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02465: Introduction to reinforcement learning and control

Linear-quadratic problems in control

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)
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Lecture Schedule

Dynamical programming Reinforcement learning
@ The finite-horizon decision problem @ Exploration and Bandits
7 February 28 March
@ Dynamical Programming © Bellmans equations and exact planning
14 February 4 April
© DP reformulations and introduction to @ Monte-carlo methods and TD learning
Control 11 April
21 February @® Model-Free Control with tabular and
Control linear methods
@ Discretization and PID control 25 April
28 February @® Eligibility traces
@ Direct methods and control by 2 May .
optimization @& Deep-Q learning
7 March 9 May
@ Linear-quadratic problems in
control
14 March

@ Linearization and iterative LQR

21 March
Syllabus: https://02465material.pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn
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Reading material:
® [Her25, Chapter 16]

Learning Objectives

e Linear-quadratic regulator (LQR)
@ Derivation of the LQR from DP

® Applications and variations
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Practicals =

® Project evaluations will be ready in about a week
® Part 2:

® Less programming

® A bit more emphasis on linear algebra; don't be afraid to write short
answers if they are correct.

® Be inspired by existing examples

Useful linear algebra

® A matrix A is positive semi-definite if it is symmetric and T Az > 0 for all =
® This means A behaves like a positive number: az? > 0.

e if Ais a symmetric matrix then:

%XTAX +bTx = % (x+Ab) A (x+A D) - %b”'A-lb

® This allows us to quickly find minimum
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Recap: Dynamical programming algorithm =

The Dynamical Programming algorithm

For every initial state x(, the optimal cost J*(xz) is equal to .Jy (o), and optimal
policy 7* is ©* = {0, ..., un—1}, computed by the following algorithm, which
proceeds backward in time from k = N to k = 0 and for each zj, € Sj, computes

Iy (zn) = gn (zN) (1)
Je(zr) = min  E {gx (@, g, wi) + Jps1 (Fr (@r, wr, wi))} (2
u €Ak (zk) Wk

pi(xk) =y, (uy is the uy, which minimizes the above expression).  (3)
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Assumptions today

®Fork=0,1,...,N—1
Tht1 = fr(@p, ug, wi)= Agzy + Bruyg,
k(T ke, Wi )= %x;Qkx;\. + %u;Rku;\u
gn(xr)= %5I'I'(2:\"317;’\'

® Note: This is not the most general case, but will illustrate the main ideas
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LQR, simplified form =
DP solution gives the controller:
OVy=0Qn
@ L. = —(Ri + Bl Vi1 Be) " (Bl Vier1Ar)
O Vi = Qi + LY Ry Ly, + (Ag + BiLi)" Vi1 (A + By Ly)
ouz = Lkwk
0 Ji(xy) = %wKTV;\z,\
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Exponential integrator =3

® Apply discrete LQR
® Simulate starting in €y = [(1)] using policy
m(@k) = Lk

® What about the true system &(t) = f(x,u)?

Double integrator

10 —o— rho=0.1
o~ rho=10
—e— rho=100
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Apply dynamical programming! =
® Define Viy = Qn and initialize:
* 1 r 1 r
Iy (@N) = SENONTN = GENVNEN
® DP iteration (start at k = N — 1)
Jie (zx) = min B {gr (@k, wies wi) + Jetr (fi (Tr, wp, wi))
® Remember to store optimal uj, as my(xy) = uj,
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Double Integrator Example s
® True dynamics
. 0 1 0
20 =g o =0+ [{]u 0)
® Euler discretization using A = 1 System evolves according to:
11 0
Thtl = |9 xp + 1|
—A =B
® Cost function:
N No1y
J(mo) = Z —xf_, + —ui
e i
® Can be put into standard form using matrices/start position:
10
. = =|r R=1
Qr=Qn [0 0}
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Double integrator example =

® Blue: LQR using Euler x4, = [(1) i] x) + [(1)] uy

® Red: LQR using Exponential &), = e#%x; + A~! (cAA - I) Buy,

10 — p=0.1 (Euler 100

£=0.1(Ei discretization) —— p=0.1 (Euler discretization)

p=0.1 (Ei discretization)

08
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Position x(t)
Action u(t)

-0.25
02 -0.50

-0.75

00

-1.00

3 4 6
Time/seconds Time/seconds

® LQR is optimal in discrete problem
® Discrete controller can be bad in real problem (always check!)

® Always use El for linear dynamics
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Quiz: LQR =
Consider a (generic) LQR problem of the form:
Tp1 = Azy + Buy (5)
N-14 1
T T
t = - .+ = .
cos l;) 5k Qi + 5 Rowp uy (6)

Where Ry > 0 is a constant. After LQR, the controller selects actions using
uy, = Lixy. What do you think typically happens with the matrix L when
Ry — o (very big R)

a. The entries in Lj, becomes very small, negative numbers

b. The entries in L; becomes very big, positive numbers

c. It is not possible to say anything about the typical case

d. The entries in Ly, gets closer to zero

e. Don't know.

=
—
=

Example: The locomotive =
i -
Steer locomotive (starting at z = —1) to goal (z* = 0)
() = u(t) Q)
xr\t) = — L
"Lu

Can be re-written as:
. 01 0
w:[o 0}2+|:%}u (8)

Discretized to @y = Azy, + Buy.
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Locomotive: PID and LQR =
*
€ =T — Tk
€k — €k—1
Up = Cka + Kg—————
A
20
— Ky =40,K3=10
1s Kp=40,Kg=50
K= 40.K=100
10
05
g oo " o]
-0s w —
-2
-1.0 -04
-15 e
o
20 0
0 2 4 6 8 0 12 14 0 2 N 6 8 0
Timesseconds v secancs
® Alternatively: Use a cost function ), mZka + u,:','uk and use LQR!
[+ ] lecture_04_pid_d.py [+ ) lecture_06_lqr_locomotive.py
15 DTU Compute Lecture 6 14 March, 2025
DTU
- >
Observations =

® The cost term %zTQrz; + %uTRu is smallest when z =u =0
® Implies that LQR will control system to state x = u =0
® Suppose we want to drive system towards x,, u,?
® Use ¢(z,u) = %(z —z,)TQ(z — x,) + %(u —uy) " R(u - uy)

® more generally assume
1 1
cx (Tp, up) = EEEQA-ZA- + 5uZRkuA- +ul Hyxp +qree +riug + g0 (9)
1
e (mk) = 5$ZQN&- + gy + qn (10)

and dynamics
Tpy1 = Arxy + Bruy + dy

17 DTU Compute Lecture 6 14 March, 2025

14 DTU Compute Lecture 6 14 March, 2025
DTU
Planning on an infinite horizon =
Recall LQR has the form:
OVy =Qn
® L. = —(Ri + Bl Viey1Bi) " H(BL Vies1Ar)
© Vi = Qr + LT Ri Ly, + (A + BiLi) " Viey1 (Ay, + BiLy)
O u; = Ly,
@ Ji(xr) = sal Vi),
® What happens if we repeat step 2 and 3 many times?
® The method will converge: Ly — L
® Select actions uy = Ly, (“'plan until convergence')
® |f you think about it, this corresponds to planning on N — oo horizon.
® This is quite popular in control theory; what we will do in RL.
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. . ow to start living in luxury an >
General discrete LQR algorithm 0 50~ =
o (Vigr + ) - -
1. Vy = Qn; vn = gn; U = qn
T
2. -1 Suk =Tr + Bilg 1+ BiVid,
Ly = _Suu_ksuw.k T
—1 Suu.k = Rk + Bk ‘/Ic+lBk
Uk = =S 1 Suk T
Suak = Hi + By, Vg1 Ay
3. Vi = Qr + AL Vierr Ay — L Suw L

+ AL (V1 + Vigady) + S, ol

1 1
Vg = Vg1 + Qi + ] T id;‘T.Vk+1dk + §lZSu.k

Doctors hate this one weird trick!

4. ’U,Z. = l); + Lkﬁ}\- 1
Vi §(VAI" + Vi)

5. Ji(xy) = %ﬂ),{ Vi), + vl Ty + v
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Boing 747 Example

u —0.003 0.039 0. —0.322 U — Uy 0.01 1.
w [ [-0.065 —0.319 7.74 0. w— wy —0.18  —0.04
q - 0.02 —0.101 —0.429 0. q Fl-116 0598

0. 0. 1. 0.

S
8
w

u(t) — ww(t)
wi(t) | _[1. 0o 0o o w(t) — we(t)
y2(t) | T 0. —1. 0. 7.74 q(t)

~————— o(t)

® y; and y» corresponds to the airspeed and climb rate.
e Start: « = 0 (steady flight)

. 10
2 Want.Aitspeed of 10: y* = [O} Lecture 6
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Approach

® Write dynamics as & = Ax + Bu

® Introduce cost function:

/ntF (%(y -y (y-y)+ %uTu> dt

=
—
=

n

o Discretize dynamics using Exponential Integration to get @41 = Ax), + Buy

® Discretize cost to get one of the form

1 1
Z EwkT-ka +qzk +qo + EUIRUA-
k=0

® Apply LQR!
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QOutcome and a Quiz

® Control law u; = Lz,

— Elevator
Throttie

10f = Airspes
peed N
Climb rate

o T

13 H 4 10 [ 2 5 o

1 s 4 4
Timelseconds Timeiseconds

Left: airspeed and climb rate. Right: Elevator and throttle

Why does the output adjust quickly but fail to get entirely to the
goal y*?

a. Something bad happened to the dynamics with the exponential
integration

b. The explanation has to do with planning on a finite horizon
c. The explanation is that R in u{Ruk should be bigger

d, D%'EOMQW Lecture 6
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LQR with Additive Noise

® Consider the case where there is additive Gaussian noise:

Tpp1 = Aki + Bruy + wp

=
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"

® We can still solve the problem, and (amazingly!) the noise has no influence on

the control law
uy, = Lz,

® LQR is robust to noise
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Much more to LQR

® Stability/controllability of LQR?
® Important subject which we ignore
® What if matrices Ay, By are random?
® This too can be solved[Ber05, Chapter 4]
® What about partial observation?
® l.e. assume we observe o, = D;.x;[Ber05, Chapter 4]
® \What about constraints? What if we know uy, < up < ug?
® Euler integration is often not ideal.

® Alternatives including error analysis
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[3 D.P. Bertsekas.
Dynamic Programming and Optimal Control.
Number v. 1 in Athena Scientific optimization and computation
Athena Scientific, 2005.

[3 Tue Herlau.
Sequential decision making.
(Freely available online), 2025.
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