t

Nt(a)

]

Asymptotic logarithmic regret when Rt ∈ [0, 1]

lim
t→∞

Lt ≤
∑

a̸=a∗,∆a>0

(4 ln t

∆a
+ 2∆a

)

• The variant UCB-normal obtains logarithmic regret on normal reward
distributions

22 DTU Compute Lecture 8 28 March, 2025

Results

0 200 400 600 800 1000
Steps

0.0

0.5

1.0

1.5

Av
er

ag
e

Re
wa

rd

0 200 400 600 800 1000
Steps

0.2

0.4

0.6

0.8

%
 o

pt
im

al
 a

ct
io

n

0 200 400 600 800 1000
Steps

0

100

200

Re
gr

et
 L

t

UCBAgent_2
BasicAgent_0.1

Evaluated on StationaryBandit_0 for 2000 episodes

23 DTU Compute Lecture 8 28 March, 2025

Quiz: How does UCB explore?

Consider the update rule for UCB1:

At = argmax
a

[
Qt(a) + c

√
ln t

Nt(a)

]

Which one of the following statements is true about UCB1?
a. UCB1 requires that the rewards are positive
b. If one arm give a much higher reward than the other, UCB1 will
eventually only select this arm
c. If one arm is much, much worse than the others, UCB1 will eventually
stop selecting that arm
d. It is possible to predict which arms UCB1 will select k steps in the future
e. At least one of the upper-confidence estimates Ût(a) will converge to 0.
f. Don’t know.

24 DTU Compute Lecture 8 28 March, 2025

Non-stationary bandits

• These is a (hidden) state St which evolves as:

P (St+1, Rt|St = s, At = a) = P (St+1|St = s)P (Rt|St = s, At = a)

• Example: Add normal noise to q∗(a) at each time step
• One idea is to replace 1

n with αt(a) and use scheduling:

Previous update: Qn+1 = Qn + 1
n

[Rn −Qn]

New update: Qn+1 = Qn + α [Rn −Qn]

• Constant α means fast adaption but no convergence
• Typically chose

∞∑

n=1
αn(a) =∞ and

∞∑

n=1
α2

n(a) <∞

25 DTU Compute Lecture 8 28 March, 2025

Results

0 2000 4000 6000 8000 10000
Steps

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e

Re
wa

rd

0 2000 4000 6000 8000 10000
Steps

0.2

0.4

0.6

0.8

%
 o

pt
im

al
 a

ct
io

n

0 2000 4000 6000 8000 10000
Steps

0

1000

2000

3000

Re
gr

et
 L

t

Basic agent, epsilon=0.1
Mov.avg. agent, epsilon=0.1, alpha=0.15
Mov.avg. agent, epsilon=0.1, alpha=0.1
Mov.avg. agent, epsilon=0.1, alpha=0.05

Evaluated on NonstationaryBandit_0_0.01 for 2000 episodes

26 DTU Compute Lecture 8 28 March, 2025

Results

0 200 400 600 800 1000
Steps

0.0

0.5

1.0

1.5

Av
er

ag
e

Re
wa

rd

0 200 400 600 800 1000
Steps

0.2

0.4

0.6

0.8

%
 o

pt
im

al
 a

ct
io

n

0 200 400 600 800 1000
Steps

0

100

200

300

Re
gr

et
 L

t

Basic
Moving avg.
gradient
Gradient+baseline
UCB

Stationary bandit (no offset)

27 DTU Compute Lecture 8 28 March, 2025

Results

0 200 400 600 800 1000
Steps

4.0

4.5

5.0

5.5

Av
er

ag
e

Re
wa

rd

0 200 400 600 800 1000
Steps

0.2

0.4

0.6

0.8

%
 o

pt
im

al
 a

ct
io

n

0 200 400 600 800 1000
Steps

0

250

500

750

1000

Re
gr

et
 L

t

Basic
Moving avg.
gradient
Gradient+baseline
UCB

Stationary bandit (with offset)

28 DTU Compute Lecture 8 28 March, 2025

Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.
(Freely available online).

29 DTU Compute Lecture 8 28 March, 2025

Appendix
Appendix: Probability-matching methods

• Our goal is to find the optimal probability distribution π

• We can parameterize any distribution as

π(a) = eHa

∑k
b=1 eHb

for a weight-vector H ∈ Rk

• Optimal π is the one maximizing expected reward

Eπ [Rt] =
∑

a

πt(a; H)q∗(a) = E(H)

• This is a function of H

• Let’s just do gradient descent, WCGW?

Ht+1 ← Ht − α∇HE(H)

30 DTU Compute Lecture 8 28 March, 2025

Appendix
Gradient bandit: Derivation

∂

∂H
E(H) =

∑

a

π(a; H)q∗(a)∂ log π(a; H)
∂H

(2)

We can sample from π(a) and then our environment will give an estimate
of q∗(a)

∑

a

π(a; H)q∗(a)∂ log π(a; H)
∂H

≈ 1
S

S∑

s=1
Rt(as)∂ log π(as; H)

∂H
(3)

• Nobody has told us we cannot use S = 1

∇E(H) ≈ Rt
∂ log π(at; H)

∂H

Ht+1 (At)
.= Ht (At) + αRt (1− πt (At)) , and

Ht+1(a) .= Ht(a)− αRtπt(a), for all a ̸= At

31 DTU Compute Lecture 8 28 March, 2025

Appendix
Math facts used in derivation

Kullback-Leibner divergence Given discrete probability distribution p and q:

KL[p; q] =
n∑

i=1
p(xi) log q(xi)

p(xi)

The logarithm trick for q(x, θ) > 0

∂

∂θ

∫
q(x, θ)f(x)dx =

∫
q(x, θ)∂ log q(x, θ)

∂θ
f(x)dx

32 DTU Compute Lecture 8 28 March, 2025

Appendix
Gradient bandits

• Let R̄t be the average reward over 0, . . . , t− 1
• Update weights as

Ht+1 (At)
.= Ht (At) + α

(
Rt−R̄t

)
(1− πt (At)) , and

Ht+1(a) .= Ht(a)− α
(
Rt−R̄t

)
πt(a), for all a ̸= At

• Why? legal because they do not change the gradient, sensible because they can
reduce variance/promote exploration
• To my knowledge, no theoretical analysis exists
• This gradient-trick is basis of policy gradient methods for reinforcement learning

33 DTU Compute Lecture 8 28 March, 2025

Appendix
Results

0 200 400 600 800 1000
Steps

4.0

4.5

5.0

5.5

Av
er

ag
e

Re
wa

rd

0 200 400 600 800 1000
Steps

0.2

0.4

0.6

0.8

%
 o

pt
im

al
 a

ct
io

n

0 200 400 600 800 1000
Steps

0

200

400

600

Re
gr

et
 L

t

Gradient Bandit alpha=0.1
Gradient Bandit alpha=0.4
With baseline: Gradient Bandit alpha=0.1
With baseline: Gradient Bandit alpha=0.4

Evaluated on StationaryBandit_4 for 100 episodes

34 DTU Compute Lecture 8 28 March, 2025

