(=]
—
=

M

02465: Introduction to reinforcement learning and control

Direct methods and control by optimization

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)

DTU Compute

Jepartment of Applied Mathematics and Computer Science

Lecture Schedule

Dynamical programming
@ The finite-horizon decision problem
7 February
@® Dynamical Programming
14 February
© DP reformulations and introduction to
Control
21 February
Control
@ Discretization and PID control
28 February
@ Direct methods and control by
optimization
7 March
@ Linear-quadratic problems in control
14 March

@ Linearization and iterative LQR
21 March

=
—
=

M

Reinforcement learning

@ Exploration and Bandits
28 March

@ Bellmans equations and exact planning
4 April

@ Monte-carlo methods and TD learning
11 April

@® Model-Free Control with tabular and
linear methods
25 April

® Eligibility traces
2 May

@® Deep-Q learning

9 May

Syllabus: https://02465material . pages. compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn

2 DTU Compute

Lecture 5 7 March, 2025

 https://02465material.pages.compute.dtu.dk/02465public

Reading material:

® [Her25, Chapter 15]

)
o |
=

M

Learning Objectives

® Direct methods for optimal control
® Trajectory planning for linear-quadratic problems using optimization

® Trajectory planning using trapezoidal collocation

3 DTU Compute Lecture 5

7 March, 2025

=
—
=

Project part 1

M

® Great job! Part 2 is online
® Survey on course experience on DTU Learn

® A TA caught a minor issue with N — N — 1 in the beginning of todays chapter;
new version online. Exercise+slides+algorithm not affected.

4 DTU Compute Lecture 5 7 March, 2025

Dynamics

Dynamics of the form

(t) = f(z(t), u(t),t)
® x(t) € R™ is a complete description of the system at ¢

® u(t) € R? are the controls applied to the system at ¢

® The time ¢ belongs to an interval [tg,tF] of interest

5 DTU Compute

Lecture 5

=
—
=

M

7 March, 2025

Example: Cartpole

® Coordinates are © = [gc T 0 9] (angle, angular velocity, cart position, cart
velocity)

® Action u is one-dimensional; the force applied to cart

® Dynamics are
w(t) = f(z(t), u(t),?)

where f is a fairly complicated function

)
o |
=

M

6 DTU Compute Lecture 5 7 March, 2025

Constraints

Equality constraint: rT=c

Inequality constraint: a < x <b

Any realistic physical system has constraints

® Simple boundary constraints

Llow S w<t) S Lupp

Ulow S u(t) S Uupp
® End-point constraints:

(to) < To, upp
(tr) < TFupp-

0, low <z
LTF, low <z
® Time constraints
tO, low < tO < tO, upp
tF, ow Stp < tF,upp-

7 DTU Compute

Lecture 5

S
e
=

M

—_~
N =
~— ~—

(4)

7 March, 2025

Cost and policy

® The cost function is of the form

Ju(mathtF) =CF (t()atFa (Y (tO) » L

=
=
=

M

Mayer Term

8 DTU Compute

(tr)) + / " (), u(r))dr

to

Lagrange Term

Lecture 5 7 March, 2025

Cartpole

® Necessary constraint —umax < u(t) < tmax and o= [0 0 7 0]
* Goal isto bringz towf =[1 0 0 0

® Up-right cartpole, version 1:
[]
tp
Julto,tr,) = |lz(tr) — 27| + A/ u(t) u(t)
to
® Constraints to = 0,tF = 3 (complete in 3 seconds)
® Up-right cartpole, version 2:
[]
Ju(to, tp, @) =tp — 1o

® Constraints xp = x9

Endless combinations; depends on goal 4+ method you are using

=
—
=

M

9 DTU Compute Lecture 5 7 March, 2025

The continuous-time control problem

Given system dynamics for a system
a(t) = f(t 2 (), u(b))
Obtain w : [to;tp] — R™ as solution to
u*, x t), tp = argmin Jy(x, u, to, tp).

z,u,lotp

(Minimization subject to all constraints)

10 DTU Compute Lecture 5

=
—
=

M

7 March, 2025

)
o |
=

M

Discretization

,.___
|
|
|

N
T 7~
tr Trk+1
® Simplest choice: Eulers method
® Choose grid size N: tg,t1,..., tpy1 —tx=A
® . = $(tk), up = u(tk)
Zp1 = Fr(xr, ur)
=z + Af(xk, ug, tr)
N-1
Ju=(uosur,un_1)(®0) = cp(to, xo, tr,xp) + Y cp(Tp, ug)
k=0
Ck(xka ’U;k) = Ac(mkvulwtk)
Lecture 5 7 March, 2025

¥ SiMpIEBRIE not very exact

Approaches to control

® | ast week: Rule-based methods (build w(t) = 7(ax,t) directly)

® Today: Optimization-based methods:

u” = arg min J,, (x)
u

® Direct optimization of a discretized version of the problem

® Next week: DP-inspired planning methods

12 DTU Compute Lecture 5

)
o |
=

M

7 March, 2025

Infrastructure: Nonlinear program

A non-linear program is an optimization task of the form

min E(z) subject to
z€eR”?
h(z)=0
g(z) <0
Ziow < 2 < Zupp

i.e. the objective is to find the z that minimizes E under the constraints.

® |f problem is not too complex, can use methods such as sequential convex
programming to find z*.

® Requires luck and engineering

® Needs a good initial guess
® Improves when given gradient of .J and Jacobian of f and h.

13 DTU Compute Lecture 5

=
—
=

M

7 March, 2025

=
—
=

Infrastructure: Linear Quadratic program

M

A special case of the optimization task:

1
min izr:TQac +c’x subject to

Ax <b
Fx=g

® When @ is positive definite and the problem is not very large the solution can
always be found

14 DTU Compute Lecture 5 7 March, 2025

Optimizing the Discrete Problem: Shooting
Consider the simplest form of a discrete control problem

Tpr1 = Agxyp + Bruy + dy;

quadratic cost function

N-1
T T T
Jug,..un_1(T0) = TyQNTN + Z (z), Qrxy + up, Riug)
k=0
® Given ug,...,uyn_1, all the xx's can be found form the system dynamics:

x2 = A1 + Biuy + di = Ai(Aoxo + Bouwo + do) + Biur + dy

® Problem equivalent to optimizing Ju,,... uy_, (Z0) (which is quadratic) wrt.

Ugy---, UN-1
® This method is called shooting
® |+ A single linear-quadratic optimization problem

® + Easy to understand

=
—
=

M

15 DTU Compute Lecture 5 7 March, 2025

Optimizing the Discrete Problem: Shooting

® General case

Trpr1 = fr(zr, ug)

z
L

J’u,:(uo#ul,‘..,uN,l)(wO) = Cf(t07 o, tF, $F) + C]g(iL'k;, uk)

=
I
o

® Get rid of all the x}'s except xq:

xo = f(x1,u1) = F(f (20, u0), u1)

So just optimize Jy—(ug,uy,...,un_1)(To) Wrt. w

® + Easy to understand

® A big, non-linear program (we cannot avoid that for general dynamics)
® - Unstable: small changes in uy can mean big changes in
® - Eulers method is imprecise

® - No bueno. To overcome these issues, we have to take a step back

16 DTU Compute

=
—
=

M

Lecture 5 7 March, 2025

The continuous-time control problem

Given system dynamics for a system

w(t) = f(t z(t),u(t))
Step 1: Must evaluate this ODE somehow
Subject to a number of dynamical and constant path and end-point

constraints, obtain u : [to; tp] — R™ as solution to

tp
min ep (to, b, @ (fo) ,m(tp))+/ o(@(7), w(r), 7)dr
to,tr,x(t),u(t) to
Step 3: Mayer Term
Minimize over all functions? Lagrange Term

What about constraints?

subject to eq. (5) and whatever constraints are imposed on the system.

This is a nasty constrained minimization problem

=
—
=

M

Step 2: Computing this integral

17 DTU Compute Lecture 5 7 March, 2025

nasty1

]
=

M

Numerical integration

Suppose we wish to approximate a function f(z). Divide interval into a
partitiona =29 <21 < - < T, =b

> > >
> > >

Choices corresponds to
® Piecewise constant
® Piecewise linear

® Piecewise 2nd order polynomial (use midpoint to fit the three parameters)

18 DTU Compute Lecture 5 7 March, 2025

]
=

Approximation and integration

M

Each provide an approximation for the integral: f; f(z)dx

B]

P > >

® Midpoint rule: ~ Z;‘;} f (%) A

® Trapezoid rule: = A“ (f (o) + 2f (1) + 2f (x2) + -+ 2f (Tp—1) + [(zn))

® Simpson'’s rule: ~
S5 (f (wo) +4f (1) +2f (w2) +4f (x3) + 2f (wa) + -+ + 4f (wp—1) + [(x0))

19 DTU Compute Lecture 5 7 March, 2025

General Collocation: Time discretization

® Given tg and tr and N

® \We discretize the time into IV intervals:

to <t <t < - <tny_1=1tF

e Specifically t, = tg + ﬁ(tp —to)

® For later use we define:

hi = tpsr —te, k=0,...,N—2
=z (tx), k
u = u (t)

ek = (T, ug, tg)
Fr =T (@r, ur, ty)

I
=
=

|

20 DTU Compute

Lecture 5

=
—
=

M

7 March, 2025

Trapezoid collocation

)
o |
=

M

Trapezoid collocation assumes

(ck + Ccht1)

tr N—
/t o(@(7), u(r), 7)dr Z

0

l\.')M—t

We can at this point evaluate the cost if we know x and u!

N-2

1
(thtF7m07mN + = Z h’k‘ Ck+ck+1)
k 0

21 DTU Compute Lecture 5

Wk

P

7 March, 2025

WE+1

trapz

]
=

Collocating system dynamics

M

Recall
& = f(z,u,t)
Integrating both sides
tet1 tet1
[awde= [@), ue). i
th th

Using trapezoid collocation we on the right-hand side and integrating the
left

1
Tyl — T ihk (fra1 + Fr)

22 DTU Compute Lecture 5 7 March, 2025

Trapezoid collocation: System dynamics

e Constraints are translated to simply apply to their knot points:

r<0 — x<0
u<0 — ur<O0
h(t,z,u) <0 — h(ty,xp,ur) <0

® Boundary constraints still just apply at boundary:

g (to,x (to),u(t)) <0 — g (to,xo,u0) <0

23 DTU Compute Lecture 5

=
—
=

M

7 March, 2025

=
=
=

Trapezoid collocation: First attempt

M

Optimize over z = (xg, ug, - .., un—_1,%0,tf)
| N=2
min |cp (to,tr, To, TN) + = > hi (Ck + Cht1)
i 25
Such that

h (tg, g, up) <0
g(t07tF7m07mF) S 0

with convention we iteratively compute &y, from xj starting at £ =0

1
k=0,...,N—2: mk+1:$k+§hk(fk+1+fk)

Wait, did we just solve it?

24 DTU Compute Lecture 5 7 March, 2025

Almost! The final idea:

® Suppose we let @y, uy vary freely (ensure everything can be evaluated)

® But we add the N — 1 constraints:
1
Tyl = T+ §hk (Fra + Fr)

® The key observation is local changes in @) and uy have local effects

25 DTU Compute Lecture 5

=
—
=

M

7 March, 2025

Trapezoid collocation method

Optimize over z = (xg, uo, T1,U1, ..., EN_1,UN—_1,L0,tF)
N-2
min |cr (to,tr, o, @N) + 5 > B (e + ciqa)
k=0

Such that z)p, < z < z,p
h (ty, Tp, ur) <0

1
xk_$k+1—|—§hk(.fk+1+fk):0

® Optimizer also need initial point zg

® Recall f. = f(xk, uk,tx) so last constraint is non-linear

26 DTU Compute Lecture 5

=
—
=

M

7 March, 2025

)
o |
=

Reconstruction =
Given z, how do we reconstruct the (predicted) path x(¢) and wu(t)?
A
‘ u(t) (1)
> T T

® u(t) was assumed to be linear, using 7 =t — t:

.
u(t) ~ uy + e (Upt1 — ug)
k
® For x(t) we assumed
. T
x(t) z.fk""h* (Fr1— Fi)
k
® Integrating both sides and using x(t;) = xx
2
-

w(t>:$k+fk7-+2hk (Four — F1)

27 DTU Compute

Lecture 5

7 March, 2025

Implementation

Algorithm 1 Direct solver

1: function DIRECT-SOLVE(N, GUESS=(tJ, t%., 29, u9))

2:

10:
11:
12:
13:
14:
15:
16:

L oNa R W

Define z < (xo, o, - .., EN—_1,UN_1, 0, tF) as all optimization variables

Define grid time points ¢, = Nk ~g(tr —to) +to, k=0,...,N—1 p>eq.(15.11)
Define hy, fj, = f(xk, uk, ti) and ¢ = c(@g, uk, t).

Define Ieq and Iineq as empty lists of inequality/equality constraints
fork=0,...,N—2do

Append constraint @11 — @) = 7"(fk+1 + fr) to Ieq > eq. (15.20)
Add all other path-constraints eq. (15.21) to Iineq and Ieq
end for

Add possible end-point constraints on o,z and tg, tf to leq and Iineq

Build optimization target E(z) = ¢y (to,tr, ®o, ®n—1) + E{L—OQ %’“ (ckt1 + ck)
Construct guess time-grid:] « & (t% — t9) +t§

Construct guess states z9 < (@9 (t§), w9 (t8), -+, &9(t%_,), w9 (% _1). 1, t%)
Let z* be minimum of E optimized over z subject to I; and I, using guess z9
Re-construct w*(t), *(t) from z* using eq. (15.22) and eq. (15.26)

Return w*, =* and t§, t}

17: end function

28

=
—
=

M

DTU Compute Lecture 5 7 March, 2025

Making it work well

® For small N, method is imprecise, but less sensitive to zg

® For moderate N, method is very sensitive to zg

® |nitially we do linear interpolation to get zg

® An idea is to use an optimizer for low value of IV, obtain solution 2’

® From this z’, we can construct «’(t) and u/(¢)

® We run optimizer with higher N and an initial guess as x, = a’(t)

29 DTU Compute Lecture 5

=
—
=

M

7 March, 2025

=
—
=

Implementation =
Algorithm 2 Iterative direct solver
Require: An initial guess z{ = (29, u9,¢],t%) found using simple linear

interpolation
Require: A sequence of grid sizes 10 ~ Ng < N1 < --- < Np
1: fort =0,T do
2: x*, u*, ¢}, 5 < DIRECT-SOLVE(IV, 27)
3 Zip1 —xF, Uttty
4. end for
5: Return uw*,x* and t{, t}

30 DTU Compute Lecture 5 7 March, 2025

© 00 N O A W N

T e e
N O Uk W N E O

Implementation:

)
o |
=

M

sample.py
ineq_cons = {'type': 'ineq',
'fun': lambda x: np.array([1 - x[0] - 2 * x[1],

1 - x[0] =* 2 - x[1],

1 - x[0] *x 2 + x[111),
jac': lambda x: np.array([[-1.0, -2.0],

[-2 = x[0], -1.0],

[-2 * x[0], 1.011D}

eq_cons = {'type': 'eq',
'fun': lambda x: mp.array([2 * x[0] + x[1] - 1]),
'jac': lambda x: np.array([2.0, 1.0])}

from scipy.optimize import Bounds

z_1b, z_ub = [0, -0.5], [1.0, 2.0]

bounds = Bounds(z_1b, z_ub) # Bounds(z_low, z_up)

z0 = np.array([0.5, 0])

res = minimize(J_fun, z0, method='SLSQP', jac=J_jac,

constraints=[eq_cons, ineq_cons], bounds=bounds)

We use sympy because of the gradient/Jacobians

31 DTU Compute Lecture 5

7 March, 2025

Example: Pendulum

32 DTU Compute

Lecture 5

]
o |
=

M

7 March, 2025

=
—
=

M

Example: Cartpole, the Kelly task

Task is taken from the excellent [Kell7]

® Constraints: tg = 0,tp = 2, end-point constraints xy and xr = 9 and
—20 < u(t) <20

® c(x,u,t) = u(t)?
® Grid refinement: N = 10 then N = 60

(+) lecture_05_cartpole_kelly

33 DTU Compute Lecture 5 7 March, 2025

Example: Cartpole, the minimum-time task

From the (also great!) https://github.com/MatthewPeterKelly/
OptimTraj/blob/master/demo/cartPole/MAIN minTime.m

® Constraints: ty = 0,tr > 0, end-point constraints g and xr = x? and
=50 < u(t) < 50

1 c(ac,u,t) =tr —to
o N =8.16,32,70

lecture_05_cartpole_time

=
—
=

M

34 DTU Compute Lecture 5 7 March, 2025

https://github.com/MatthewPeterKelly/OptimTraj/blob/master/demo/cartPole/MAIN_minTime.m
https://github.com/MatthewPeterKelly/OptimTraj/blob/master/demo/cartPole/MAIN_minTime.m

Optimizing the Discrete Problem - Collocation

® We can also optimize over both action/state values

The optimisation problem is then defined as

N-1
minimize X QNyTN + Z (2] Qrxy, + ul Ryuy)
k=0
subject to F'xz < h'
F//m < h//

Az + Brug + dy, — g1 =0

35 DTU Compute Lecture 5

=
—
=

M

7 March, 2025

DTU
Example: Brachistochrone =

>

What is the fastest path for a bead to travel zg distance in the z-direction?

0.2]
0.0 1
B
- -0.2
c
S
s —0.44
0.6
—0.8 1
—e xr = (z5,yr) 0.0 02 0.4 06 0.8 1.0
yy x-position
® Cost: mintg
® Actions is the angle u(t). Dynamics:
. . — S 1
36 DTU Compute z Vs, Y vcosu, v gcosu Lecture 5 7 March,(2099

=
—
=

M

Example: Brachistochrone with dynamical constraints

Same as before but bead cannot pass through solid object

B
o= (0. 0)

T Curve in x/y plane
hl 0.0

y-position
°
w

» xr = (B, Yr)

Y 0.0 0.2 0.4 0.6 08 1.0
& x-position

® Dynamical constraint

h(z)=y—=—-h<0 (11)

37 DTU Compute Lecture 5 7 March, 2025

Extra: Hermite-Simpson

Hermite-Simpson collocation refers to replacing the Trapezoid rule

th N_lhk
c(r)dr =~ — (e +4c,,1 + ¢
J, = 35 (et tey o)

For dynamics

1
Tp+1 — Tk = ghk (fk + 4fk+% + fk+1)

® Generally better for small N

® Scales worse in N

38 DTU Compute Lecture 5

=
—
=

M

7 March, 2025

)
o |
=

M

[% Tue Herlau.
Sequential decision making.
(Freely available online), 2025.

[4 Matthew Kelly.
An introduction to trajectory optimization: How to do your own direct
collocation.
SIAM Review, 59(4):849-904, 2017.
(See kelly2017.pdf).

39 DTU Compute Lecture 5 7 March, 2025

	Recap from last week

