02465: Introduction to reinforcement learning and control

Direct methods and control by optimization

Tue Herlau

DTU Compute

DTU Compute, Technical University of Denmark (DTU)

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^i}{i!} f^{(i)}(x)$ Department of Applied Mathematics and Computer Science

Lecture Schedule

Dynamical programming

1 The finite-horizon decision problem 7 February

2 Dynamical Programming 14 February

3 DP reformulations and introduction to Control

21 February

Control

4 Discretization and PID control

28 February

6 Direct methods and control by optimization

7 March

- 6 Linear-quadratic problems in control
- Linearization and iterative LQR

21 March

Syllabus: https://02465material.pages.compute.dtu.dk/02465public Help improve lecture by giving feedback on DTU learn

Reinforcement learning

- 8 Exploration and Bandits 28 March
- Bellmans equations and exact planning 4 April
- Monte-carlo methods and TD learning ^{11 April}
- Model-Free Control with tabular and linear methods
 - 25 April
- Eligibility traces

2 May

Beep-Q learning

9 May

Reading material:

• [Her25, Chapter 15]

Learning Objectives

- Direct methods for optimal control
- Trajectory planning for linear-quadratic problems using optimization
- Trajectory planning using trapezoidal collocation

Project part 1

- Great job! Part 2 is online
- Survey on course experience on DTU Learn
- A TA caught a minor issue with $N \rightarrow N-1$ in the beginning of todays chapter; new version online. Exercise+slides+algorithm not affected.

Recap from last week Dynamics

Dynamics of the form

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t), t)$$

- $\pmb{x}(t) \in \mathbb{R}^n$ is a complete description of the system at t
- $\pmb{u}(t) \in \mathbb{R}^d$ are the controls applied to the system at t
- The time t belongs to an interval $[t_0, t_F]$ of interest

Recap from last week Example: Cartpole

- Coordinates are $x = \begin{bmatrix} x & \dot{x} & \theta & \dot{\theta} \end{bmatrix}$ (angle, angular velocity, cart position, cart velocity)
- Action u is one-dimensional; the force applied to cart
- Dynamics are

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t), t)$$

where $oldsymbol{f}$ is a fairly complicated function

Recap from last week Constraints

Equality constraint: $x = c$	(1)
Inequality constraint: $a \leq x \leq b$	(2)

Any realistic physical system has constraints

• Simple boundary constraints

 $egin{aligned} oldsymbol{x}_{ ext{low}} &\leq oldsymbol{x}(t) \leq oldsymbol{x}_{ ext{upp}} \ oldsymbol{u}_{ ext{low}} &\leq oldsymbol{u}(t) \leq oldsymbol{u}_{ ext{upp}} \end{aligned}$

• End-point constraints:

• Time constraints

$$t_{0, \text{ low}} \leq t_0 \leq t_{0, \text{ upp}} t_{F, \text{ low}} \leq t_F \leq t_{F, \text{upp}}.$$
(4)

Recap from last week Cost and policy

• The cost function is of the form

$$J_{\boldsymbol{u}}(\boldsymbol{x}, t_0, t_F) = \underbrace{c_F\left(t_0, t_F, \boldsymbol{x}\left(t_0\right), \boldsymbol{x}\left(t_F\right)\right)}_{\text{Mayer Term}} + \underbrace{\int_{t_0}^{t_F} c(\tau, \boldsymbol{x}(\tau), \boldsymbol{u}(\tau)) d\tau}_{\text{Lagrange Term}}$$

Recap from last week Cartpole

- Necessary constraint $-u_{\max} < u(t) < u_{\max}$ and $m{x}_0 = \begin{bmatrix} 0 & 0 & \pi & 0 \end{bmatrix}$
- Goal is to bring $m{x}$ to $m{x}^g = egin{bmatrix} 1 & 0 & 0 \end{bmatrix}$
- Up-right cartpole, version 1:

$$J_u(t_0, t_F, \boldsymbol{x}) = \|\boldsymbol{x}(t_F) - \boldsymbol{x}^g\|^2 + \lambda \int_{t_0}^{t_F} \boldsymbol{u}(t)^\top \boldsymbol{u}(t)$$

• Constraints $t_0 = 0, t_F = 3$ (complete in 3 seconds)

• Up-right cartpole, version 2:

$$J_u(t_0, t_F, \boldsymbol{x}) = t_F - t_0$$

• Constraints $x_F = x^g$

Endless combinations; depends on goal + method you are using

.

Recap from last week The continuous-time control problem

Given system dynamics for a system

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(t, \boldsymbol{x}(t), \boldsymbol{u}(t))$$

Obtain $oldsymbol{u}:[t_0;t_F]
ightarrow \mathbb{R}^m$ as solution to

$$oldsymbol{u}^*, oldsymbol{x}^*, t_0^*, t_F^* = rgmin_{oldsymbol{x}, oldsymbol{u}, t_F} J_{oldsymbol{u}}(oldsymbol{x}, oldsymbol{u}, t_0, t_F).$$
(Minimization subject to all constraints)

- Simplest choice: Eulers method
- Choose grid size N: t_0, t_1, \ldots , $t_{k+1} t_k = \Delta$

•
$$x_k = x(t_k), u_k = u(t_k)$$

 $x_{k+1} = f_k(x_k, u_k)$
 $= x_k + \Delta f(x_k, u_k, t_k)$
 $J_{u=(u_0, u_1, \dots, u_{N-1})}(x_0) = c_f(t_0, x_0, t_F, x_F) + \sum_{k=0}^{N-1} c_k(x_k, u_k)$
 $c_k(x_k, u_k) = \Delta c(x_k, u_k, t_k)$

• Simple but not very exact

Lecture 5 7 March, 2025

Recap from last week Approaches to control

- Last week: Rule-based methods (build $\boldsymbol{u}(t) = \pi(\boldsymbol{x},t)$ directly)
- Today: Optimization-based methods:

$$oldsymbol{u}^* = rgmin_{oldsymbol{u}} J_{oldsymbol{u}}(oldsymbol{x}_0)$$

- Direct optimization of a discretized version of the problem
- Next week: DP-inspired planning methods

Recap from last week Infrastructure: Nonlinear program

A non-linear program is an optimization task of the form

$$egin{aligned} \min_{m{z}\in\mathbb{R}^n}E(m{z}) & \mbox{subject to} & \ m{h}(m{z})=0 & \ m{g}(m{z})\leq 0 & \ m{z}_{\mbox{low}}\leqm{z}\leqm{z}_{\mbox{upp}} \end{aligned}$$

i.e. the objective is to find the z that minimizes E under the constraints.

- If problem is not too complex, can use methods such as **sequential convex programming** to find **z***.
- Requires luck and engineering
 - Needs a good initial guess
 - Improves when given gradient of J and Jacobian of f and h.

Recap from last week Infrastructure: Linear Quadratic program

A special case of the optimization task:

$$\min rac{1}{2} oldsymbol{x}^T Q oldsymbol{x} + oldsymbol{c}^T oldsymbol{x} \quad ext{subject to} \ oldsymbol{A} oldsymbol{x} \leq oldsymbol{b} \ F oldsymbol{x} = oldsymbol{g}$$

 \bullet When Q is positive definite and the problem is not very large the solution can always be found

Recap from last week

Optimizing the Discrete Problem: Shooting

Consider the simplest form of a discrete control problem

$$\boldsymbol{x}_{k+1} = A_k \boldsymbol{x}_k + B_k \boldsymbol{u}_k + \boldsymbol{d}_k$$

quadratic cost function

$$\boldsymbol{J}_{\boldsymbol{u}_0,...,\boldsymbol{u}_{N-1}}(\boldsymbol{x}_0) = \boldsymbol{x}_N^T Q_N \boldsymbol{x}_N + \sum_{k=0}^{N-1} (\boldsymbol{x}_k^T Q_k \boldsymbol{x}_k + \boldsymbol{u}_k^T R_k \boldsymbol{u}_k)$$

• Given $oldsymbol{u}_0,\ldots,oldsymbol{u}_{N-1}$, all the $oldsymbol{x}_k$'s can be found form the system dynamics:

$$\boldsymbol{x}_2 = A_1 \boldsymbol{x}_1 + B_1 \boldsymbol{u}_1 + d_1 = A_1 (A_0 \boldsymbol{x}_0 + B_0 \boldsymbol{u}_0 + \boldsymbol{d}_0) + B_1 \boldsymbol{u}_1 + d_1$$

- Problem equivalent to optimizing $J_{u_0,...,u_{N-1}}(x_0)$ (which is quadratic) wrt. u_0,\ldots,u_{N-1}
- This method is called **shooting**
- + A single linear-quadratic optimization problem
- + Easy to understand
- 15 DTU Compute

Recap from last week Optimizing the Discrete Problem: Shooting

• General case

$$m{x}_{k+1} = m{f}_k(m{x}_k, m{u}_k)$$

 $J_{m{u}=(m{u}_0, m{u}_1, ..., m{u}_{N-1})}(m{x}_0) = c_f(t_0, m{x}_0, t_F, m{x}_F) + \sum_{k=0}^{N-1} c_k(m{x}_k, m{u}_k)$

• Get rid of all the
$$x_k$$
's except x_0 :

$$m{x}_2 = m{f}(m{x}_1, m{u}_1) = m{f}(m{f}(m{x}_0, m{u}_0), m{u}_1)$$

So just optimize $J_{oldsymbol{u}=(oldsymbol{u}_0,oldsymbol{u}_1,...,oldsymbol{u}_{N-1})}(oldsymbol{x}_0)$ wrt. $oldsymbol{u}$

- + Easy to understand
- A big, non-linear program (we cannot avoid that for general dynamics)
- - Unstable: small changes in $oldsymbol{u}_0$ can mean big changes in $oldsymbol{x}_N$
- Eulers method is imprecise
- - No bueno. To overcome these issues, we have to take a step back

Recap from last week The continuous-time control problem

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(t, \boldsymbol{x}(t), \boldsymbol{u}(t))$$
(5)

Step 1: Must evaluate this ODE somehow

Subject to a number of dynamical and constant path and end-point constraints, obtain $\boldsymbol{u} : [t_0; t_F] \to \mathbb{R}^m$ as solution to

$$\min_{\substack{t_0, t_F, \boldsymbol{x}(t), \boldsymbol{u}(t) \\ \text{Step 3:}}} \underbrace{c_F\left(t_0, t_F, \boldsymbol{x}\left(t_0\right), \boldsymbol{x}\left(t_F\right)\right)}_{\text{Mayer Term}} + \underbrace{\int_{t_0}^{t_F} c(\boldsymbol{x}(\tau), \boldsymbol{u}(\tau), \tau) d\tau}_{\text{Lagrange Term}}$$

subject to eq. (5) and whatever constraints are imposed on the system. This is a nasty constrained minimization problem

Recap from last week Numerical integration

Choices corresponds to

- Piecewise constant
- Piecewise linear
- Piecewise 2nd order polynomial (use midpoint to fit the three parameters)

Recap from last week Approximation and integration

• Midpoint rule: $\approx \sum_{i=0}^{n-1} f\left(\frac{x_{i+1}+x_i}{2}\right) \Delta_i$

- Trapezoid rule: $\approx \frac{\Delta x}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n))$
- Simpson's rule: $\approx \frac{\Delta x}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \dots + 4f(x_{n-1}) + f(x_n))$

Recap from last week General Collocation: Time discretization

- Given t_0 and t_F and N
- We discretize the time into ${\boldsymbol N}$ intervals:

$$t_0 < t_1 < t_2 < \dots < t_{N-1} = t_F$$

• Specifically
$$t_k = t_0 + \frac{k}{N-1}(t_F - t_0)$$

• For later use we define:

$$h_{k} = t_{k+1} - t_{k}, \quad k = 0, \dots, N-2$$
$$\boldsymbol{x}_{k} = \boldsymbol{x}(t_{k}), \quad k = 0, \dots, N-1$$
$$\boldsymbol{u}_{k} = \boldsymbol{u}(t_{k})$$
$$\boldsymbol{c}_{k} = \boldsymbol{c}(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}, t_{k})$$
$$\boldsymbol{f}_{k} = \boldsymbol{f}(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}, t_{k})$$

DTU

Recap from last week Trapezoid collocation

Trapezoid collocation assumes

We can at this point evaluate the cost if we know x and u!

$$c_F(t_0, t_F, \boldsymbol{x}_0, \boldsymbol{x}_N) + \frac{1}{2} \sum_{k=0}^{N-2} h_k(c_k + c_{k+1})$$
 h_k

Recap from last week Collocating system dynamics

Recall

$$\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}, t)$$

Integrating both sides

$$\int_{t_k}^{t_{k+1}} \dot{\boldsymbol{x}}(t) dt = \int_{t_k}^{t_{k+1}} \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t), t) dt$$

Using **trapezoid collocation** we on the right-hand side and integrating the left

$$oldsymbol{x}_{k+1} - oldsymbol{x}_k pprox rac{1}{2} h_k \left(oldsymbol{f}_{k+1} + oldsymbol{f}_k
ight)$$

Recap from last week Trapezoid collocation: System dynamics

• Constraints are translated to simply apply to their knot points:

$$egin{array}{rcl} x < 0 &
ightarrow & x_k < 0 \ u < 0 &
ightarrow & u_k < 0 \ oldsymbol{h}(t,oldsymbol{x},oldsymbol{u}) < oldsymbol{0} &
ightarrow & oldsymbol{h}\left(t_k,oldsymbol{x}_k,oldsymbol{u}_k
ight) < oldsymbol{0} \end{array}$$

• Boundary constraints still just apply at boundary:

 $\boldsymbol{g}\left(t_{0}, \boldsymbol{x}\left(t_{0}\right), \boldsymbol{u}\left(t_{0}\right)
ight) < \boldsymbol{0} \quad
ightarrow \quad \boldsymbol{g}\left(t_{0}, \boldsymbol{x}_{0}, \boldsymbol{u}_{0}
ight) < \boldsymbol{0}$

Recap from last week Trapezoid collocation: First attempt

Optimize over
$$oldsymbol{z} = (oldsymbol{x}_0, oldsymbol{u}_0, \dots, oldsymbol{u}_{N-1}, t_0, t_f)$$

$$\min_{\boldsymbol{z}} \left[c_F(t_0, t_F, \boldsymbol{x}_0, \boldsymbol{x}_N) + \frac{1}{2} \sum_{k=0}^{N-2} h_k(c_k + c_{k+1}) \right]$$

Such that

$$egin{aligned} oldsymbol{h}\left(t_k,oldsymbol{x}_k,oldsymbol{u}_k
ight) < oldsymbol{0} \ oldsymbol{g}\left(t_0,t_F,oldsymbol{x}_0,oldsymbol{x}_F
ight) \leq oldsymbol{0} \end{aligned}$$

with convention we iteratively compute x_{k+1} from x_k starting at k=0

$$k = 0, \dots, N - 2:$$
 $x_{k+1} = x_k + \frac{1}{2}h_k (f_{k+1} + f_k)$

Wait, did we just solve it?

Recap from last week Almost! The final idea:

- Suppose we let x_k, u_k vary freely (ensure everything can be evaluated)
- But we add the N-1 constraints:

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k + rac{1}{2} h_k \left(oldsymbol{f}_{k+1} + oldsymbol{f}_k
ight)$$

• The key observation is local changes in $oldsymbol{x}_k$ and $oldsymbol{u}_k$ have local effects

Recap from last week Trapezoid collocation method

Optimize over
$$oldsymbol{z} = (oldsymbol{x}_0, oldsymbol{u}_0, oldsymbol{x}_1, oldsymbol{u}_1, \dots, oldsymbol{x}_{N-1}, oldsymbol{u}_{N-1}, t_0, t_F)$$

$$\min_{\boldsymbol{z}} \left[c_F(t_0, t_F, \boldsymbol{x}_0, \boldsymbol{x}_N) + \frac{1}{2} \sum_{k=0}^{N-2} h_k(c_k + c_{k+1}) \right]$$
(6)

Such that
$$\boldsymbol{z}_{\mathsf{lb}} \leq \boldsymbol{z} \leq \boldsymbol{z}_{\mathsf{ub}}$$
 (7)
 $\boldsymbol{h}\left(t_k, \boldsymbol{x}_k, \boldsymbol{u}_k\right) \leq \boldsymbol{0}$ (8)

$$x_k - x_{k+1} + \frac{1}{2}h_k \left(f_{k+1} + f_k\right) = 0$$
 (9)

- Optimizer also need initial point $oldsymbol{z}_0$
- Recall $oldsymbol{f}_k = oldsymbol{f}(oldsymbol{x}_k, oldsymbol{u}_k, t_k)$ so last constraint is non-linear

Recap from last week

Reconstruction

Given \boldsymbol{z} , how do we reconstruct the (predicted) path $\boldsymbol{x}(t)$ and $\boldsymbol{u}(t)$?

• $\boldsymbol{u}(t)$ was assumed to be linear, using $\tau = t - t_k$:

$$\boldsymbol{u}(t) \approx \boldsymbol{u}_k + rac{ au}{h_k} \left(\boldsymbol{u}_{k+1} - \boldsymbol{u}_k
ight)$$

• For $\boldsymbol{x}(t)$ we assumed

$$\dot{\boldsymbol{x}}(t) \approx \boldsymbol{f}_k + \frac{\tau}{h_k} \left(\boldsymbol{f}_{k+1} - \boldsymbol{f}_k \right)$$

• Integrating both sides and using $oldsymbol{x}(oldsymbol{t}_k) = oldsymbol{x}_k$

$$\boldsymbol{x}(t) = \boldsymbol{x}_k + \boldsymbol{f}_k \tau + \frac{\tau^2}{2h_k} \left(\boldsymbol{f}_{k+1} - \boldsymbol{f}_k \right)$$

27 DTU Compute

Implementation

Recap from last week

Algorithm 1 Direct solver

1: function DIRECT-SOLVE(N, GUESS= (t_0^g, t_F^g, x^g, u^g)) Define $z \leftarrow (x_0, u_0, \dots, x_{N-1}, u_{N-1}, t_0, t_F)$ as all optimization variables 2: Define grid time points $t_k = \frac{k}{N-1}(t_F - t_0) + t_0$, $k = 0, ..., N-1 \ge eq.$ (15.11) 3: Define h_k , $f_k = f(x_k, u_k, t_k)$ and $c_k = c(x_k, u_k, t_k)$. 4: Define I_{eq} and I_{ineq} as empty lists of inequality/equality constraints 5: for k = 0, ..., N - 2 do 6. Append constraint $x_{k+1} - x_k = \frac{h_k}{2}(f_{k+1} + f_k)$ to I_{eq} ▷ eq. (15.20) 7: Add all other path-constraints eq. (15.21) to I_{ineq} and I_{eq} 8: Q٠ end for Add possible end-point constraints on x_0, x_F and t_0, t_F to I_{eq} and I_{ineq} 10: Build optimization target $E(z) = c_f(t_0, t_F, x_0, x_{N-1}) + \sum_{k=0}^{N-2} \frac{h_k}{2} (c_{k+1} + c_k)$ 11: Construct guess time-grid: $t_{k}^{g} \leftarrow \frac{k}{N-1}(t_{E}^{g}-t_{0}^{g})+t_{0}^{g}$ 12: Construct guess states $\boldsymbol{z}^g \leftarrow (\boldsymbol{x}^g(t_0^g), \boldsymbol{u}^g(t_0^g), \cdots, \boldsymbol{x}^g(t_{N-1}^g), \boldsymbol{u}^g(t_{N-1}^g), t_0^g, t_F^g)$ 13: Let z^* be minimum of E optimized over z subject to I_i and I_{eq} using guess z^g 14: Re-construct $u^*(t)$, $x^*(t)$ from z^* using eq. (15.22) and eq. (15.26) 15: Return $\boldsymbol{u}^*, \boldsymbol{x}^*$ and t_0^*, t_T^* 16: 17: end function

- For small N, method is imprecise, but less sensitive to \boldsymbol{z}_0
- For moderate N, method is **very** sensitive to \boldsymbol{z}_0
- Initially we do linear interpolation to get $oldsymbol{z}_0$
- An idea is to use an optimizer for low value of N, obtain solution $oldsymbol{z}'$
- \bullet From this ${\boldsymbol z}',$ we can construct ${\boldsymbol x}'(t)$ and ${\boldsymbol u}'(t)$
- We run optimizer with higher N and an initial guess as $oldsymbol{x}_k = oldsymbol{x}'(t_k)$

Algorithm 2 Iterative direct solver

Require: An initial guess $\pmb{z}_0^g = (\pmb{x}^g, \pmb{u}^g, t_0^g, t_F^g)$ found using simple linear interpolation

Require: A sequence of grid sizes $10 \approx N_0 < N_1 < \cdots < N_T$

- 1: for t = 0, T do
- 2: $\boldsymbol{x}^*, \boldsymbol{u}^*, t_0^*, t_F^* \leftarrow \text{DIRECT-SOLVE}(N_t, \boldsymbol{z}_t^g)$
- 3: $\boldsymbol{z}_{t+1} \leftarrow \boldsymbol{x}^*, \boldsymbol{u}^*, t_0^*, t_F^*$
- 4: end for
- 5: Return $\boldsymbol{u}^*, \boldsymbol{x}^*$ and t_0^*, t_F^*

Recap from last week Implementation:

```
# sample.py
 1
     ineq cons = {'type': 'ineq',
 \mathbf{2}
                   'fun': lambda x: np.array([1 - x[0] - 2 * x[1],
 3
                                               1 - x[0] ** 2 - x[1].
 4
                                               1 - x[0] ** 2 + x[1]]).
 5
                   'jac': lambda x: np.array([[-1.0, -2.0],
 6
                                                [-2 * x[0], -1.0].
 7
                                                [-2 * x[0], 1.0]])
 8
     eq cons = {'type': 'eq',
 9
                 'fun': lambda x: np.array([2 * x[0] + x[1] - 1]),
10
                 'jac': lambda x: np.array([2.0, 1.0])}
11
     from scipy.optimize import Bounds
12
     z_{1b}, z_{ub} = [0, -0.5], [1.0, 2.0]
13
     bounds = Bounds(z lb, z ub) # Bounds(z low, z up)
14
     z0 = np.array([0.5, 0])
15
     res = minimize(J_fun, z0, method='SLSQP', jac=J_jac,
16
                     constraints=[eq cons, ineq cons], bounds=bounds)
17
```

We use sympy because of the gradient/Jacobians

Recap from last week Example: Pendulum

Task is taken from the excellent [Kel17]

- Constraints: $t_0 = 0, t_F = 2$, end-point constraints x_0 and $x_F = x^g$ and -20 < u(t) < 20
- $\bullet \ c(\pmb{x},\pmb{u},t) = u(t)^2$
- Grid refinement: N = 10 then N = 60

lecture_05_cartpole_kelly

From the (also great!) https://github.com/MatthewPeterKelly/
OptimTraj/blob/master/demo/cartPole/MAIN_minTime.m

- Constraints: $t_0 = 0, t_F > 0$, end-point constraints x_0 and $x_F = x^g$ and -50 < u(t) < 50
- $c(\boldsymbol{x}, \boldsymbol{u}, t) = t_F t_0$
- N = 8, 16, 32, 70

lecture_05_cartpole_time

• We can also optimize over both action/state values

The optimisation problem is then defined as

$$\begin{array}{ll} \text{minimize} \quad \boldsymbol{x}_N^T Q_N \boldsymbol{x}_N + \sum_{k=0}^{N-1} (\boldsymbol{x}_k^T Q_k \boldsymbol{x}_k + \boldsymbol{u}_k^T R_k \boldsymbol{u}_k) \\ \text{subject to} \quad F' \boldsymbol{x} \leq \boldsymbol{h}' \\ \quad F'' \boldsymbol{x} \leq \boldsymbol{h}'' \\ \quad A_k \boldsymbol{x}_k + B_k \boldsymbol{u}_k + \boldsymbol{d}_k - \boldsymbol{x}_{k+1} = 0 \end{array}$$

Recap from last week

Example: Brachistochrone

What is the fastest path for a bead to travel x_B distance in the *x*-direction?

- Cost: $\min t_F$
- Actions is the angle u(t). Dynamics:

36 DTU Compute $\dot{x} = v \sin u, \quad \dot{y} = v \cos u, \quad \dot{v} = g \cos u$ Lecture 5 7 March, 2025

Recap from last week Example: Brachistochrone with dynamical constraints

Same as before but bead cannot pass through solid object

• Dynamical constraint

$$h(\boldsymbol{x}) = y - \frac{x}{2} - h \le 0 \tag{11}$$

Recap from last week Extra: Hermite-Simpson

Hermite-Simpson collocation refers to replacing the Trapezoid rule

$$\int_{t_0}^{t_F} c(\tau) d\tau \approx \sum_{k=0}^{N-1} \frac{h_k}{6} \left(c_k + 4c_{k+\frac{1}{2}} + c_{k+1} \right)$$

For dynamics

$$m{x}_{k+1} - m{x}_k = rac{1}{6} h_k \left(m{f}_k + 4 m{f}_{k+rac{1}{2}} + m{f}_{k+1}
ight)$$

- \bullet Generally better for small N
- \bullet Scales worse in ${\cal N}$

📄 Tue Herlau.

Sequential decision making.

(Freely available online), 2025.

Matthew Kelly.

An introduction to trajectory optimization: How to do your own direct collocation.

SIAM Review, 59(4):849–904, 2017. (See **kelly2017.pdf**).