

Recap from last week Constraints		DTU
Equality constraint: $x = c$ Inequality constraint: $a \le x \le b$		(1) (2)
Any realistic physical system has constraints		()
Simple boundary constraints		
$egin{aligned} oldsymbol{x}_{ ext{low}} \leq oldsymbol{x}(t) \leq oldsymbol{x}_{ ext{upp}} \ oldsymbol{u}_{ ext{low}} \leq oldsymbol{u}(t) \leq oldsymbol{u}_{ ext{upp}} \end{aligned}$		
• End-point constraints:		
$egin{array}{lll} m{x}_{0, \ {\sf low}} &\leq m{x}\left(t_{0} ight) \leq m{x}_{0, \ {\sf upp}} \ m{x}_{F, \ {\sf low}} &\leq m{x}\left(t_{F} ight) \leq m{x}_{F, { m upp}}. \end{array}$		(3)
• Time constraints		
$t_{0, \text{ low}} \leq t_0 \leq t_{0, \text{ upp}}$ $t_{F, \text{ low}} \leq t_F \leq t_{F, \text{upp}}.$		(4)
7 DTU Compute	Lecture 5	7 March, 2025

DTU Recap from last wee Optimizing the Discrete Problem: Shooting ≘ Consider the simplest form of a discrete control problem $\boldsymbol{x}_{k+1} = A_k \boldsymbol{x}_k + B_k \boldsymbol{u}_k + \boldsymbol{d}_k$ quadratic cost function $\boldsymbol{J}_{\boldsymbol{u}_0,\dots,\boldsymbol{u}_{N-1}}(\boldsymbol{x}_0) = \boldsymbol{x}_N^T Q_N \boldsymbol{x}_N + \sum_{k=0}^{N-1} (\boldsymbol{x}_k^T Q_k \boldsymbol{x}_k + \boldsymbol{u}_k^T R_k \boldsymbol{u}_k)$ • Given u_0, \ldots, u_{N-1} , all the x_k 's can be found form the system dynamics: $\boldsymbol{x}_2 = A_1 \boldsymbol{x}_1 + B_1 \boldsymbol{u}_1 + d_1 = A_1 (A_0 \boldsymbol{x}_0 + B_0 \boldsymbol{u}_0 + \boldsymbol{d}_0) + B_1 \boldsymbol{u}_1 + d_1$ • Problem equivalent to optimizing $J_{oldsymbol{u}_0,...,oldsymbol{u}_{N-1}}(oldsymbol{x}_0)$ (which is quadratic) wrt. u_0, \ldots, u_{N-1} • This method is called shooting • + A single linear-quadratic optimization problem • + Easy to understand 15 DTU Compute 7 March, 2025 Lecture 5

Recap from last week Example: Pendulum		DTU S
32 DTU Compute	Lecture 5	7 March, 2025

Recap from last week Extra: Hermite-Simpson

Hermite-Simpson collocation refers to replacing the Trapezoid rule

$$\int_{t_0}^{t_F} c(\tau) d\tau \approx \sum_{k=0}^{N-1} \frac{h_k}{6} \left(c_k + 4c_{k+\frac{1}{2}} + c_{k+1} \right)$$

For dynamics

$$m{x}_{k+1} - m{x}_k = rac{1}{6} h_k \left(m{f}_k + 4 m{f}_{k+rac{1}{2}} + m{f}_{k+1}
ight)$$

 \bullet Generally better for small N

 \bullet Scales worse in ${\cal N}$

38 DTU Compute

Lecture 5 7 March, 2025

DTU

