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Linear-quadratic problems in control
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Lecture Schedule

Dynamical programming

@ The finite-horizon decision problem
7 February

@ Dynamical Programming
14 February

© DP reformulations and introduction to
Control
21 February

Control

@ Discretization and PID control
28 February

@ Direct methods and control by
optimization
7 March

@ Linear-quadratic problems in
control
14 March

@ Linearization and iterative LQR
21 March
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Reinforcement learning

@ Exploration and Bandits
28 March

© Bellmans equations and exact planning
4 April

@ Monte-carlo methods and TD learning
11 April

@® Model-Free Control with tabular and
linear methods
25 April

® Eligibility traces
2 May

@® Deep-Q learning

9 May

Syllabus: https://02465material . pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn
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Reading material:

® [Her25, Chapter 16]

Learning Objectives
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® Linear-quadratic regulator (LQR)
® Derivation of the LQR from DP

® Applications and variations
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Practicals
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® Project evaluations will be ready in about a week
® Part 2:

® | ess programming

® A bit more emphasis on linear algebra; don’t be afraid to write short
answers if they are correct.

® Be inspired by existing examples
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Useful linear algebra

® A matrix A is positive semi-definite if it is symmetric and =" Az > 0 for all
® This means A behaves like a positive number: az? > 0.

® if Ais a symmetric matrix then:

%XTAX +b7x == (x+ A 'b)" A (x+A'b) - %bTA_lb

DN | =

® This allows us to quickly find minimum
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Recap: Dynamical programming algorithm

The Dynamical Programming algorithm

For every initial state x¢, the optimal cost J*(x0) is equal to Jy (zg), and optimal
policy 7* is m* = {0, ..., un—1}, computed by the following algorithm, which
proceeds backward in time from k = N to k = 0 and for each x; € S; computes

In (zn) = gn (zN) (1)
Je(xg) = min  E {gp (g, uk, wr) + Jet1 (fi (Tr, ug, wi))} (2)

ur €Ak (Tr) Wk

pr(zk) =uyp  (uy is the u, which minimizes the above expression).  (3)
v
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Assumptions today
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eFork=0,1,...,N—1

Tp1 = [r(@h, ug, wi)= Arxr + Brug,
1

.
5 Uk Rruy,

1
G (@ge, U, W)= 533;62/#% +

1
gN(ka)Z ix;QNxN

® Note: This is not the most general case, but will illustrate the main ideas
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Apply dynamical programming!

® Define Viy = Qn and initialize:
* 1 T 1 T
Jy (xy) = ;znyQNrxy = ;TN VNEN

2 2

® DP iteration (start at k = N — 1)

i (k) = min E {gp (@, we, we) + Jisr (Fo (@k, wr, wi))}

® Remember to store optimal uj as mp(xy) = uj,
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LQR, simplified form

DP solution gives the controller:
OVN =0Qn
® Ly, = —(Ri + B} Viy1 Br) H(BF Vier1 Ak)
O Vi = Qr + LY R Ly + (Ar + B L) Viy1 (A + Bi.Ly,)
Ou; = Lz

© Ji (i) = Sl Vi
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Double Integrator Example

® True dynamics

o) =y o] =0+ || uto

® Euler discretization using A = 1 System evolves according to:

1 1 0

Thi1 =) 1 T+ 1| Uk
—— ~~
=A =B

® Cost function:

N N1
J(xo) = Z 2*%,1 + Z 5“%
=0 P k=0

® Can be put into standard form using matrices/start position:

L)
a-av-]} Y aei
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Exponential integrator

® Apply discrete LQR

® Simulate starting in @ = [(1)] using policy
mi(zk) = Ly,

® What about the true system &(t) = f(x,u)?

Double integrator

1.04 —— rho=0.1
—o— rho=10
—o— rho=100
0.8 1
0.6 1
S
x
It
< 0.4
0.2 4
0.0 1
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
11 DTU Compute Steps k Lecture 6
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Double integrator example =
. 1 1 0
® Blue: LQR using Euler &1 = 0 1 T + 1| wr
® Red: LQR using Exponential ;.1 = eA%x), + A~! (eAA - I) Buy,
1.0+ —— p=0.1 (Euler discretization) 1.00
0=0.1 (Ei discretization) ’—‘ —— p=0.1 (Euler discretization)
075 p=0.1 (Ei discretization)
0.8 '
0.50 1
5 067 0.25 ‘
< s
é 0al ; 0.00{ —
= < -0.25 1 ‘
0.21 -0.50 1
. -0.75 1 |
| | | | | | -1.001
0 2 4 6 8 10 0 2 a 6 8 10
Time/seconds Time/seconds

® LQR is optimal in discrete problem
® Discrete controller can be bad in real problem (always check!)

® Always use El for linear dynamics
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Quiz: LQR =

Consider a (generic) LQR problem of the form:

Trr1 = Az + Bug (5)
N-14 1

cost = Z —x] Qxy + = Rouy uy, (6)
P 2 2

Where Ry > 0 is a constant. After LQR, the controller selects actions using
uy = Lipxr. What do you think typically happens with the matrix L; when
Ry — oo (very big Ry)

. The entries in L; becomes very small, negative numbers

a
b. The entries in L; becomes very big, positive numbers

(@]

. It is not possible to say anything about the typical case

(=8

. The entries in Lj, gets closer to zero

e. Don't know.
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Example: The locomotive

e -

Steer locomotive (starting at x = —1) to goal (z* = 0)
(1) = u(t) 7
(t) = —u
m

Can be re-written as:

. 0 1 0

T = [0 ol 1 u (8)

Discretized to xy11 = Azxy + Buy.
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Locomotive: PID and LQR

*
e =T — T
€k — k-1
up = exKp + K=
2.0
—— Kp=40,K3=10
1.54 Ky =40,Kg =50
—— Kp=140,Ks=100
1.04
0.51
04
s — X
x 0.0
x 02
-0.5 0.0 = —
-02 g
~1.01 o
-06
=15
-08
-2.0 T T T T T y T T 10 -
0 2 4 6 8 10 12 14 0 2 ' . s o
Time/seconds Time / seconds

® Alternatively: Use a cost function Y, =] Qz) + u/ ux and use LQR!

(+ ) lecture_04_pid_d.py (+ ) lecture_06_lqr_locomotive.py
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Planning on an infinite horizon

Recall LQR has the form:

OVN=0Qn

® L, = — (R + BF Vi1 Br) Y (BF Vi1 Ak)

O Vi = Qr+ LT RyLy, + (A + By L) " Vis1 (Ax + BiLy)
Ou; = Lyxy

@ J;;(CL'/C) = %wkawk

® What happens if we repeat step 2 and 3 many times?
® The method will converge: L, — L
® Select actions uy, = Ly ("'plan until convergence")
® If you think about it, this corresponds to planning on N — co horizon.

® This is quite popular in control theory; what we will do in RL.
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Observations

® The cost term 1z Qx + ju' Ru is smallest when . = u = 0
® Implies that LQR will control system to state x = u =0
® Suppose we want to drive system towards x4, u,”?
* Use c(z,u) = 3(x — 2y)"Q(z — z4) + 5(u —uy)" R(u — uy,)

® more generally assume

1 1
ek (xp, ug) = fackamk + fukauk + ufHkack + q{wk + r{uk +a (9)

2 2
1
en (xg) = 5-’/3%@1\%1@ +qhTL +qn (10)

and dynamics
Tpt1 = Arzy + Brug + di
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How to start living in luxury and
never work again!

..(w:+1+/11)...

General discrete LQR algorithm

L. Vy =Qn; vy = qn; vy = qn
2. Sup =Tk + Birwg .+ BiVid,
Swur = Ry + Bi Vi1 By,

Sua = Hi + B Vi1 Ay

3. Vi = Qi + AL Vi1 Ax — L Suu e L

+ A (Vg4 + Vk+1dk) + ST e klk

=S, ! Sua:,k

uu,k
Su,k

-S

uu,k

Vg

1
Up = Vg1 + Qr + Bpq + §d£Vk+1dk + §lgsu,k

1
Vi (Vi + Vi)
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Doctors hate this one weird trick!
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aa1
fix1
fix2

Boing 747 Example

| —|
Q. 8 8

y —0.003 0.039 0. —0.322 U — Uqgy 0.01 1.

i _ | —0.065 —0.319 7.74 0. W — Wy + —0.18 —0.04 e
i - 0.02 —0.101 —0.429 0. q —1.16 0.598 t
) . . . 6

0. 0.

A B4 B

u(t) — uw(t)
[ y1 () ] _ [1. 0. 0. o ] w(t) — we (1)
yo(t) 0. —-1. 0. 7.74 q(t)

® 31 and yo corresponds to the airspeed and climb rate.
e Start: & = 0 (steady flight)
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Approach

M

® Write dynamics as & = Ax + Bu

® |ntroduce cost function:

/OtF <;(y -y (y—y") + ;uTu> dt

® Discretize dynamics using Exponential Integration to get x; = Ax) 4+ Buy,

® Discretize cost to get one of the form
=1 1
>, 5332@331@ +qx, +qo + iu;Ruk
k=0

e Apply LQR!
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Outcome and a Quiz

® Control law uy, = Lxy,

—— Elevator

104 — Airspeed 8
Climb rate Throttle

Control action
IS o

~

\

0 S—

0 2 3 6 8 10 0 2 4 6 8 10
Time/seconds Time/seconds

Left: airspeed and climb rate. Right: Elevator and throttle

Why does the output adjust quickly but fail to get entirely to the

goal y*?

a. Something bad happened to the dynamics with the exponential

integration
b. The explanation has to do with planning on a finite horizon

c. The explanation is that R in ugRuk should be bigger

CL1 Dﬁﬂlgom@w' Lecture 6
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LQR with Additive Noise
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® Consider the case where there is additive Gaussian noise:
Tpt1 = Apxr + Brug + wy

® We can still solve the problem, and (amazingly!) the noise has no influence on
the control law
u, = Lyxy

® LQR is robust to noise
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Much more to LQR

® Stability/controllability of LQR?
® |mportant subject which we ignore
® What if matrices Ay, By, are random?
® This too can be solved[Ber05, Chapter 4]
® What about partial observation?
® |.e. assume we observe o, = Dx;[Ber05, Chapter 4]
® \What about constraints? What if we know uy, < u; < ug?

® Euler integration is often not ideal.

® Alternatives including error analysis
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[4 D.P. Bertsekas.
Dynamic Programming and Optimal Control.
Number v. 1 in Athena Scientific optimization and computation series.
Athena Scientific, 2005.

ﬁ Tue Herlau.
Sequential decision making.
(Freely available online), 2025.
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