
02465: Introduction to reinforcement learning and control

Linearization and iterative LQR

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)

Lecture Schedule

Dynamical programming

1 The finite-horizon decision problem
7 February

2 Dynamical Programming
14 February

3 DP reformulations and introduction to
Control
21 February

Control

4 Discretization and PID control
28 February

5 Direct methods and control by
optimization
7 March

6 Linear-quadratic problems in control
14 March

7 Linearization and iterative LQR
21 March

Reinforcement learning

8 Exploration and Bandits
28 March

9 Bellmans equations and exact planning
4 April

10 Monte-carlo methods and TD learning
11 April

11 Model-Free Control with tabular and
linear methods
25 April

12 Eligibility traces
2 May

13 Deep-Q learning
9 May

Syllabus: https://02465material.pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn

2 DTU Compute Lecture 7 21 March, 2025

Housekeeping

• Most of the feedback for project 1 is online on DTU Learn
• The rest will be available in a few days

• Exam is expected to be in English (you can answer in Danish or English)

3 DTU Compute Lecture 7 21 March, 2025

A bit of analysis

• Suppose f : Rn → R is a well-behaved function
• The gradient is defined as:

∇f(x) =




∂f
∂x1

(x)
...

∂f
∂xn

(x)




• The Hessian is defined as

H =




∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n




4 DTU Compute Lecture 7 21 March, 2025

More analysis

• Let f : Rn → Rm be a well-behaved multi-variate function defined as

f(x) =




f1(x)
...

fm(x)




• The Jacobian matrix is defined as:

Jf (x) =
[

∂f
∂x1

· · · ∂f
∂xn

]
=




∂f1
∂x1

· · · ∂f1
∂xn...

∂fm

∂x1
· · · ∂fm

∂xn




5 DTU Compute Lecture 7 21 March, 2025

Approximations

• Given the gradient and Hessian we can approximate f around x

f(x + ∆) ≈ f(x) +∇f(x)T∆ + 1
2∆TH(x)∆

• A similar expression can be obtained for a multi-variate f :

f(x + ∆) ≈ f(x) + Jf (x)∆

Fundamental relations that are the basis for gradient descent, many
higher-order optimization methods and all sorts of ML

6 DTU Compute Lecture 7 21 March, 2025

From last time: The Linear-quadratic regulator

• For k = 0, 1, . . . , N − 1

xk+1 = fk(xk, uk, wk)= Akxk + Bkuk,

gk(xk, uk, wk)= 1
2x⊤

k Qkxk + 1
2u⊤

k Rkuk,

gN (xk)= 1
2x⊤

N QN xN

• The accumulated cost is:

Ju(x0) = gN (xN) +
N−1∑

k=0
gk(xk, uk)

• We put this into the dynamical programming algorithm and...

7 DTU Compute Lecture 7 21 March, 2025

Apply dynamical programming:

• Define VN ≡ QN and initialize:

J∗
N (xN) = 1

2xT
N QN xN = 1

2xT
N VN xN

• DP iteration (start at k = N − 1)

Jk (xk) = min
uk

E
wk

{gk (xk, uk, wk) + Jk+1 (fk (xk, uk, wk))}

• Remember to store optimal u∗
k as πk(xk) = u∗

k

8 DTU Compute Lecture 7 21 March, 2025

threehours2

LQR, simplified form

This gives the controller:
1 VN = QN

2 Lk = −(Rk + BT
k Vk+1Bk)−1(BT

k Vk+1Ak)

3 Vk = Qk + LT
k RkLk + (Ak + BkLk)T Vk+1(Ak + BkLk)

4 u∗
k = Lkxk

5 J∗
k (xk) = 1

2 xT
k Vkxk

9 DTU Compute Lecture 7 21 March, 2025

Double Integrator Example
• True dynamics

ẋ(t) =
[
0 1
0 0

]
x(t) +

[
0
1

]
u(t) (1)

• Euler discretization using ∆ = 1 System evolves according to:

xk+1 =
[
1 1
0 1

]

︸ ︷︷ ︸
=A

xk +
[
0
1

]

︸︷︷︸
=B

uk

• Quadratic cost function:

J(x0) =
N∑

k=0

1
2x⊤

k Qxk + 1
2u⊤

k Rkuk

• Where:
Qk = QN =

[2
ρ 0
0 0

]
, R = 1

10 DTU Compute Lecture 7 21 March, 2025

Exponential integrator
• Apply discrete LQR

• Simulate starting in x0 =
[
1
0

]
using policy

πk(xk) = Lkxk

• What about the true system ẋ(t) = f(x, u)?

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Steps k

0.0

0.2

0.4

0.6

0.8

1.0

x 1
=

 x
[0

]

Double integrator
rho=0.1
rho=10
rho=100

11 DTU Compute Lecture 7 21 March, 2025

The most general form of LQR

• General dynamics:
xk+1 = Akxk + Bkuk + dk

• General quadratic cost:

ck (xk, uk) = 1
2xT

k Qkxk + 1
2uT

k Rkuk + uT
k Hkxk + qT

k xk + rT
k uk + qk

cN (xk) = 1
2xT

k QN xk + qT
N xk + qN

12 DTU Compute Lecture 7 21 March, 2025

threehoursc

General discrete LQR algorithm

(more seriously µ is a regularization term: µ→∞⇒ u→ 0)

13 DTU Compute Lecture 7 21 March, 2025

aa1fix1

Quiz: LQR

Which one of the following statements is correct?
a. Control problems where the continuous-time dynamics takes the form
ẍ = aẋ + bx + c + u falls outside the scope of the linear quadratic regulator
b. The linear-quadratic regulator is an example of model-free control
c. In a linear-quadratic control problem of the form xk+1 = Axk + Buk, the
matrices A and B must both be square.
d. The cost-functions suitable for a linear-quadratic regulator can potentially
produce negative values
e. Don’t know.

14 DTU Compute Lecture 7 21 March, 2025

Controlling non-linear systems: Cartpole

• Continuous coordinates x(t) =
[
x(t) ẋ(t) θ(t) θ̇(t)

]

• Action u is one-dimensional; the force applied to cart

15 DTU Compute Lecture 7 21 March, 2025

Discretization

• Choose grid size N : t0, t1, . . . , tN = tF , tk+1 − tk = ∆
• xk = x(tk), uk = u(tk)
• Eulers method xk+1 = xk + ∆f(xk, uk)
• Discretized dynamics will have the form:

xk+1 = fk(xk, uk)

16 DTU Compute Lecture 7 21 March, 2025

Cartpole cost function

• We also apply a variable transformation:
ϕx :

[
x ẋ θ θ̇

]
7→

[
x ẋ sin(θ) cos(θ) θ̇

]
. (2)

• The cost function is of the form:

c(xk, uk) = 1
2




x−




0
0
0
1
0







⊤

Q




x−




0
0
0
1
0







+ 1
2∥uk∥2

s lecture_06_linearize.py
17 DTU Compute Lecture 7 21 March, 2025

Controlling a non-linear system

•We know how to solve a linear/quadratic control problems of the form

xk+1 = Akxk + Bkuk + dk

ck(xk, uk) = 1
2x⊤

k Qxk + 1
2u⊤

k Ruk + · · ·

• How can we use that to solve a problem with non-linear dynamics?

xk+1 = fk(xk, uk)
ck(xk, uk) = · · ·

18 DTU Compute Lecture 7 21 March, 2025

Solution: Linearization!

Assume a general dynamics:

xk+1 = fk (xk, uk) , c (xk, uk)

Assume system is near x̄, ū. Expand using Jacobians

fk(xk, uk) ≈ fk(x̄, ū) + ∂fk

∂x
(x̄, ū)

︸ ︷︷ ︸
Ak

(xk − x̄) + ∂fk

∂u
(x̄, ū)

︸ ︷︷ ︸
Bk

(uk − ū)

Simplifies to:

xk+1 = Akxk + Bkuk + fk(x̄, ū)−Akx̄−Bkū

19 DTU Compute Lecture 7 21 March, 2025

Linearization and iLQR

Algorithm 1 Linearized LQR
Require: Given a problem horizon N , and an expansion point (x̄, ū) corre-

sponding to where the system should be
Compute Ak, Bk, dk by expansion
Cost function is the same because it is already quadratic
Use LQR, with dynamics Ak, Bk, dk and cost matrices Qk, Rk, qk to obtain
controller Lk, lk for k = 0, . . . , N − 1.
In a state xk, the control law is u∗

k = l̄k + Lkxk

• Select expansion point x̄, ū as desired state
• Usually Ak = A, Bk = B so just choose a large N and use L0, l0

s lecture_06_linearize_b.py

20 DTU Compute Lecture 7 21 March, 2025

Quiz: Linearized LQR?

Which one of the following statements is correct?
a. We should apply Exponential Integration to the linearized dynamics
Ak(= Jxfk(x̄, ū)) and Bk before applying LQR
b. Assuming ∆ is small enough, the error incurred by Euler discretization
can be managed.
c. Assuming we plan on a sufficiently long horizon, the linear approximation
to the dynamics does not result in major issues
d. This is a computationally inefficient method compared to e.g. Direct
control
e. Don’t know

21 DTU Compute Lecture 7 21 March, 2025

Fixing linearization method

• Problem: The system may be far from x̄, ū giving a poor approximation
• Idea: Select expansion points x̄, ū near current trajectory xk, uk

• How?
• Start with initial guess x̄k, ūk (nominal trajectory)
• Approximate around this guess
• Use LQR on approximation to get initial control law
• Simulate trajectory based on this control law
• Use the trajectory as a new guess and repeat

22 DTU Compute Lecture 7 21 March, 2025

LQR Tracking around Nonlinear Trajectory

Given initial guess x̄k, ūk (nominal trajectory) for k = 1, 2, . . . , N − 1

xk+1 ≈ fk (xk, uk)︸ ︷︷ ︸
xk+1

+ ∂fk

∂x
(xk, uk)

︸ ︷︷ ︸
Ak

(xk − xk)︸ ︷︷ ︸
δx

+ ∂fk

∂u
(xk, uk)

︸ ︷︷ ︸
Bk

(uk − uk)︸ ︷︷ ︸
δu

Introduce new variables signifying deviation around the nominal trajectory:

δxk = xk − x̄k, δuk = uk − ūk.

Back-substituting gives:

δxk+1 =Akδxk + Bkδuk

23 DTU Compute Lecture 7 21 March, 2025

Expansion of the cost function

We then expand the cost-function around: zk =
[
xk

uk

]
and z̄ =

[
x̄
ū

]
:

ck(xk, uk) ≈ ck(x̄, ū) + (∇zck(x̄, ū))⊤ (zk − z̄) + 1
2(zk − z̄)⊤Hz̄(zk − z̄)

Multiplying out all the terms gives a quadratic approximation:

ck = ck(x̄, ū)
cx,k = ∇xck(x̄, ¯̄u), cu,k = ∇uck(x̄, ū)

cxx,k = Hxck(x̄, ū), cuu,k = Huck(x̄, ū)
cux,k = Jx∇uck(x̄, ū)

24 DTU Compute Lecture 7 21 March, 2025

Expansion of the cost function

all in all we get a quadratic cost function:

ck(δxk, δuk) = 1
2δx⊤

k cxx,kδxk + c⊤
x,kδxk

+ 1
2δu⊤

k cuu,kδuk + c⊤
u,kδuk + δu⊤

k cux,kδxk + ck

cN (δxN) = 1
2δx⊤

N cxx,N δxN + c⊤
x,N δxN + cN

25 DTU Compute Lecture 7 21 March, 2025

Linearized solution to actual controls

Given initial trajectory x̄k, ūk

• Use previous derivation to get linear-quadratic problem Ak, Bk, . . .

• Put this problem into LQR
• Once problem is solved, the control inputs obey

δu∗
k = lk + Lkδxk

• Rearranging
(u∗

k − ūk) = lk + Lk(xk − x̄k)

• Or
u∗

k = ūk + lk + Lk(xk − x̄k)

26 DTU Compute Lecture 7 21 March, 2025

Basic iLQR Algorithm

Algorithm 2 Basic iLQR
Require: Given initial state x0

1: Set x̄k = x0, ūk = 0 (or a random vector), Lk = 0 and lk = 0
2: x̄k, ūk ← Forward-Pass(x̄k, ūk, Lk, lk) ▷ Compute initial nominal trajectory using

eq. (17.10) .
3: for i = 0 to a pre-specified number of iterations do
4: Ak, Bk, ck, cx,k, cu,k, cxx,k, cux,k, cuu,k ← Get-derivatives(x̄k, ūk)
5: Lk, lk ← Backward-Pass(Ak, Bk, ck, cx,k, cu,k, cxx,k, cux,k, cuu,k, µ)
6: J (i) ← Cost-of-trajectory(x̄k, ūk)
7: x̄k, ūk ← Forward-Pass(x̄k, ūk, Lk, lk)
8: end for
9: Compute control law πk(xk) = ūk + l̄k + Lk(xk − x̄k)

10: return {πk}N−1
k=0

11: function Forward-pass(x̄k, ūk, Lk, lk) ▷ Forward-simulation of dynamics
12: Set x0 = x̄0
13: for all k = 0, . . . , N − 1 do
14: u∗

k ← ūk + Lk(x_k − x̄k) + lk ▷ see eq. (17.16)
15: xk+1 ← fk(xk, u∗

k)
16: end for
17: return xk, u∗

k

18: end function
19: function Backward-pass(Ak, Bk, ck, cx,k, cu,k, cxx,k, cux,k, cuu,k, µ) eq. (17.14)
20: Compute Lk, lk using dLQR with µ, algorithm 22 ▷ Obtain control law
21: end function
22: function Cost-of-trajectory(x̄k, ūk)
23: return cN (x̄N) + ∑N−1

k=0 ck(x̄k, ūk)
24: end function

27 DTU Compute Lecture 7 21 March, 2025

Basic iLQR: Pendulum swingup task

Pendulum starts at θ = π and θ̇ = 0 and controller tries to swing it up
θ = 0

0 25 50 75 100 125 150 175 200
Iteration

0

2000

4000

6000

8000

10000

12000

To
ta

l c
os

t

Total cost-to-go (not using linesearch)

2 3 4 5 6
 (rad)

2

1

0

1

2

3

4

5

d
/d

t (
ra

d/
s)

Phase Plot (not using linesearch)

s lecture_06_pendulum_bilqr_L

s lecture_06_pendulum_bilqr_ubar

28 DTU Compute Lecture 7 21 March, 2025

Iterative LQR

Basic iLQR is not very numerically stable. iLQR adds two ideas:
• Use regularization to stabilize the discrete LQR algorithm (µ)
• Search for policies that are close to the old ones. Recall:

u∗
k = uk +lk + Lk(xk − xk)

• Since (xk − xk) assumed small (and Lk stabilized by µ), decreasing lk means
new control closer to old.
• Specifically, introduce 0 ≤ α ≤ 1

u∗
k = uk +αlk + Lk(xk − xk)

29 DTU Compute Lecture 7 21 March, 2025

Iterative LQR Procedure

• Initialize regularization parameter to a fairly low value µ

• In the forward pass try smaller and smaller changes to trajectory (α-values)
• For each α-value check if the cost J (i) decreases relative to J (i−1). If so, accept

this α and decrease the regularization parameter µ by a small amount
• If no α-value works, increase the regularization parameter µ by a small amount

30 DTU Compute Lecture 7 21 March, 2025

iLQR Algorithm
Algorithm 3 iLQR
Require: Given initial state x0

1: µmin ← 10−6, µmax ← 1010, µ← 1, ∆0 ← 2 and ∆← ∆0
2: Initialize x̄k, ūk as before
3: for i = 0 to a pre-specified number of iterations do
4: Ak, Bk, ck, cx,k, cu,k, cxx,k, cux,k, cuu,k ← Get-derivatives(x̄k, ūk)
5: Lk, lk ← Backward-Pass(Ak, Bk, ck, cx,k, cu,k, cxx,k, cux,k, cuu,k, µ)
6: J ′ ← Cost-of-trajectory(x̄k, ūk)
7: for α = 1 to a very low value do
8: x̂k, ûk ← Forward-Pass(x̄k, ūk, Lk, lk, α)
9: Jnew ← Cost-of-trajectory(x̂k, ûk)

10: if Jnew < J ′ then
11: if 1

J ′ |Jnew − J ′| < a small number then
12: Method has converged, terminate outer loop and return
13: end if
14: J ′ ← Jnew

15: x̄k ← x̂k and ūk ← ûk

16: α accepted: Update ∆ and µ using eq. (17.19) ▷ Reduce regularization
17: Break loop over α
18: end if
19: end for
20: if No α-value was accepted then
21: Update ∆ and µ using eq. (17.18) ▷ Increase regularization
22: end if
23: end for
24: Compute controller {πk}N−1

k=0 as before from Lk, lk

s lecture_06_pendulum_ilqr_L

s lecture_06_pendulum_ilqr_ubar

s lecture_06_cartpole31 DTU Compute Lecture 7 21 March, 2025

Iterative LQR

Given x0 and fk, ck, cN ; initialize uk

• Simulate xk and compute matrices for linearized problem as well as cost Ju(x0)
• Solve for δu∗

k using regularization µ

• Loop over α starting at α = 1
• Obtain controls u∗

k with α (see [?, Eq.(12)])

u∗
k = uk +αlk + Lk(xk − xk) (4)

• If cost Ju∗(x0) < Ju(x0) accept α/decrease µ

• (On failure to find α increase regularization µ)

32 DTU Compute Lecture 7 21 March, 2025

tassa20123

Full iLQR: Pendulum swingup task

Pendulum starts at θ = π and θ̇ = 0 and controller tries to swing it up
θ = 0

0 20 40 60 80 100 120 140
Iteration

500

1000

1500

2000

2500

3000

3500

To
ta

l c
os

t

Total cost-to-go (using linesearch)

0 1 2 3 4 5 6
 (rad)

6

4

2

0

2

4

6

d
/d

t (
ra

d/
s)

Phase Plot (using linesearch)

33 DTU Compute Lecture 7 21 March, 2025

Basic iLQR Algorithm Example

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 Closed-loop (xk)
Open-loop uk

iLQR prediction xk

0 25 50 75 100 125 150 175 200
iLQR Iterations

102

103

104

Co
st

 fu
nc

tio
n

es
tim

at
e

J

34 DTU Compute Lecture 7 21 March, 2025

iLQR Algorithm Example

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 Closed-loop (xk)
Open-loop uk

iLQR prediction xk

0 10 20 30 40 50
iLQR Iterations

102

103

Co
st

 fu
nc

tio
n

es
tim

at
e

J

35 DTU Compute Lecture 7 21 March, 2025

Model Predictive Control

Model-predictive control/receding horizon control
Iteratively solve optimization problem on short time scale

• Long horizon equals great computation, uncertainty
• Solving problem on short horizon often sufficient
36 DTU Compute Lecture 7 21 March, 2025

osvg-38

Model Predictive Control
• Solve control problem u0, . . . , uN−1 for a small number of steps N

• Apply control u0 from first step
• Repeat

t t+N

Control Action at time t

Control Horizon

t+1 t+1+N

Control Action at time t+1

Control Horizon

37 DTU Compute Lecture 7 21 March, 2025

Appendix: MPC can be understood as dynamical programming
DP applied in the starting state (optimal):

J∗(x0) = min
u0

E [J∗
1 (x1) + g0 (x0, u0, w0)]

d-step rollout of DP (optimal):

J∗(x0) = min
µ0,...,µd−1

E
[
J∗

d (xk+d) +
d−1∑

k=0
gk (xk, µk (xk) , wk)

]

Deterministic simplification for control (optimal):

J∗(x0) = min
u0,...,ud−1

[
J∗

d (xk+d) +
d−1∑

k=0
ck (xk, uk)

]

• MPC: Approximate J∗
d (xk+d) and just plan on d-horizon

• Re-plan at each step

38 DTU Compute Lecture 7 21 March, 2025

