=
=
=

n

02465: Introduction to reinforcement learning and control

Direct methods and control by optimization

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)

A
r(.\u«\):i(%'\)}”‘(«\) 8 !

DTU Compute
Depart t of Applied Mathematics and Computer Science

=
=
=

n

Lecture Schedule

Dynamical programming Reinforcement learning
@ The finite-horizon decision problem @ Exploration and Bandits

7 February 28 March
@ Dynamical Programming @ Bellmans equations and exact planning

14 February 4 April
© DP reformulations and introduction to @ Monte-carlo methods and TD learning

Control 11 April

21 February @® Model-Free Control with tabular and
Control linear methods
@ Discretization and PID control 25 April
28 February ® Eligibility traces
© Direct methods and control by 2 May)
optimization & Deep-Q learning
7 March 9 May
@ Linear-quadratic problems in control
14 March

@ Linearization and iterative LQR

21 March
Syllabus: https://02465material .pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn

2 DTU Compute Lecture 5 7 March, 2025

=]
=
=

i

Reading material:
® [Her25, Chapter 15]

Learning Objectives

® Direct methods for optimal control
® Trajectory planning for linear-quadratic problems using optimization

® Trajectory planning using trapezoidal collocation

=
—
=

"

Project part 1

® Great job! Part 2 is online
® Survey on course experience on DTU Learn

® A TA caught a minor issue with N — N — 1 in the beginning of todays chapter;
new version online. Exercise+slides+algorithm not affected.

3 DTU Compute Lecture 5 7 March, 2025
DU
- >
Dynamics =

Dynamics of the form

® x(t) € R™ is a complete description of the system at ¢
 u(t) € R? are the controls applied to the system at ¢

® The time ¢ belongs to an interval [to,tp] of interest

5 DTU Compute Lecture 5 7 March, 2025

4 DTU Compute Lecture 5 7 March, 2025
DTU
>

Example: Cartpole =

® Coordinates are & = [:1: T 6 é] (angle, angular velocity, cart position, cart
velocity)

® Action u is one-dimensional; the force applied to cart

® Dynamics are

@(t) = f(a(t), u(t),t)

where f is a fairly complicated function

6 DTU Compute Lecture 5 7 March, 2025

=
=
=

DTU
Constraints =
Equality constraint: r=c (1)
Inequality constraint: a < x <b (2)
Any realistic physical system has constraints
® Simple boundary constraints
Tiow < T(t) < Tupp
Ulow < u(t) < Unpp
® End-point constraints:
0, low < T (to) < Xo, upp 3)
Zr low < T (tr) < Tpupp-
® Time constraints
to, 1w < to < to, upp
(4)
tplow <tp < tpupp-
7 DTU Compute Lecture 5 7 March, 2025
DTU
-
Cartpole =
® Necessary constraint —umax < () < Umax and xp = [0 0« 0]
® Goal isto bringz tozf =[1 0 0 0]
® Up-right cartpole, version 1:
L]
tp
Ju(to, tr, @) = ||la(tr) — 29| + A/ u(t) Tu(t)
Jto
® Constraints ty = 0,tp = 3 (complete in 3 seconds)
® Up-right cartpole, version 2:
L]
Ju(to,tr, @) =tp — 1o
® Constraints xp = a9
Endless combinations; depends on goal + method you are using
9 DTU Compute Lecture 5 7 March, 2025
DTU
Discretization =
ug R
__ 1 Ve e o = [
—_% . Fe-
. e
te tht1
® Simplest choice: Eulers method
® Choose grid size N: to,t1,..., tp41 —tp =4
oy = a(ty), ur = u(ty)
i1 = fr(@r, ur)
=xy + Af(zk, w, tr)
N-1
Ju=(uo.ur,.un—1) (®0) = cf(to, To, tr, TF) + Z cr(Tr, i)
k=0
cp(@p, ur) = Ac(@g, wk, tr)
Lecture 5 7 March, 2025

¥ SIRIBICBUIE not very exact

Cost and policy =
® The cost function is of the form
tr
Ju(@,to, tr) = cr (fo, tr, @ (t0) @ (t5)) + / o(r, 2 (7), u(r))dr
_— 2
Mayer Term tu%/—/
Lagrange Term

8 DTU Compute Lecture 5 7 March, 2025

DTU
. . -
The continuous-time control problem =
Given system dynamics for a system
&(t) = f(t, z(t), u(t)
Obtain w : [to; tp] — R™ as solution to
u*, &, 1), tp = argmin Jy(x, u, to, tp).
xu,totp
(Minimization subject to all constraints)

10 DTU Compute Lecture 5 7 March, 2025
DTU
-

Approaches to control =

® Last week: Rule-based methods (build u(t) = 7(x,) directly)

® Today: Optimization-based methods:

uw* = argmin Jy (o)
® Direct optimization of a discretized version of the problem
® Next week: DP-inspired planning methods
12 DTU Compute Lecture 5 7 March, 2025

=
=
=

DTU
Infrastructure: Nonlinear program =
A non-linear program is an optimization task of the form
min E(z) subject to
z€ER"
h(z) =0
g(2) <0
Ziow <2 < Zupp
i.e. the objective is to find the z that minimizes E under the constraints.
® |f problem is not too complex, can use methods such as sequential convex
programming to find z*.
® Requires luck and engineering
® Needs a good initial guess
® Improves when given gradient of .J and Jacobian of f and h.
13 DTU Compute Lecture 5 7 March, 2025
DTU
Optimizing the Discrete Problem: Shooting =
Consider the simplest form of a discrete control problem
Tpt1 = Apxp + Bruy + di
quadratic cost function
N-1
T T T
Jug,un—1 (@) = THQNEN + Y (] Qrk + uf Ryur)
k=0
® Given uy,...,uyn—_1, all the ;s can be found form the system dynamics:
o = A1y + Brug +dy = A1 (Ao + Bouo + do) + Bruy + dy
® Problem equivalent to optimizing Ju,,....uy_, (Zo) (which is quadratic) wrt.
Uy -+, UN-1
® This method is called shooting
® + A single linear-quadratic optimization problem
® + Easy to understand
15 DTU Compute Lecture 5 7 March, 2025
DTU
- - >
The continuous-time control problem =

Given system dynamics for a system

&(t) = f(t, (1), u(t))
Step 1: Must evaluate this ODE somehow
Subject to a number of dynamical and constant path and end-point

constraints, obtain w : [to; tp] — R™ as solution to

—
o1
-

. Step 2: Computing this integral
min (:F(t(),tp,fl?(to),x(tp‘))-"/ c(x(7),u(r), 7)dr
to,tpya(t),u(t) Jto
Step 3: Mayer Term
Minimize over all functions? Lagrange Term
What about constraints?
subject to eq. (5) and whatever constraints are imposed on the system.

This is a nasty constrained minimization problem

17 DTU Compute Lecture 5 7 March, 2025

Infrastructure: Linear Quadratic program =
A special case of the optimization task:
1
min inQw + 'z subject to
Ax <b
Fx=g
® When @ is positive definite and the problem is not very large the solution can
always be found
14 DTU Compute Lecture 5 7 March, 2025
DTU
Optimizing the Discrete Problem: Shooting =
® General case
Tpy1 = fr(@r, ur)
N-1
Ju—(uotrvoun 1) (®0) = cf(to, o, tr, Tr) + Y cx(@n, ur)
k=0
® Get rid of all the @}'s except x¢:
2 = f(z1,u1) = f(f(@o, uo), u1)
So just optimize Jy—(ug,ui,....un_1)(®0) Wrt. w

® + Easy to understand

® A big, non-linear program (we cannot avoid that for general dynamics)

® - Unstable: small changes in u, can mean big changes in zy

® - Eulers method is imprecise

® - No bueno. To overcome these issues, we have to take a step back
16 DTU Compute Lecture 5 7 March, 2025

DTU

Numerical integration =

Suppose we wish to approximate a function f(z). Divide interval into a
partitona =29 < x; < -+ <Tp=0>

Choices corresponds to

® Piecewise constant
® Piecewise linear

® Piecewise 2nd order polynomial (use midpoint to fit the three parameters)

18 DTU Compute Lecture 5 7 March, 2025

=
=
=

n

Approximation and integration
Each provide an approximation for the integral: f: f(z)dz

e

® Midpoint rule: ~ Z;ZOI f (""*’Jr"") A,

2

® Trapezoid rule: =~ % (f (o) +2f (z1) + 2f (x2) + -+ 2f (®n—1) + [(zn))

® Simpson'’s rule:
A2 (f (w0) +4f (1) +2f (w2) + 4 (w3) +2f (1) + -+ 4f (@) + [(x0))

DTU
General Collocation: Time discretization =
® Given tg and tp and N
® We discretize the time into N intervals:
to<t) <t <---<tn_1=1F
® Specifically ¢, = to + ﬁ(tp —to)
® For later use we define:
hy =tpy1 —te, k=0,...,N—-2
z, =z (ty),
up = u(ty)
cp = c (@, up, ty)
fro=F (xp w, tr)
20 DTU Compute Lecture 5 7 March, 2025
DTU
. . >
Collocating system dynamics s

Recall
& = f(z,u,t)

Integrating both sides
tht1 sl
[atdr= [T i) ule)
Jty, Jty.

Using trapezoid collocation we on the right-hand side and integrating the
left

1
Tpy1 — T X 5’% (Frer + Fr)

19 DTU Compute Lecture 5 7 March, 2025
DTU
. . >
Trapezoid collocation =
Trapezoid collocation assumes
e N-2 W wy
o1
/ c(x(r),u(r),7)dr = Z —hy (¢ + Crt1)
Jto izo 2
We can at this point evaluate the cost if we know @ and u!
1 N2
cr (to,tr, o, 2N) + 5 > (e + crpn) hy,
k=0
21 DTU Compute Lecture 5 7 March, 2025
DTU
- - - >
Trapezoid collocation: System dynamics s
® Constraints are translated to simply apply to their knot points:
<0 — x<0
u<0 — up<0
h(t,z,u) <0 — h(tp,xr,u,) <0
® Boundary constraints still just apply at boundary:
g (to,x (to) ,u(to)) <0 — g(to,mo,ug) <0
23 DTU Compute Lecture 5 7 March, 2025

22 DTU Compute Lecture 5 7 March, 2025
DU
- - . >
Trapezoid collocation: First attempt P =3

Optimize over z = (zo, uo, - - -, uN—1, %0, 1)
N—2
mzin cr (to,tp, o, TN) + = z hi (¢ + Crs1)
k=0
Such that

h (tg, @y, ug) <0
g (to,tr, o, xr) < 0

with convention we iteratively compute @)1 from xj, starting at k =0

1
k=0,...,N—2: fl}k+1=$k+§hk(fk+1+fk)

Wait, did we just solve it?

24 DTU Compute Lecture 5 7 March, 2025

Trapezoid collocation method

Optimize over z = (xg, wo, €1, U1, ..., N1, UN—-1, 0, LF)

N-2

min | cp (to, tF, @0, TN) + 5 th (ck + chy1)
2%

Such that z), < 2 < zyp
h (tg, zp, up) <0

1
T — Tpy1 + ihk (fk+1 +fk) =0

® Optimizer also need initial point z(

® Recall f,. = f(xy, uy, t) so last constraint is non-linear

=
=
=

n

DTU
Almost! The final idea: =
® Suppose we let @y, uy, vary freely (ensure everything can be evaluated)
® But we add the N — 1 constraints:

1
Lpy1 = Tp + ihk (fA~+1 + .fk)

® The key observation is local changes in @ and u; have local effects
25 DTU Compute Lecture 5 7 March, 2025

DTU

. -

Reconstruction =

Given z, how do we reconstruct the (predicted) path x(¢) and u(t

YT

® u(t) was assumed to be linear, using 7 =t — t;:

-
u(t) ~ up + T (W1 — i)
g

® For x(t) we assumed

. T

a(t) ~ f, + " (fk+l *fk)
® Integrating both sides and using x(tx) = @i

m(t)_zk+.fkT+ (fA+1 Fi)

26 DTU Compute Lecture 5 7 March, 2025
DTU
. -
Implementation =

Algorithm 1 Direct solver

1: function DIRECT-SOLVE(N, GUESS=(t{, t%,, @, u?))

2: Define z « (zg, ug, ..., xN_1,uN—1,t0, L) as all optimization variables
3 Define grid time points t), = 5=
4 Define hy, fj. = f(@g, wg, ty) and ¢ = c(@p, wp,).

5 Define Ieq and fineq as empty lists of inequality/equality constraints
6: for k=0,....] N —2do
7.

8

9

E(tr—to) +to. k=0,...,N—1 beq. (15.11)

Append constraint @y, —) = ‘_, (Frgr + i) to Ieq > eq. (15.20)
Add all other path-constraints eq. (15.21) t0 fineq and Ieq
: end for

10: Add possible end-point constraints on @, and tg, tp to qu and fineq

11 Build optimization target E(z) = cf (to. tp, o, @N—1) + Sp i % (cppr + c)

12: Construct guess time-grid: t] « 2 (t% — §) + t§

13 Construct guess states 29 « (@/(t{), ud(tf),--- ,@/(t%_,), w(t%_,),). t%)

14: Let z* be minimum of E optimized over z subject to I; and I, using guess 2/

15: Re-construct u*(t), z*(t) from z* using eq. (15.22) and eq. (15.26)

16: Return uw*, 2" and t§, t}

17: end function

28 DTU Compute Lecture 5 7 March, 2025

27 DTU Compute Lecture 5 7 March, 2025
DU
. - >
Making it work well =

® For small NV, method is imprecise, but less sensitive to zg

® For moderate N, method is very sensitive to zg

® |nitially we do linear interpolation to get zg

® An idea is to use an optimizer for low value of N, obtain solution 2’
® From this 2/, we can construct @'(t) and u’(t)

® We run optimizer with higher N and an initial guess as), = @'(t))

29 DTU Compute Lecture 5 7 March, 2025

Implementation

=]
=
=

i

Algorithm 2 Iterative direct solver

Require: An initial guess z{ = (z9,u?,t],t%) found using simple linear

interpolation
Require: A sequence of grid sizes 10 ~ Ny < N} < --- < Np
1: for t = 0,7 do
2 T, ut, 5, th < DIRECT-SOLVE(IV, 27)
3: Zigp1 Ut R
4. end for
5: Return w*,z* and ¢, t};

30 DTU Compute Lecture 5

7 March, 2025

=
=
=

DTU
Implementation: =
1 # sample.py
2 ineq_cons = {'type': 'ineq',
3 'fun': lambda x: np.array([1 - x[0] - 2 * x[1],
4 1 - x[0] ** 2 - x[1],
5 1 - x[0] ** 2 + x[1]]),
6 'jac': lambda x: np.array([[-1.0, -2.0],
7 [-2 * x[0], -1.0],
s [-2 * x[0], 1.011)}
9 eq_cons = {'type': 'eq',
10 'fun': lambda x: np.array([2 * x[0] + x[1] - 1]),
11 'jac': lambda x: np.array([2.0, 1.01)}
12 from scipy.optimize import Bounds
13 z_1lb, z_ub = [0, -0.5], [1.0, 2.0]
14 bounds = Bounds(z_1b, z_ub) # Bounds(z_low, z_up)
15 20 = np.array([0.5, 0])
16 res = minimize(J_fun, z0, method='SLSQP', jac=J_jac,
17 constraints=[eq_cons, ineq_cons], bounds=bounds)
We use sympy because of the gradient/Jacobians
31 DTU Compute Lecture 5 7 March, 2025
DTU
>
Example: Cartpole, the Kelly task =
Task is taken from the excellent [Kell7]
® Constraints: ty = 0,tr = 2, end-point constraints o and zp = 7 and
—20 < u(t) <20
o c(x,u, t) = u(t)?
® Grid refinement: N = 10 then N = 60
[+] lecture_05_cartpole_kelly
33 DTU Compute Lecture 5 7 March, 2025
DTU
Optimizing the Discrete Problem - Collocation =

® We can also optimize over both action/state values
The optimisation problem is then defined as

N-1
minimize m?{,QNmN + Z (sz.Qka:k + uZRkuk)
k=0
subject to F'axz < h’
Fla <h'
Agzy + Bruy, +dy — xpy =0

35 DTU Compute Lecture 5 7 March, 2025

Example: Pendulum =
32 DTU Compute Lecture 5 7 March, 2025
DTU
Example: Cartpole, the minimum-time task =
From the (also great!) https://github.com/MatthewPeterKelly/
OptimTraj/blob/master/demo/cartPole/MAIN _minTime.m
® Constraints: tg = 0,tr > 0, end-point constraints o and zp = 7 and
—50 < u(t) <50
o c(x,u,t) =tp —to
* N =8,16,32,70
[+) lecture_05_cartpole_time
34 DTU Compute Lecture 5 7 March, 2025
DTU
Example: Brachistochrone =3

What is the fastest path for a bead to travel 25 distance in the z-direction?

rp
x0 = (0,0)

y-position

zr = (5, yr) 00 02 04 06 08 10

x-position

Y

® Cost: mintp
® Actions is the angle u(t). Dynamics:

& =wvsinu, Y=wvcosu, U= gcos
36 DTU Compute T=usinu, y=veosu, U=gCoSU s 7 March.(zloga)

Extra: Hermite-Simpson

Hermite-Simpson collocation refers to replacing the Trapezoid rule

- Nolp
/ o(r)dr ~ Z 3 (ck a1+ Ck+1)
to k=0 -

For dynamics

1
Tpt1 — T = éhk: (fk +a4fp+ fk+1)

® Generally better for small N

® Scales worse in N

38 DTU Compute Lecture 5

=
=
=

n

7 March, 2025

DTU
Example: Brachistochrone with dynamical constraints =
Same as before but bead cannot pass through solid object
20 = (0,0) e
! Curve in xly plane
hl o
o
y<s+h o
os
zp = (¢B.Yr)
y O L
® Dynamical constraint
x
h(w):y—g—hgo (11)
37 DTU Compute Lecture 5 7 March, 2025
DTU
>
=
=

[@ Tue Herlau.
Sequential decision making.
(Freely available online), 2025.

@ Matthew Kelly.
An introduction to trajectory optimization: How to do your own direct
collocation.
SIAM Review, 59(4):849-904, 2017.
(See kelly2017.pdf).

39 DTU Compute Lecture 5 7 March, 2025

