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Lecture Schedule
Dynamical programming

1 The finite-horizon decision problem
7 February

2 Dynamical Programming
14 February

3 DP reformulations and introduction to
Control
21 February

Control

4 Discretization and PID control
28 February

5 Direct methods and control by
optimization
7 March

6 Linear-quadratic problems in
control
14 March

7 Linearization and iterative LQR
21 March

Reinforcement learning

8 Exploration and Bandits
28 March

9 Bellmans equations and exact planning
4 April

10 Monte-carlo methods and TD learning
11 April

11 Model-Free Control with tabular and
linear methods
25 April

12 Eligibility traces
2 May

13 Deep-Q learning
9 May

Syllabus: https://02465material.pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn
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Reading material:
• [Her25, Chapter 16]

Learning Objectives
• Linear-quadratic regulator (LQR)
• Derivation of the LQR from DP
• Applications and variations
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Recap
Practicals

• Project evaluations will be ready in about a week
• Part 2:

• Less programming
• A bit more emphasis on linear algebra; don’t be afraid to write short

answers if they are correct.
• Be inspired by existing examples
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Recap
Useful linear algebra

• A matrix A is positive semi-definite if it is symmetric and x⊤Ax ≥ 0 for all x

• This means A behaves like a positive number: ax2 ≥ 0.
• if A is a symmetric matrix then:

1
2xT Ax + bT x = 1

2
(
x + A−1b

)T A
(
x + A−1b

)
− 1

2bT A−1b

• This allows us to quickly find minimum
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Recap
Recap: Dynamical programming algorithm

The Dynamical Programming algorithm
For every initial state x0, the optimal cost J∗(x0) is equal to J0 (x0), and optimal
policy π∗ is π∗ = {µ0, . . . , µN−1}, computed by the following algorithm, which
proceeds backward in time from k = N to k = 0 and for each xk ∈ Sk computes

JN (xN ) = gN (xN ) (1)
Jk (xk) = min

uk∈Ak(xk)
E
wk

{gk (xk, uk, wk) + Jk+1 (fk (xk, uk, wk))} (2)

µk(xk) = u∗
k (u∗

k is the uk which minimizes the above expression). (3)
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Recap
Assumptions today

• For k = 0, 1, . . . , N − 1

xk+1 = fk(xk, uk, wk)= Akxk + Bkuk,

gk(xk, uk, wk)= 1
2x⊤

k Qkxk + 1
2u⊤

k Rkuk,

gN (xk)= 1
2x⊤

N QN xN

• Note: This is not the most general case, but will illustrate the main ideas
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Linear Quadratic Regulator
Apply dynamical programming!

• Define VN ≡ QN and initialize:

J∗
N (xN ) = 1

2xT
N QN xN = 1

2xT
N VN xN

• DP iteration (start at k = N − 1)

Jk (xk) = min
uk

E
wk

{gk (xk, uk, wk) + Jk+1 (fk (xk, uk, wk))}

• Remember to store optimal u∗
k as πk(xk) = u∗

k
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Linear Quadratic Regulator
LQR, simplified form

DP solution gives the controller:
1 VN = QN

2 Lk = −(Rk + BT
k Vk+1Bk)−1(BT

k Vk+1Ak)

3 Vk = Qk + LT
k RkLk + (Ak + BkLk)T Vk+1(Ak + BkLk)

4 u∗
k = Lkxk

5 J∗
k (xk) = 1

2 xT
k Vkxk
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Linear Quadratic Regulator
Double Integrator Example
• True dynamics

ẋ(t) =
[
0 1
0 0

]
x(t) +

[
0
1

]
u(t) (4)

• Euler discretization using ∆ = 1 System evolves according to:

xk+1 =
[
1 1
0 1

]

︸ ︷︷ ︸
=A

xk +
[
0
1

]

︸︷︷︸
=B

uk

• Cost function:

J(x0) =
N∑

k=0

1
2ρ

x2
k,1 +

N−1∑

k=0

1
2u2

k

• Can be put into standard form using matrices/start position:

Qk = QN =
[ 1

ρ 0
0 0

]
R = 1
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Linear Quadratic Regulator
Exponential integrator
• Apply discrete LQR

• Simulate starting in x0 =
[
1
0

]
using policy

πk(xk) = Lkxk

• What about the true system ẋ(t) = f(x, u)?
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Double integrator
rho=0.1
rho=10
rho=100
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Linear Quadratic Regulator
Double integrator example
• Blue: LQR using Euler xk+1 =

[
1 1
0 1

]
xk +

[
0
1

]
uk

• Red: LQR using Exponential xk+1 = eA∆xk + A−1 (
eA∆ − I

)
Buk
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• LQR is optimal in discrete problem
• Discrete controller can be bad in real problem (always check!)
• Always use EI for linear dynamics
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Linear Quadratic Regulator
Quiz: LQR

Consider a (generic) LQR problem of the form:

xk+1 = Axk + Buk (5)

cost =
N−1∑

k=0

1
2x⊤

k Qxk + 1
2R0u⊤

k uk (6)

Where R0 > 0 is a constant. After LQR, the controller selects actions using
uk = Lkxk. What do you think typically happens with the matrix Lk when
R0 → ∞ (very big R0)
a. The entries in Lk becomes very small, negative numbers
b. The entries in Lk becomes very big, positive numbers
c. It is not possible to say anything about the typical case
d. The entries in Lk gets closer to zero
e. Don’t know.
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Linear Quadratic Regulator
Example: The locomotive

Steer locomotive (starting at x = −1) to goal (x∗ = 0)

ẍ(t) = 1
m

u(t) (7)

Can be re-written as:

ẋ =
[
0 1
0 0

]
x +

[
0
1
m

]
u (8)

Discretized to xk+1 = Axk + Buk.
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Linear Quadratic Regulator
Locomotive: PID and LQR

ek = x∗ − xk

uk = ekKp + Kd
ek − ek−1

∆
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• Alternatively: Use a cost function
∑

k x⊤
k Qxk + u⊤

k uk and use LQR!
s lecture_04_pid_d.py s lecture_06_lqr_locomotive.py
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Linear Quadratic Regulator
Planning on an infinite horizon

Recall LQR has the form:
1 VN = QN

2 Lk = −(Rk + BT
k Vk+1Bk)−1(BT

k Vk+1Ak)

3 Vk = Qk + LT
k RkLk + (Ak + BkLk)T Vk+1(Ak + BkLk)

4 u∗
k = Lkxk

5 J∗
k (xk) = 1

2 xT
k Vkxk

• What happens if we repeat step 2 and 3 many times?
• The method will converge: Lk → L

• Select actions uk = Lxk ("plan until convergence")
• If you think about it, this corresponds to planning on N → ∞ horizon.
• This is quite popular in control theory; what we will do in RL.
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Linear Quadratic Regulator
Observations

• The cost term 1
2 x⊤Qx + 1

2 u⊤Ru is smallest when x = u = 0
• Implies that LQR will control system to state x = u = 0
• Suppose we want to drive system towards xg, ug?

• Use c(x, u) = 1
2 (x − xg)T Q(x − xg) + 1

2 (u − ug)T R(u − ug)
• more generally assume

ck (xk, uk) = 1
2xT

k Qkxk + 1
2uT

k Rkuk + uT
k Hkxk + qT

k xk + rT
k uk + qk (9)

cN (xk) = 1
2xT

k QN xk + qT
N xk + qN (10)

and dynamics
xk+1 = Akxk + Bkuk + dk
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Linear Quadratic Regulator
General discrete LQR algorithm
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Linear Quadratic Regulator
Boing 747 Example

[
u̇
ẇ
q̇

θ̇

]
=

[
−0.003 0.039 0. −0.322
−0.065 −0.319 7.74 0.

0.02 −0.101 −0.429 0.
0. 0. 1. 0.

]

︸ ︷︷ ︸
A

[
u − uw
w − ww

q
θ

]

︸ ︷︷ ︸
x

+

[
0.01 1.

−0.18 −0.04
−1.16 0.598

0. 0.

]

︸ ︷︷ ︸
B

[
e
t

]

︸ ︷︷ ︸
u

[
y1(t)
y2(t)

]
=

[
1. 0. 0. 0.
0. −1. 0. 7.74

]

︸ ︷︷ ︸
=P

[
u(t) − uw(t)
w(t) − ww(t)

q(t)
θ(t)

]

• y1 and y2 corresponds to the airspeed and climb rate.
• Start: x = 0 (steady flight)

• Want: Air-speed of 10: y∗ =
[
10
0

]
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Linear Quadratic Regulator
Approach

• Write dynamics as ẋ = Ax + Bu

• Introduce cost function:
∫ tF

0

(
1
2(y − y∗)⊤(y − y∗) + 1

2u⊤u

)
dt

• Discretize dynamics using Exponential Integration to get xk+1 = Āxk + B̄uk

• Discretize cost to get one of the form
∞∑

k=0

1
2x⊤

k Qxk + qxk + q0 + 1
2u⊤

k Ruk

• Apply LQR!
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Linear Quadratic Regulator
Outcome and a Quiz
• Control law uk = Lxk
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Left: airspeed and climb rate. Right: Elevator and throttle
Why does the output adjust quickly but fail to get entirely to the
goal y∗?
a. Something bad happened to the dynamics with the exponential
integration
b. The explanation has to do with planning on a finite horizon
c. The explanation is that R in u⊤

k Ruk should be bigger
d. Don’t know.21 DTU Compute Lecture 6 14 March, 2025

Linear Quadratic Regulator
LQR with Additive Noise

• Consider the case where there is additive Gaussian noise:

xk+1 = Akxk + Bkuk + ωk

• We can still solve the problem, and (amazingly!) the noise has no influence on
the control law

uk = Lkxk

• LQR is robust to noise
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Linear Quadratic Regulator
Much more to LQR

• Stability/controllability of LQR?
• Important subject which we ignore

• What if matrices Ak, Bk are random?
• This too can be solved[Ber05, Chapter 4]

• What about partial observation?
• I.e. assume we observe ok = Dkxk[Ber05, Chapter 4]

• What about constraints? What if we know uL ≤ uk ≤ uB?
• Euler integration is often not ideal.

• Alternatives including error analysis
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D.P. Bertsekas.
Dynamic Programming and Optimal Control.
Number v. 1 in Athena Scientific optimization and computation series.
Athena Scientific, 2005.
Tue Herlau.
Sequential decision making.
(Freely available online), 2025.
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