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02465: Introduction to reinforcement learning and control

Direct methods and control by optimization
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Lecture Schedule

Dynamical programming
@ The finite-horizon decision problem
7 February
@® Dynamical Programming
14 February
© DP reformulations and introduction to
Control
21 February
Control
@ Discretization and PID control
28 February
@ Direct methods and control by
optimization
7 March
@ Linear-quadratic problems in control
14 March

@ Linearization and iterative LQR
21 March
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Reinforcement learning

@ Exploration and Bandits
28 March

@ Bellmans equations and exact planning
4 April

@ Monte-carlo methods and TD learning
11 April

@® Model-Free Control with tabular and
linear methods
25 April

® Eligibility traces
2 May

@® Deep-Q learning

9 May

Syllabus: https://02465material . pages. compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn
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Reading material:

® [Her25, Chapter 15]
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Learning Objectives

® Direct methods for optimal control
® Trajectory planning for linear-quadratic problems using optimization

® Trajectory planning using trapezoidal collocation
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® Great job! Part 2 is online
® Survey on course experience on DTU Learn

® A TA caught a minor issue with N — N — 1 in the beginning of todays chapter;
new version online. Exercise+slides+algorithm not affected.
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Dynamics

Dynamics of the form

(t) = f(z(t), u(t),t)
® x(t) € R™ is a complete description of the system at ¢

® u(t) € R? are the controls applied to the system at ¢

® The time ¢ belongs to an interval [tg,tF] of interest
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Example: Cartpole

® Coordinates are © = [gc T 0 9] (angle, angular velocity, cart position, cart
velocity)

® Action u is one-dimensional; the force applied to cart

® Dynamics are
w(t) = f(z(t), u(t),?)

where f is a fairly complicated function
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Constraints

Equality constraint: rT=c

Inequality constraint: a < x <b

Any realistic physical system has constraints

® Simple boundary constraints

Llow S w<t) S Lupp

Ulow S u(t) S Uupp
® End-point constraints:

(to) < To, upp
(tr) < TFupp-

0, low <z
LTF, low <z
® Time constraints
tO, low < tO < tO, upp
tF, ow Stp < tF,upp-
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Cost and policy

® The cost function is of the form

Ju(mathtF) =CF (t()atFa (Y (tO) » L
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Mayer Term
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(tr)) + / " (), u(r))dr

to

Lagrange Term
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Cartpole

® Necessary constraint —umax < u(t) < tmax and o= [0 0 7 0]
* Goal isto bringz towf =[1 0 0 0

® Up-right cartpole, version 1:
[ ]
tp
Julto,tr, ) = |lz(tr) — 27| + A/ u(t) u(t)
to
® Constraints to = 0,tF = 3 (complete in 3 seconds)
® Up-right cartpole, version 2:
[ ]
Ju(to, tp, @) =tp — 1o

® Constraints xp = x9

Endless combinations; depends on goal 4+ method you are using
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The continuous-time control problem

Given system dynamics for a system
a(t) = f(t 2 (), u(b))
Obtain w : [to;tp] — R™ as solution to
u*, x t), tp = argmin Jy(x, u, to, tp).

z,u,lotp

(Minimization subject to all constraints)
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Discretization
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T 7~
tr Trk+1
® Simplest choice: Eulers method
® Choose grid size N: tg,t1,..., tpy1 —tx=A
® . = $(tk), up = u(tk)
Zp1 = Fr(xr, ur)
=z + Af(xk, ug, tr)
N-1
Ju=(uosur,un_1)(®0) = cp(to, xo, tr,xp) + Y cp(Tp, ug)
k=0
Ck(xka ’U;k) = Ac(mkvulwtk)
Lecture 5 7 March, 2025
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Approaches to control

® | ast week: Rule-based methods (build w(t) = 7(ax,t) directly)

® Today: Optimization-based methods:

u” = arg min J,, (x)
u

® Direct optimization of a discretized version of the problem

® Next week: DP-inspired planning methods
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Infrastructure: Nonlinear program

A non-linear program is an optimization task of the form

min E(z) subject to
z€eR”?
h(z)=0
g(z) <0
Ziow < 2 < Zupp

i.e. the objective is to find the z that minimizes E under the constraints.

® |f problem is not too complex, can use methods such as sequential convex
programming to find z*.

® Requires luck and engineering

® Needs a good initial guess
® Improves when given gradient of .J and Jacobian of f and h.
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Infrastructure: Linear Quadratic program

M

A special case of the optimization task:

1
min izr:TQac +c’x  subject to

Ax <b
Fx=g

® When @ is positive definite and the problem is not very large the solution can
always be found
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Optimizing the Discrete Problem: Shooting
Consider the simplest form of a discrete control problem

Tpr1 = Agxyp + Bruy + dy;

quadratic cost function

N-1
T T T
Jug,..un_1(T0) = TyQNTN + Z (z), Qrxy + up, Riug)
k=0
® Given ug,...,uyn_1, all the xx's can be found form the system dynamics:

x2 = A1 + Biuy + di = Ai(Aoxo + Bouwo + do) + Biur + dy

® Problem equivalent to optimizing Ju,,... uy_, (Z0) (which is quadratic) wrt.

Ugy---, UN-1
® This method is called shooting
® |+ A single linear-quadratic optimization problem

® + Easy to understand
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Optimizing the Discrete Problem: Shooting

® General case

Trpr1 = fr(zr, ug)

z
L

J’u,:(uo#ul,‘..,uN,l)(wO) = Cf(t07 o, tF, $F) + C]g(iL'k;, uk)

=
I
o

® Get rid of all the x}'s except xq:

xo = f(x1,u1) = F(f (20, u0), u1)

So just optimize Jy—(ug,uy,...,un_1)(To) Wrt. w

® + Easy to understand

® A big, non-linear program (we cannot avoid that for general dynamics)
® - Unstable: small changes in uy can mean big changes in
® - Eulers method is imprecise

® - No bueno. To overcome these issues, we have to take a step back
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The continuous-time control problem

Given system dynamics for a system

w(t) = f(t z(t),u(t))
Step 1: Must evaluate this ODE somehow
Subject to a number of dynamical and constant path and end-point

constraints, obtain u : [to; tp] — R™ as solution to

tp
min  ep (to, b, @ (fo) ,m(tp))+/ o(@(7), w(r), 7)dr
to,tr,x(t),u(t) to
Step 3: Mayer Term
Minimize over all functions? Lagrange Term

What about constraints?

subject to eq. (5) and whatever constraints are imposed on the system.

This is a nasty constrained minimization problem
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Step 2: Computing this integral
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Numerical integration

Suppose we wish to approximate a function f(z). Divide interval into a
partitiona =29 <21 < - < T, =b

> > >
> > >

Choices corresponds to
® Piecewise constant
® Piecewise linear

® Piecewise 2nd order polynomial (use midpoint to fit the three parameters)
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Each provide an approximation for the integral: f; f(z)dx

B ]

P > >

® Midpoint rule: ~ Z;‘;} f (%) A

® Trapezoid rule: = A“ (f (o) + 2f (1) + 2f (x2) + -+ 2f (Tp—1) + [ (zn))

® Simpson'’s rule: ~
S5 (f (wo) +4f (1) +2f (w2) +4f (x3) + 2f (wa) + -+ + 4f (wp—1) + [ (x0))
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General Collocation: Time discretization

® Given tg and tr and N

® \We discretize the time into IV intervals:

to <t <t < - <tny_1=1tF

e Specifically t, = tg + ﬁ(tp —to)

® For later use we define:

hi = tpsr —te, k=0,...,N—2
=z (tx), k
u = u (t)

ek = (T, ug, tg)
Fr =T (@r, ur, ty)

I
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Trapezoid collocation
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Trapezoid collocation assumes

(ck + Ccht1)

tr N—
/t o(@(7), u(r), 7)dr Z

0

l\.')M—t

We can at this point evaluate the cost if we know x and u!

N-2

1
(thtF7m07mN + = Z h’k‘ Ck+ck+1)
k 0

21 DTU Compute Lecture 5
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Collocating system dynamics

M

Recall
& = f(z,u,t)
Integrating both sides
tet1 tet1
[ awde= [ @), ue). i
th th

Using trapezoid collocation we on the right-hand side and integrating the
left

1
Tyl — T ihk (fra1 + Fr)
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Trapezoid collocation: System dynamics

e Constraints are translated to simply apply to their knot points:

r<0 — x<0
u<0 — ur<O0
h(t,z,u) <0 — h(ty,xp,ur) <0

® Boundary constraints still just apply at boundary:

g (to,x (to),u(t)) <0 — g (to,xo,u0) <0
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Trapezoid collocation: First attempt

M

Optimize over z = (xg, ug, - .., un—_1,%0,tf)
| N=2
min |cp (to,tr, To, TN) + = > hi (Ck + Cht1)
i 25
Such that

h (tg, g, up) <0
g(t07tF7m07mF) S 0

with convention we iteratively compute &y, from xj starting at £ =0

1
k=0,...,N—2: mk+1:$k+§hk(fk+1+fk)

Wait, did we just solve it?
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Almost! The final idea:

® Suppose we let @y, uy vary freely (ensure everything can be evaluated)

® But we add the N — 1 constraints:
1
Tyl = T+ §hk (Fra + Fr)

® The key observation is local changes in @) and uy have local effects
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Trapezoid collocation method

Optimize over z = (xg, uo, T1,U1, ..., EN_1,UN—_1,L0,tF)
N-2
min |cr (to,tr, o, @N) + 5 > B (e + ciqa)
k=0

Such that z)p, < z < z,p
h (ty, Tp, ur) <0

1
xk_$k+1—|—§hk(.fk+1+fk):0

® Optimizer also need initial point zg

® Recall f. = f(xk, uk,tx) so last constraint is non-linear
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Reconstruction =
Given z, how do we reconstruct the (predicted) path x(¢) and wu(t)?
A
‘ u(t) (1)
> T T

® u(t) was assumed to be linear, using 7 =t — t:

.
u(t) ~ uy + e (Upt1 — ug)
k
® For x(t) we assumed
. T
x(t) z.fk""h* (Fr1— Fi)
k
® Integrating both sides and using x(t;) = xx
2
-

w(t>:$k+fk7-+2hk (Four — F1)
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Implementation

Algorithm 1 Direct solver

1: function DIRECT-SOLVE(N, GUESS=(tJ, t%., 29, u9) )

2:

10:
11:
12:
13:
14:
15:
16:

L oNa R W

Define z < (xo, o, - .., EN—_1,UN_1, 0, tF) as all optimization variables

Define grid time points ¢, = Nk ~g(tr —to) +to, k=0,...,N—1 p>eq.(15.11)
Define hy, fj, = f(xk, uk, ti) and ¢ = c(@g, uk, t).

Define Ieq and Iineq as empty lists of inequality/equality constraints
fork=0,...,N—2do

Append constraint @11 — @) = 7"(fk+1 + fr) to Ieq > eq. (15.20)
Add all other path-constraints eq. (15.21) to Iineq and Ieq
end for

Add possible end-point constraints on o,z and tg, tf to leq and Iineq

Build optimization target E(z) = ¢y (to,tr, ®o, ®n—1) + E{L—OQ %’“ (ckt1 + ck)
Construct guess time-grid: ] « & (t% — t9) +t§

Construct guess states z9 < (@9 (t§), w9 (t8), -+, &9(t%_,), w9 (% _1). 1, t%)
Let z* be minimum of E optimized over z subject to I; and I, using guess z9
Re-construct w*(t), *(t) from z* using eq. (15.22) and eq. (15.26)

Return w*, =* and t§, t}

17: end function

28
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Making it work well

® For small N, method is imprecise, but less sensitive to zg

® For moderate N, method is very sensitive to zg

® |nitially we do linear interpolation to get zg

® An idea is to use an optimizer for low value of IV, obtain solution 2’

® From this z’, we can construct «’(t) and u/(¢)

® We run optimizer with higher N and an initial guess as x, = a’(t)
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Implementation =
Algorithm 2 Iterative direct solver
Require: An initial guess z{ = (29, u9,¢],t%) found using simple linear

interpolation
Require: A sequence of grid sizes 10 ~ Ng < N1 < --- < Np
1: fort =0,T do
2: x*, u*, ¢}, 5 < DIRECT-SOLVE(IV, 27)
3 Zip1 —xF, Uttty
4. end for
5: Return uw*,x* and t{, t}
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Implementation:
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# sample.py
ineq_cons = {'type': 'ineq',
'fun': lambda x: np.array([1 - x[0] - 2 * x[1],

1 - x[0] =* 2 - x[1],

1 - x[0] *x 2 + x[111),
jac': lambda x: np.array([[-1.0, -2.0],

[-2 = x[0], -1.0],

[-2 * x[0], 1.011D}

eq_cons = {'type': 'eq',
'fun': lambda x: mp.array([2 * x[0] + x[1] - 1]),
'jac': lambda x: np.array([2.0, 1.0])}

from scipy.optimize import Bounds

z_1b, z_ub = [0, -0.5], [1.0, 2.0]

bounds = Bounds(z_1b, z_ub) # Bounds(z_low, z_up)

z0 = np.array([0.5, 0])

res = minimize(J_fun, z0, method='SLSQP', jac=J_jac,

constraints=[eq_cons, ineq_cons], bounds=bounds)

We use sympy because of the gradient/Jacobians
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Example: Pendulum
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Example: Cartpole, the Kelly task

Task is taken from the excellent [Kell7]

® Constraints: tg = 0,tp = 2, end-point constraints xy and xr = 9 and
—20 < u(t) <20

® c(x,u,t) = u(t)?
® Grid refinement: N = 10 then N = 60

(+ ) lecture_05_cartpole_kelly
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Example: Cartpole, the minimum-time task

From the (also great!) https://github.com/MatthewPeterKelly/
OptimTraj/blob/master/demo/cartPole/MAIN minTime.m

® Constraints: ty = 0,tr > 0, end-point constraints g and xr = x? and
=50 < u(t) < 50

1 c(ac,u,t) =tr —to
o N =8.16,32,70

lecture_05_cartpole_time
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Optimizing the Discrete Problem - Collocation

® We can also optimize over both action/state values

The optimisation problem is then defined as

N-1
minimize X QNyTN + Z (2] Qrxy, + ul Ryuy)
k=0
subject to F'xz < h'
F//m < h//

Az + Brug + dy, — g1 =0

35 DTU Compute Lecture 5
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DTU
Example: Brachistochrone =

>

What is the fastest path for a bead to travel zg distance in the z-direction?

0.2 ]
0.0 1
B
- -0.2
c
S
s —0.44
0.6
—0.8 1
—e xr = (z5,yr) 0.0 02 0.4 06 0.8 1.0
yy x-position
® Cost: mintg
® Actions is the angle u(t). Dynamics:
. . — S 1
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Example: Brachistochrone with dynamical constraints

Same as before but bead cannot pass through solid object

B
o= (0. 0)

T Curve in x/y plane
hl 0.0

y-position
°
w

» xr = (B, Yr)

Y 0.0 0.2 0.4 0.6 08 1.0
& x-position

® Dynamical constraint

h(z)=y—=—-h<0 (11)
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Extra: Hermite-Simpson

Hermite-Simpson collocation refers to replacing the Trapezoid rule

th N_lhk
c(r)dr =~ — (e +4c,,1 + ¢
J, = 35 (et tey o)

For dynamics

1
Tp+1 — Tk = ghk (fk + 4fk+% + fk+1)

® Generally better for small N

® Scales worse in N
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[% Tue Herlau.
Sequential decision making.
(Freely available online), 2025.

[4 Matthew Kelly.
An introduction to trajectory optimization: How to do your own direct
collocation.
SIAM Review, 59(4):849-904, 2017.
(See kelly2017.pdf).
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	Recap from last week

