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R R R 7 February 28 March
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Housekeeping = A bit of analysis
® Suppose f: R™ — R is a well-behaved function
® The gradient is defined as:
)
B_If‘(w)
® Most of the feedback for project 1 is online on DTU Learn Vi) = af:
® The rest will be available in a few days a5, ()
® Exam is expected to be in English (you can answer in Danish or English)
® The Hessian is defined as
Pf ’f ... _9f
oz7 9z, 012 a0y,
*f *r .. _9F
H- | 7%0n a2 2301,
T TR T
Dxn0z,  Dwndaz a2
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More analysis Approximations

® Let f: R"™ — R™ be a well-behaved multi-variate function defined as
® Given the gradient and Hessian we can approximate f around @

Ji(x) 1
f(x) = : fx+A)~ f(x)+ Vix)TA+ EATH(X)A
fm(x)
® A similar expression can be obtained for a multi-variate f:
® The Jacobian matrix is defined as:
on . on f(x+ A) ~ f(z) + Je(z)A
9, Dirn
Jp(z) = % % ]= Lo Fundamental relations that are the basis for gradient descent, many

Q,L e Um higher-order optimization methods and all sorts of ML
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Apply dynamical programming:

® Define Viy = Qn and initialize:

X 1 1
Iy (xn) = EzvaQNEN = EzITVVNmN

® DP iteration (start at k = N — 1)

Ty (zx) = I?len E {gx (@1, wr, wi) + Jeg1 (fr (@, wr, wy))}

® Remember to store optimal uj;, as 7y (z) = uj;
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DTU
From last time: The Linear-quadratic regulator =
®Fork=0,1,....,N 1
Trt1 = fr(@p, ug, wi)= Agzy, + Brug,
1 1
Ik (Thy up, Wi )= 5.1:,TQ;W1?;\, —+ ;u;_r Ryug,
1
gn(zx)= ii‘IvQ;\'wx
® The accumulated cost is:
N-1
Ju(zo) = gy (2N) + Z i (xk, ur)
k=0
® We put this into the dynamical programming algorithm and...
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LQR, simplified form =
This gives the controller:
OVy =Qn
@ Li; = —(Ri + Bl Vi1 Br) " (B Viy1 Ar)
O Vi = Qi + LY Ry Ly, + (Ag + BiLi)" Vi1 (A + By Ly)
Qu’[ = Lkwk
0 Ji(xy) = %w{‘/}\z,‘
9 DTU Compute Lecture 7 21 March, 2025
DTU
Exponential integrator =3

® Apply discrete LQR
® Simulate starting in &g = [(1)] using policy
me(zk) = Lixy

® What about the true system &(t) = f(x,u)?

Double integrator

10 —o— rho=0.1
o~ rho=10
—e— rho=100
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DTU
Double Integrator Example =
® True dynamics
. 0 1 0
&(t) = [0 0] xz(t) + [1] u(t) (1)
® Euler discretization using A = 1 System evolves according to:
11 0
Tpy1 = [0 1:| Ty + [1:| wy
~—— ~~
—A =B
® Quadratic cost function:
o} 1
J(xp) = Z Ekaka + iu;R,‘,.uk
k=0
® Where:
2.0
= =|r , R=1
Qr=Qn [0 0] ;
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DTU
The most general form of LQR =
® General dynamics:
Tpy1 = Apxy + Brug + dy
® General quadratic cost:
1 1 . s .
o (mp, up) = 51,{ Q) + Euf. Ry + ul Hyxy, + qF @) + 75wy + qr
o (@) = STLQNTk +an@etav S T
2 ' !’
L
iy
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Quiz: LQR

Which one of the following statements is correct?

a. Control problems where the continuous-time dynamics takes the form
& = a® + bx + ¢ + u falls outside the scope of the linear quadratic regulator

b. The linear-quadratic regulator is an example of model-free control

c. In a linear-quadratic control problem of the form 1 = Axy + Buyg, the
matrices A and B must both be square.

d. The cost-functions suitable for a linear-quadratic regulator can potentially
produce negative values

e. Don't know.
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Discretization =
uk M 1 1
L%/ T e
/ LT
tr Tr+1

® Choose grid size N: to,t1,...,.tx =tp, tpe1 —tp = A
oy = (ty), wr = u(ty)
® Eulers method @j41 = @ + Af (@), ur)

® Discretized dynamics will have the form:

1 = fr(@r, ur)

DTU
General discrete LQR algorithm :;x:f’wzlf‘k':‘ggﬂﬁ in luxury and =
oo (Viegr + pud) -+
L. Vy = Qn; vn = gn; v = qn
) T
2. -1 Su.k =T+ Bk .+1+ Bk Vk+1dk
Lk =-S5 u,kSua:.k T
1 Suuk = Ry + By Vi1 By
I, = _Suu.ksu-k T
Suak = Hi + By Vi1 Ag.
3. Vi = Qk + AL Vi1 A — L Suur Ly
V= qr + A{(’U}H.l + Viqady) + SZa:.klk
1 1
T T T
Vg = Vps1 + Qr + dp Vs + §dk Virr1di + ilk Suk
4. up, = Uy + Ly
5. Je(zy) = %z[Vkmk + ’UZ:Bk + V.
(more seriously 1 is a regularization term: ;. — co = u — 0)
13 DTU Compute Lecture 7 21 March, 2025
DTU
Controlling non-linear systems: Cartpole =3
m
1
M
® Continuous coordinates x(t) = [ac(t) a(t) 0(t) 6‘(t)]
® Action u is one-dimensional; the force applied to cart
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DTU
Cartpole cost function =3
m
1
M
® We also apply a variable transformation:
bo:z @ 0 ][z @ sin(@) cos(d) 4]. (2)
® The cost function is of the form:
0]\ " 0
1 0 0 1
2
(e, w) =5 [~ |0 Q@ |0) | + gllul
1 1
0 0

[+ ) lecture_06_linearize.py
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Controlling a non-linear system =

® We know how to solve a linear/quadratic control problems of the form
Tr1 = Apxy + Bruy + di
1 1
cp(xp, uy) = Ekaka + §ukT.Ruk +---
® How can we use that to solve a problem with non-linear dynamics?

Tpi1 = fr(@r, uk)
cr(®r,up) =+
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Linearization and iLQR

Algorithm 1 Linearized LQR

Require: Given a problem horizon N, and an expansion point (Z,u) corre-
sponding to where the system should be
Compute Ay, By, dy by expansion
Cost function is the same because it is already quadratic
Use LQR, with dynamics Ay, By, dj; and cost matrices Qy, Ry, q;. to obtain
controller Ly, 1y fork=0,...,N — 1.
In a state xy, the control law is u}, = 1, + Ly,

® Select expansion point ,u as desired state
® Usually Ay = A, By, = B so just choose a large N and use Ly, [,

[+ ) lecture_06_linearize_b.py

(] 11]
Solution: Linearization! =
Assume a general dynamics:
@1 = i (@, ), (@k, ug)
Assume system is near &, w. Expand using Jacobians
o ofr . _ _ Ofr . _ _
Fulweu) ~ o) + 00 ) - ) + O ) )
—_—— —_—
Ap By
Simplifies to:
Zp1 = Apxy, + Bruy + fi(T,u) — Ay — Bru
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DTU
Quiz: Linearized LQR? =

Which one of the following statements is correct?

a. We should apply Exponential Integration to the linearized dynamics
Ak(= Jof (&, u)) and By, before applying LQR

b. Assuming A is small enough, the error incurred by Euler discretization
can be managed.

c. Assuming we plan on a sufficiently long horizon, the linear approximation
to the dynamics does not result in major issues

d. This is a computationally inefficient method compared to e.g. Direct
control

e. Don't know
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LQR Tracking around Nonlinear Trajectory

Given initial guess &y, u) (nominal trajectory) for k =1,2,...,N —1

o ofr _ ofr _
Tp1 = fr (Tp, @x) + % @k, wr) (z — Zp) + % (@, W) (ug — )
Foor & T

Introduce new variables signifying deviation around the nominal trajectory:

5wk =Ty — .’TD/WI Suk =Uup — ﬁk.

Back-substituting gives:

(ka+1 =Adxy, + Brouy
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Fixing linearization method =
® Problem: The system may be far from &, u giving a poor approximation
® |dea: Select expansion points &, @ near current trajectory @y, uy
® How?
® Start with initial guess &y, u) (nominal trajectory)
® Approximate around this guess
® Use LQR on approximation to get initial control law
® Simulate trajectory based on this control law
® Use the trajectory as a new guess and repeat
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Expansion of the cost function =

We then expand the cost-function around: z; =

a””} and z = [ﬂ
Up u

o _ 1 _ _
cr(@r, wr) & ox(Z,8) + (Vaen(@,0) " (21 = 2) + 5 (2 = 2) Ha (2 — 2)
Multiplying out all the terms gives a quadratic approximation:

ek = cp(@,u)
Cok = Vaer(Z, @), cur= Vuck(T,u)
Cpak = Hecp(Z, ),  cyur = Hucr(Z,u)
Cuz ke = JoVucr(T,w)
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Expansion of the cost function =
all in all we get a quadratic cost function:
(5, ) = 2627 comid d
cp(0xy, duy) = 502 Coz k0T k + Cp 0T,
L] cunsd 0 SU, Cup 10
+ 3 Uy, Cyu, kOUK + Cyy ) 0UE + Oy, Cyg KOT + Ck
sen) = ~oak 5 T N0
CN( :EN) = 5 L NCzz, NOLN + Co NOTN + CN
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Basic iLQR Algorithm =
Algorithm 2 Basic ILQR
Require: Given initial state xg
1 Set &), = @, i = 0 (or a random vector), Ly = 0 and Iy = 0
2 &y, uy + FORWARD-PASS(&y, uy, Lg,l;) > Compute initial nominal trajectory using
eq. (17.10)
3: for i = 0 to a pre-specified number of iterations d
& Ap Bl Cho Co ks Cuer oo Cue s Cun e GET-DERIVATIVES (., ity.)
5 Ly, Ui + Bas ARD-PA: Ak, B, Ck, Ca ks Cu ks Caa ks Cu s Cun s 1)
6 JO « CosT-0F-TRA. ORY (&, )
7: &g, Uy < FORWARD-PASS(Zy, wg, L, i)
8: end for
9: Compute control law m(ax) = . + Iy + Li() — &1)
10: return {7}
11 function FORWARD-PASS(&., ik, Ly, L) & Forward-simulation of dynamics
12 Set @y = g
13 forall k=0,....] N —1do
14 uf e g + Ly(a_k — &) + by > see eq. (17.16)
15: @psy — frl@p,ug)
16: end for
17 return ., uj,
18: end function
19: function BACKWARD-PASS( Ak, B Cks o ks Cuks Com ks Cue s Cune s 12) €4 (17.14)
2. Compute Ly, I using dLQR with yz, algorithm 22 © Obtain control law
21: end function
22: function COST-OF-TRAJECTORY (&, i)
23 return ey (@) + Sy ok, w)
24: end function
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Iterative LQR =

Basic iLQR is not very numerically stable. iLQR adds two ideas:
® Use regularization to stabilize the discrete LQR algorithm (1)

® Search for policies that are close to the old ones. Recall:
wj, = g+l + Li(xr — T)

® Since (z), — T),) assumed small (and L, stabilized by 1), decreasing [, means
new control closer to old.

® Specifically, introduce 0 < a <1

wy, = Uy +aly + Li(zr — Tk)

29 DTU Compute Lecture 7 21 March, 2025

DTU
Linearized solution to actual controls =
Given initial trajectory &y, uy
® Use previous derivation to get linear-quadratic problem Ay, By, ...
® Put this problem into LQR
® Once problem is solved, the control inputs obey
duy, =l + Lpdxy,
® Rearranging
(uf — ) = U + Li(z) — &)
* Or
uy, = up + U + Li(xp — @)
26 DTU Compute Lecture 7 21 March, 2025
DTU
Basic iLQR: Pendulum swingup task =
Pendulum starts at § = 7 and @ = 0 and controller tries to swing it up
0=0
Phase Plot (not using linesearch)
Total cost-to-go (not using linesearch)
12000 °
a
10000
3
5000 -
H g2
2 000 4
4 g1
4000
]
2000 o
o = -2
o 25 50 75 100 125 150 175 200 2 3 4 5 6
Iteration 6 (rad)
[+ ) lecture_06_pendulum_bilqr_L
[+ ) lecture_06_pendulum_bilqr_ubar
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Iterative LQR Procedure =

® |nitialize regularization parameter to a fairly low value p
® In the forward pass try smaller and smaller changes to trajectory (a-values)

® For each a-value check if the cost .J(?) decreases relative to J~1). If so, accept
this o and decrease the regularization parameter ;. by a small amount

® If no a-value works, increase the regularization parameter ;. by a small amount

30 DTU Compute Lecture 7 21 March, 2025
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iLQR Algorithm

Algorithm 3 iLQR
Require: Given initial state @
1 fimin < 1078, jimax < 101, 11, Ag 2 and A A
2. Initialize Zy., i as before
3: for i = 0 to a pre-specified number of iterations do

4 Ap, Biy e \ Caw ks Cuz s Cuuk — GET-DERIVATIVES(Zy., )

5; L, I + BA ARD- S( Ak, Bi, Ck, Ca ks Cu ks Caz ks Cuz ks Cun oo )

6: J' « COST-OF-TRAJECTORY (&, iy )

7 for a = 1 to a very low value do

8: &, @) + FORWARD-PASS(&, g, Li, U, )

o JU¥ ¢ COST-OF-TRAJECTORY (1., itk)

10 if J"% < .J' then

1 if |J7 — J'| < a small number then

12 Method has converged, terminate outer loop and return

13 end if

14: J = Jrew

15 Ty @y and wy

16: « accepted: Update A and p using eq. (17.19) > Reduce regularization
17 Break loop over «

18 end if

19: end for

20 if No a-value was accepted then

2 Update A and i using eq. (17.18) & Increase regularization
22: end if

23: end for

24: Compute controller {m}1 ;' as before from Ly, li

W 1ecture_06_pendulum_ilqr_L
W 1ecture_06_pendulum_ilqr_ubar
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Iterative LQR

Given x and f, ¢k, cn; initialize @y,
® Simulate @), and compute matrices for linearized problem as well as cost J5 (7o)
® Solve for duj, using regularization
® Loop over « starting at o = 1
® Obtain controls uj, with a (see [TET12, Eq.(12)])
wj, = Uy +aly, + Li(x, — ) (7)

® If cost Jy-(20) < Ju(To) accept av/decrease

® (On failure to find « increase regularization 1)
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Full iLQR: Pendulum swingup task =
Pendulum starts at # = 7 and 6 = 0 and controller tries to swing it up
0=0
Total cost-to-go (using linesearch) . Phase Plot (using linesearch)
3500 4
3000 ,
_ 2500 g
HE
E 2000 5
& -2
1500
-
1000
-6
500
0 20 40 80 100 120 140 o 1 2 3 4 5 6
Iteration 8 (rad)
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iLQR Algorithm Example

100 — Closedioop mtx
Openionp 0, w
o LR prediction 3,

000
025
-050
015 10
100 T 1 w %
£ 3 To 15 70 25 30
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Basic iLQR Algorithm Example

e
~+ on prediey
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Model Predictive Control

Large Obstncle&voidance /

,l/

Model-predictive control/receding horizon control

Iteratively solve optimization problem on short time scale

® Long horizon equals great computation, uncertainty

® Solving problem on short horizon often sufficient
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Model Predictive Control
® Solve control problem wq, ..., uy_; for a small number of steps N
® Apply control ug from first step

® Repeat

Control Horizon

Control Horizon

t+1 1N
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DTU
Appendix: MPC can be understood as dynamical programming=

DP applied in the starting state (optimal):
J*(z0) = n;ﬂ)n]E [J7 (z1) + go (w0, uo, wo)]

d-step rollout of DP (optimal):

J*(z9) = min
(w0) 0ol

-1
E [J:f (@hta) + Y gk (ki (k) -,wk):|
k=0

Deterministic simplification for control (optimal):
d—1
J* = i Jj Uk
(@) =, min [ 1 (Th+a) +)§)0k (wk,m)]

® MPC: Approximate J;(x;+q) and just plan on d-horizon

® Re-plan at each step
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