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7 Linearization and iterative LQR
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9 Bellmans equations and exact planning
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2 May

13 Deep-Q learning
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Help improve lecture by giving feedback on DTU learn
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Housekeeping

• Most of the feedback for project 1 is online on DTU Learn
• The rest will be available in a few days

• Exam is expected to be in English (you can answer in Danish or English)
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A bit of analysis

• Suppose f : Rn → R is a well-behaved function
• The gradient is defined as:
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

• The Hessian is defined as
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More analysis

• Let f : Rn → Rm be a well-behaved multi-variate function defined as

f(x) =




f1(x)
...

fm(x)




• The Jacobian matrix is defined as:

Jf (x) =
[

∂f
∂x1

· · · ∂f
∂xn

]
=




∂f1
∂x1

· · · ∂f1
∂xn... . . . ...

∂fm

∂x1
· · · ∂fm

∂xn



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Approximations

• Given the gradient and Hessian we can approximate f around x

f(x + ∆) ≈ f(x) +∇f(x)T∆ + 1
2∆TH(x)∆

• A similar expression can be obtained for a multi-variate f :

f(x + ∆) ≈ f(x) + Jf (x)∆

Fundamental relations that are the basis for gradient descent, many
higher-order optimization methods and all sorts of ML
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From last time: The Linear-quadratic regulator

• For k = 0, 1, . . . , N − 1

xk+1 = fk(xk, uk, wk)= Akxk + Bkuk,

gk(xk, uk, wk)= 1
2x⊤

k Qkxk + 1
2u⊤

k Rkuk,

gN (xk)= 1
2x⊤

N QN xN

• The accumulated cost is:

Ju(x0) = gN (xN ) +
N−1∑

k=0
gk(xk, uk)

• We put this into the dynamical programming algorithm and...
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Apply dynamical programming:

• Define VN ≡ QN and initialize:

J∗
N (xN ) = 1

2xT
N QN xN = 1

2xT
N VN xN

• DP iteration (start at k = N − 1)

Jk (xk) = min
uk

E
wk

{gk (xk, uk, wk) + Jk+1 (fk (xk, uk, wk))}

• Remember to store optimal u∗
k as πk(xk) = u∗

k
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LQR, simplified form

This gives the controller:
1 VN = QN

2 Lk = −(Rk + BT
k Vk+1Bk)−1(BT

k Vk+1Ak)

3 Vk = Qk + LT
k RkLk + (Ak + BkLk)T Vk+1(Ak + BkLk)

4 u∗
k = Lkxk

5 J∗
k (xk) = 1

2 xT
k Vkxk
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Double Integrator Example
• True dynamics

ẋ(t) =
[
0 1
0 0

]
x(t) +

[
0
1

]
u(t) (1)

• Euler discretization using ∆ = 1 System evolves according to:

xk+1 =
[
1 1
0 1

]

︸ ︷︷ ︸
=A

xk +
[
0
1

]

︸︷︷︸
=B

uk

• Quadratic cost function:

J(x0) =
N∑

k=0

1
2x⊤

k Qxk + 1
2u⊤

k Rkuk

• Where:
Qk = QN =

[ 2
ρ 0
0 0

]
, R = 1
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Exponential integrator
• Apply discrete LQR

• Simulate starting in x0 =
[
1
0

]
using policy

πk(xk) = Lkxk

• What about the true system ẋ(t) = f(x, u)?

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Steps k

0.0

0.2

0.4

0.6

0.8

1.0

x 1
=

 x
[0

]

Double integrator
rho=0.1
rho=10
rho=100
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The most general form of LQR

• General dynamics:
xk+1 = Akxk + Bkuk + dk

• General quadratic cost:

ck (xk, uk) = 1
2xT

k Qkxk + 1
2uT

k Rkuk + uT
k Hkxk + qT

k xk + rT
k uk + qk

cN (xk) = 1
2xT

k QN xk + qT
N xk + qN
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General discrete LQR algorithm

(more seriously µ is a regularization term: µ→∞⇒ u→ 0)
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Quiz: LQR

Which one of the following statements is correct?
a. Control problems where the continuous-time dynamics takes the form
ẍ = aẋ + bx + c + u falls outside the scope of the linear quadratic regulator
b. The linear-quadratic regulator is an example of model-free control
c. In a linear-quadratic control problem of the form xk+1 = Axk + Buk, the
matrices A and B must both be square.
d. The cost-functions suitable for a linear-quadratic regulator can potentially
produce negative values
e. Don’t know.
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Controlling non-linear systems: Cartpole

• Continuous coordinates x(t) =
[
x(t) ẋ(t) θ(t) θ̇(t)

]

• Action u is one-dimensional; the force applied to cart
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Discretization

• Choose grid size N : t0, t1, . . . , tN = tF , tk+1 − tk = ∆
• xk = x(tk), uk = u(tk)
• Eulers method xk+1 = xk + ∆f(xk, uk)
• Discretized dynamics will have the form:

xk+1 = fk(xk, uk)
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Cartpole cost function

• We also apply a variable transformation:
ϕx :

[
x ẋ θ θ̇

]
7→

[
x ẋ sin(θ) cos(θ) θ̇

]
. (2)

• The cost function is of the form:

c(xk, uk) = 1
2




x−




0
0
0
1
0







⊤

Q




x−




0
0
0
1
0







+ 1
2∥uk∥2

s lecture_06_linearize.py
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Controlling a non-linear system

•We know how to solve a linear/quadratic control problems of the form

xk+1 = Akxk + Bkuk + dk

ck(xk, uk) = 1
2x⊤

k Qxk + 1
2u⊤

k Ruk + · · ·

• How can we use that to solve a problem with non-linear dynamics?

xk+1 = fk(xk, uk)
ck(xk, uk) = · · ·
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Solution: Linearization!

Assume a general dynamics:

xk+1 = fk (xk, uk) , c (xk, uk)

Assume system is near x̄, ū. Expand using Jacobians

fk(xk, uk) ≈ fk(x̄, ū) + ∂fk

∂x
(x̄, ū)

︸ ︷︷ ︸
Ak

(xk − x̄) + ∂fk

∂u
(x̄, ū)

︸ ︷︷ ︸
Bk

(uk − ū)

Simplifies to:

xk+1 = Akxk + Bkuk + fk(x̄, ū)−Akx̄−Bkū
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Linearization and iLQR

Algorithm 1 Linearized LQR
Require: Given a problem horizon N , and an expansion point (x̄, ū) corre-

sponding to where the system should be
Compute Ak, Bk, dk by expansion
Cost function is the same because it is already quadratic
Use LQR, with dynamics Ak, Bk, dk and cost matrices Qk, Rk, qk to obtain
controller Lk, lk for k = 0, . . . , N − 1.
In a state xk, the control law is u∗

k = l̄k + Lkxk

• Select expansion point x̄, ū as desired state
• Usually Ak = A, Bk = B so just choose a large N and use L0, l0

s lecture_06_linearize_b.py
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Quiz: Linearized LQR?

Which one of the following statements is correct?
a. We should apply Exponential Integration to the linearized dynamics
Ak(= Jxfk(x̄, ū)) and Bk before applying LQR
b. Assuming ∆ is small enough, the error incurred by Euler discretization
can be managed.
c. Assuming we plan on a sufficiently long horizon, the linear approximation
to the dynamics does not result in major issues
d. This is a computationally inefficient method compared to e.g. Direct
control
e. Don’t know
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Fixing linearization method

• Problem: The system may be far from x̄, ū giving a poor approximation
• Idea: Select expansion points x̄, ū near current trajectory xk, uk

• How?
• Start with initial guess x̄k, ūk (nominal trajectory)
• Approximate around this guess
• Use LQR on approximation to get initial control law
• Simulate trajectory based on this control law
• Use the trajectory as a new guess and repeat
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LQR Tracking around Nonlinear Trajectory

Given initial guess x̄k, ūk (nominal trajectory) for k = 1, 2, . . . , N − 1

xk+1 ≈ fk (xk, uk)︸ ︷︷ ︸
xk+1

+ ∂fk

∂x
(xk, uk)

︸ ︷︷ ︸
Ak

(xk − xk)︸ ︷︷ ︸
δx

+ ∂fk

∂u
(xk, uk)

︸ ︷︷ ︸
Bk

(uk − uk)︸ ︷︷ ︸
δu

Introduce new variables signifying deviation around the nominal trajectory:

δxk = xk − x̄k, δuk = uk − ūk.

Back-substituting gives:

δxk+1 =Akδxk + Bkδuk
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Expansion of the cost function

We then expand the cost-function around: zk =
[
xk

uk

]
and z̄ =

[
x̄
ū

]
:

ck(xk, uk) ≈ ck(x̄, ū) + (∇zck(x̄, ū))⊤ (zk − z̄) + 1
2(zk − z̄)⊤Hz̄(zk − z̄)

Multiplying out all the terms gives a quadratic approximation:

ck = ck(x̄, ū)
cx,k = ∇xck(x̄, ¯̄u), cu,k = ∇uck(x̄, ū)

cxx,k = Hxck(x̄, ū), cuu,k = Huck(x̄, ū)
cux,k = Jx∇uck(x̄, ū)
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Expansion of the cost function

all in all we get a quadratic cost function:

ck(δxk, δuk) = 1
2δx⊤

k cxx,kδxk + c⊤
x,kδxk

+ 1
2δu⊤

k cuu,kδuk + c⊤
u,kδuk + δu⊤

k cux,kδxk + ck

cN (δxN ) = 1
2δx⊤

N cxx,N δxN + c⊤
x,N δxN + cN
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Linearized solution to actual controls

Given initial trajectory x̄k, ūk

• Use previous derivation to get linear-quadratic problem Ak, Bk, . . .

• Put this problem into LQR
• Once problem is solved, the control inputs obey

δu∗
k = lk + Lkδxk

• Rearranging
(u∗

k − ūk) = lk + Lk(xk − x̄k)

• Or
u∗

k = ūk + lk + Lk(xk − x̄k)
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Basic iLQR Algorithm

Algorithm 2 Basic iLQR
Require: Given initial state x0

1: Set x̄k = x0, ūk = 0 (or a random vector), Lk = 0 and lk = 0
2: x̄k, ūk ← Forward-Pass(x̄k, ūk, Lk, lk) ▷ Compute initial nominal trajectory using

eq. (17.10) .
3: for i = 0 to a pre-specified number of iterations do
4: Ak, Bk, ck, cx,k, cu,k, cxx,k, cux,k, cuu,k ← Get-derivatives(x̄k, ūk)
5: Lk, lk ← Backward-Pass(Ak, Bk, ck, cx,k, cu,k, cxx,k, cux,k, cuu,k, µ)
6: J (i) ← Cost-of-trajectory(x̄k, ūk)
7: x̄k, ūk ← Forward-Pass(x̄k, ūk, Lk, lk)
8: end for
9: Compute control law πk(xk) = ūk + l̄k + Lk(xk − x̄k)

10: return {πk}N−1
k=0

11: function Forward-pass(x̄k, ūk, Lk, lk) ▷ Forward-simulation of dynamics
12: Set x0 = x̄0
13: for all k = 0, . . . , N − 1 do
14: u∗

k ← ūk + Lk(x_k − x̄k) + lk ▷ see eq. (17.16)
15: xk+1 ← fk(xk, u∗

k)
16: end for
17: return xk, u∗

k

18: end function
19: function Backward-pass(Ak, Bk, ck, cx,k, cu,k, cxx,k, cux,k, cuu,k, µ) eq. (17.14)
20: Compute Lk, lk using dLQR with µ, algorithm 22 ▷ Obtain control law
21: end function
22: function Cost-of-trajectory(x̄k, ūk)
23: return cN (x̄N ) + ∑N−1

k=0 ck(x̄k, ūk)
24: end function
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Basic iLQR: Pendulum swingup task

Pendulum starts at θ = π and θ̇ = 0 and controller tries to swing it up
θ = 0
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s lecture_06_pendulum_bilqr_L

s lecture_06_pendulum_bilqr_ubar
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Iterative LQR

Basic iLQR is not very numerically stable. iLQR adds two ideas:
• Use regularization to stabilize the discrete LQR algorithm (µ)
• Search for policies that are close to the old ones. Recall:

u∗
k = uk +lk + Lk(xk − xk)

• Since (xk − xk) assumed small (and Lk stabilized by µ), decreasing lk means
new control closer to old.
• Specifically, introduce 0 ≤ α ≤ 1

u∗
k = uk +αlk + Lk(xk − xk)
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Iterative LQR Procedure

• Initialize regularization parameter to a fairly low value µ

• In the forward pass try smaller and smaller changes to trajectory (α-values)
• For each α-value check if the cost J (i) decreases relative to J (i−1). If so, accept

this α and decrease the regularization parameter µ by a small amount
• If no α-value works, increase the regularization parameter µ by a small amount
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iLQR Algorithm
Algorithm 3 iLQR
Require: Given initial state x0

1: µmin ← 10−6, µmax ← 1010, µ← 1, ∆0 ← 2 and ∆← ∆0
2: Initialize x̄k, ūk as before
3: for i = 0 to a pre-specified number of iterations do
4: Ak, Bk, ck, cx,k, cu,k, cxx,k, cux,k, cuu,k ← Get-derivatives(x̄k, ūk)
5: Lk, lk ← Backward-Pass(Ak, Bk, ck, cx,k, cu,k, cxx,k, cux,k, cuu,k, µ)
6: J ′ ← Cost-of-trajectory(x̄k, ūk)
7: for α = 1 to a very low value do
8: x̂k, ûk ← Forward-Pass(x̄k, ūk, Lk, lk, α)
9: Jnew ← Cost-of-trajectory(x̂k, ûk)

10: if Jnew < J ′ then
11: if 1

J ′ |Jnew − J ′| < a small number then
12: Method has converged, terminate outer loop and return
13: end if
14: J ′ ← Jnew

15: x̄k ← x̂k and ūk ← ûk

16: α accepted: Update ∆ and µ using eq. (17.19) ▷ Reduce regularization
17: Break loop over α
18: end if
19: end for
20: if No α-value was accepted then
21: Update ∆ and µ using eq. (17.18) ▷ Increase regularization
22: end if
23: end for
24: Compute controller {πk}N−1

k=0 as before from Lk, lk

s lecture_06_pendulum_ilqr_L

s lecture_06_pendulum_ilqr_ubar
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Iterative LQR

Given x0 and fk, ck, cN ; initialize uk

• Simulate xk and compute matrices for linearized problem as well as cost Ju(x0)
• Solve for δu∗

k using regularization µ

• Loop over α starting at α = 1
• Obtain controls u∗

k with α (see [?, Eq.(12)])

u∗
k = uk +αlk + Lk(xk − xk) (4)

• If cost Ju∗(x0) < Ju(x0) accept α/decrease µ

• (On failure to find α increase regularization µ)
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Full iLQR: Pendulum swingup task

Pendulum starts at θ = π and θ̇ = 0 and controller tries to swing it up
θ = 0
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Basic iLQR Algorithm Example
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iLQR Algorithm Example
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Model Predictive Control

Model-predictive control/receding horizon control
Iteratively solve optimization problem on short time scale

• Long horizon equals great computation, uncertainty
• Solving problem on short horizon often sufficient
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Model Predictive Control
• Solve control problem u0, . . . , uN−1 for a small number of steps N

• Apply control u0 from first step
• Repeat

t t+N

Control Action at time t

Control Horizon

t+1 t+1+N

Control Action at time t+1

Control Horizon
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Appendix: MPC can be understood as dynamical programming
DP applied in the starting state (optimal):

J∗(x0) = min
u0

E [J∗
1 (x1) + g0 (x0, u0, w0)]

d-step rollout of DP (optimal):

J∗(x0) = min
µ0,...,µd−1

E
[
J∗

d (xk+d) +
d−1∑

k=0
gk (xk, µk (xk) , wk)

]

Deterministic simplification for control (optimal):

J∗(x0) = min
u0,...,ud−1

[
J∗

d (xk+d) +
d−1∑

k=0
ck (xk, uk)

]

• MPC: Approximate J∗
d (xk+d) and just plan on d-horizon

• Re-plan at each step
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