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Lecture Schedule

Dynamical programming

1 The finite-horizon decision problem
7 February

2 Dynamical Programming
14 February

3 DP reformulations and
introduction to Control
21 February

Control

4 Discretization and PID control
28 February

5 Direct methods and control by
optimization
7 March

6 Linear-quadratic problems in control
14 March

7 Linearization and iterative LQR
21 March

Reinforcement learning

8 Exploration and Bandits
28 March

9 Bellmans equations and exact planning
4 April

10 Monte-carlo methods and TD learning
11 April

11 Model-Free Control with tabular and
linear methods
25 April

12 Eligibility traces
2 May

13 Deep-Q learning
9 May

Syllabus: https://02465material.pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn
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Reading material:
• [Her25, Section 6.3; Chapter 10-11] Alternative formulations of DP

Learning Objectives
• Reformulations of DP
• The control problem
• Simulating a control problem
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DP recap
Recap: Discrete stochastic decision problem

• The states are x0, . . . , xN , and the controls are u0, . . . , uN−1

• wk ∼ Pk(Wk = wk|xk, uk), k = 0, . . . , N − 1 are random disturbances
• The system evolves as

xk+1 = fk(xk, µk(xk), wk), k = 0, . . . , N − 1

• At time k, the possible states/actions are xk ∈ Sk and uk ∈ Ak(xk)

s lecture_03_frozen_lake.py
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DP recap
DP Recap: Frozen lake
If agent takes action down in square 6, it will slide in either of the blue
directions with probability 1

3

• Implementation: wk is ’slide forward’, ’slide left’, ’slide right’
• p(wk|xk, uk) = 1

3 and fk(xk, uk, wk) computes effect of action + slide
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DP recap
The Dynamical Programming algorithm

The Dynamical Programming algorithm
For every initial state x0, the optimal cost J∗(x0) is equal to J0 (x0), and optimal
policy π∗ is π∗ = {µ0, . . . , µN−1}, computed by the following algorithm, which
proceeds backward in time from k = N to k = 0 and for each xk ∈ Sk computes

JN (xN ) = gN (xN ) (1)
Jk (xk) = min

uk∈Ak(xk)
E
wk

{gk (xk, uk, wk) + Jk+1 (fk (xk, uk, wk))} (2)

µk(xk) = u∗
k (u∗

k is the uk which minimizes the above expression). (3)

The optimal value function is expected future cost from a given state xk at
a given time k.
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DP recap
Quiz: Frozen lake

Consider the DP update equation:

Jk (xk) = min
uk∈Ak(xk)

E
wk
{gk (xk, uk, wk) + Jk+1 (fk (xk, uk, wk))}

What will be the expected cost J35(xk) of the indicated square? (hint:
What action is best at this stage?)

a. J35(xk) = −0.607
b. J35(xk) = −0.587
c. J35(xk) = −0.567
d. J35(xk) = −0.543
e. Don’t know.
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Perspective: Things we can do with DP
Evaluate a policy
• Suppose the policy π is fixed
• We want to now how well it does

Jπ(x0) = Eπ

[
gN (xN ) +

N−1∑
k=0

gk(xk, uk, wk) | x0

]
.

• Just move expectation:

Jπ(x0) = E

[
g0(x0, u0, w0) + E

[
gN (xN ) +

N−1∑
k=1

gk(xk, uk, wk) | x1

]]
= E [g0(x0, u0, w0) + J1,π(x1)]

• Initialize at JN,π(xN ) = gN (xN ) and iterate:

Jπ,k(xk) = E [gk(xk, uk, wk) + Jk+1,π(xk+1)]

• Applications: Many RL algorithms
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Perspective: Things we can do with DP
The DP algorithm is often not practical

• Too many states! {tiles}{players} × 2{pellets}

• We often don’t know dynamics/distribution over opponents moves
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N J0 Win pct Length |S|

1 0.00 0.00 1.00 12.0
2 0.00 0.00 2.00 41.0
3 0.00 0.00 2.50 155.0
4 0.75 0.72 3.72 278.0
6 0.81 0.81 4.30 1098.0
8 0.82 0.82 4.33 3565.0
12 0.85 0.86 4.54 18956.0
16 0.85 0.84 4.51 37516.0
20 0.85 0.84 4.56 47811.0

Table: Results of the DP algorithm to the pacman level with three ghosts
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Perspective: Things we can do with DP
Stationary problem = stationary policy

Jk(xk) = min
uk

E [Jk+1 (fk(xk, uk, wk)) + gk (xk, uk, wk)]

Assume the problem is independent of k:

Jk(x) = min
u

E [Jk+1 (f(x, u, w)) + g (x, u, w)]

• Will be true that J0 ≈ J1 ≈ J2 etc.
• Policies will be the same initially π0 ≈ π1 etc.
• The horizon N is irrelevant assuming it is long enough

In fact just iterate to convergence:

J(x)← min
u

E [J (f(x, u, w)) + g (x, u, w)]

Applications: This is nearly always the case.
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Perspective: Things we can do with DP
Action-value formulation

Jk(xk) = min
uk

E [Jk+1 (fk(xk, uk, wk)) + gk (xk, uk, wk)]

Rewrite using Q(xk, uk) as the expected cost
• Foundation of Q-learning
• If we know the Q-functions, they give us the policy for free
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Perspective: Things we can do with DP
Robust control

Jk(xk) = min
uk

E [Jk+1 (fk(xk, uk, wk)) + gk (xk, uk, wk)]

• Problem: What if we don’t know p(wk|xk, uk)?
• Assumes the worst possible thing always happen

Jk(xk) = min
uk

[
arg max

wk

[Jk+1 (fk(xk, uk, wk)) + gk (xk, uk, wk)]
]

RL Most game-playing methods (Alphago-zero, TD-gammon,
etc.)

Control Robust control
Games (imperfect information, Nash-equilibrium) are generally a

fairly open problem in RL [BBLG20]
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Perspective: Things we can do with DP
Sample-based formulation

Jk(xk) = min
uk

E [Jk+1 (fk(xk, uk, wk)) + gk (xk, uk, wk)]

• Problem: What if we really don’t know P (wk|xk, uk)?
• Idea: We can sample from it

Jk(xk) ≈ min
uk

1
S

S∑
s=1

[
Jk+1

(
fk(xk, uk, w(s))

)
+ gk

(
xk, uk, w(s)

)]
Foundation of RL: Samples can be obtained by just observing what
nature does in a state (xk, uk)
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Perspective: Things we can do with DP
Approximate dynamical programming

We solve the following problem at each step k

Jk(xk) = min
uk

E [Jk+1 (xk+1) + gk (xk, uk, wk)]

To many damn states! (...although calculation for a single xk is ok..)
• Idea: Use an approximating function Jk(xk) ≈ J̃(xk, w)
• How?: The right-hand side gives us a prediction yk for xk which we use to train

wk

w∗ = min
w

S∑
s=1

(
y(s) − J̃(x(s), w)

)2

This is the idea behind deep RL, and has applications to control and
DP-based planning
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Perspective: Things we can do with DP
d-step methods

DP applied in the starting state:

J∗(x0) = arg min
u0

E [J∗
1 (x1) + g0 (x0, u0, w0)]

d-step rollout of DP:

J∗(x0) = arg min
µ0,...,µd−1

E
[
J∗

d (xk+d) +
d−1∑
k=0

gk (xk, µk (xk) , wk)
]

Instead of using J∗
d , perhaps use a really rough approximation

RL n-step methods (Impala, Alphastar, etc.)
Control Model-predictive control

• Often just ignore the terminal cost
• Often just assume model is deterministic
• Both assumptions are justifiable because the model wrong

anyway
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The control problem
Control theory
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The control problem
Example: Mars landing

Time Continuous
State/Actions x(t): (Position, velocity, temperature, fuel mass)

u(t): thruster outputs
Dynamics Smooth and time-dependent

ẋ(t) = f(x(t), u(t), t)

Cost Land the right place,
and use little fuel and don’t kill anyone

Constraints Thrusters deliver limited force,
ship cannot go into mars, etc.

Objective Determine u(t) to minimize final cost
Really important constraints; no learning
s lecture_01_car_random.py
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The control problem
Control theory in general

• Why care?
• More mature and practically important than RL
• Ideas in control relevant for RL and beyond

• This course will teach naive but real control theory:
• Don’t care about error analysis/analytical properties
•Will emphasize real methods
•Will distinguish between approximate model of environment/actual

environment
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The control problem
Differences and similarities to dynamical programming

• Similarities
• A time-dependent problem
• States and actions
• Goal is still to minimize a cost function
• Ideas from DP will carry over

• Complications
• Time is continuous t ∈ [t0, tF ]
• Dynamics is an ODE

• Simplifications
• No noise
• Open-loop techniques play a more prominent role

20 DTU Compute Lecture 3 21 February, 2025



The control problem
Example: The pendulum environment

If u is a torque applied to the axis of rotation θ then:

θ̈(t) = g

l
sin(θ(t)) + u(t)

ml2

If x =
[
θ θ̇

]T
this can be written as

ẋ =
[

θ̇
g
l sin(θ) + u

ml2

]
= f(x, u) (4)

All high-order ODEs are equivalent to systems of 1st order ODEs, see theorem 12.4.1:
https://mat1a.compute.dtu.dk/_assets/12_system_diff_eqs.pdf
s lecture_04_pendulum_random.py
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The control problem
Dynamics

We assume the system we wish to control has dynamics of the form

ẋ(t) = f(x(t), u(t), t)

• x(t) ∈ Rn is a complete description of the system at t

• u(t) ∈ Rd are the controls applied to the system at t

• The time t belongs to an interval [t0, tF ] of interest
• The evolution of the system x(t), u(t) is called a path or trajectory
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The control problem
Quiz: Stopping the pendulum

ẋ =
[

θ̇
g
l sin(θ) + u

ml2

]
= f(x, u)

If the pendulum is at an angle of π
4 to vertical, how much torque u should

we apply to keep it still?
a. u(t) = −mgl√

2 (Correct: An earlier version was missing l)

b. u(t) = − m
gl

√
2

c. u(t) = −mg
√

2
l2

d. u(t) = −g
√

2
ml

e. Don’t know.
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The control problem
Constraints I

Any realistic physical system has constraints. Examples:
• Simple boundary constraints

xlow ≤ x(t) ≤ xupp

ulow ≤ u(t) ≤ uupp

Maximal acceleration of a car; that the acceleration of an airplane cannot
exceed a certain safety limit
• Problem must terminate within a given time

tlow ≤ t0 < tF ≤ tupp

(or we could know t0 and tf ; note this is different from DP case with x0 and N !)
Don’t take forever
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The control problem
Constraints II

• Boundary constraints
x0, low ≤ x (t0) ≤ x0, upp

xF, low ≤ x (tF ) ≤ xF,upp

I want you to be somewhere when you start or end
• Notice that for some coordinate the two boundaries can be equal to give equality

constraints; they can also be ∞ for unconstrained problems
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The control problem
Cost and policy

• State/action trajectories x, u which satisfy the constraints are said to be
admissible
• The cost function will be of this form:

Ju(x, t0, tF ) = cF (t0, tF , x (t0) , x (tF ))︸ ︷︷ ︸
Mayer Term

+
∫ tF

t0

c(τ, x(τ), u(τ))dτ︸ ︷︷ ︸
Lagrange Term

• Note we sometimes write this as Ju(x0, t0, tF )
• Very often t0 = 0
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The control problem
Special cases

• Minimum time cF = 0, c = 1 and

cost =
∫ tf

t0

1dτ = (tf − t0)

• Coordinate 3 takes a particular value cF (· · · ) = (x3(tf )− x0)2, c = 0 and

cost = (x3(tf )− x0)2

• Minimize energy used c(· · · ) = force× distance

cost =
∫ tf

t0

(force× velocity)dτ = energy
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The control problem
The continuous-time control problem

Given system dynamics for a system

ẋ(t) = f(t, x(t), u(t))

Obtain u : [t0; tF ]→ Rm as solution to

u∗, x∗, t∗
0, t∗

F = arg min
x,u,t0,tF

Ju(x, u, t0, tF ).

(Minimization subject to all constraints)

Today:
• Simulate the system
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The control problem
Example: The harmonic oscillator

A mass attached to a spring which can move back-and-forth

ẍ(t) = − k

m
x(t) + 1

m
u(t) (5)

ẋ =
[

0 1
− k

m 0

]
x +

[
0
1
m

]
u (6)

J(x0) =
∫ tF

0

(
x(t)⊤x(t) + u(t)2

)
dt. (7)

s lecture_04_harmonic.py
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The control problem
Simulation: Euler integration

Apply a Taylor expansion:

x(t + δ) = x(t) + ẋ(t)δ + 1
2 ẍ(t)δ2 +O(δ3)

Define ∆ = tF −t0
N and introduce

t1 = t0 + ∆
t2 = t0 + 2∆
tk = t0 + k∆
tN = t0 + N∆ = tF

Then we can iteratively update:

xk+1 = xk + ∆f(xk, uk, tk)
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The control problem
Practical issues
A harmonic oscillator with no force ẍ = − k

mx

xk+1 = xk + ∆
[

0 1
− k

m 0

]
xk, ∆ = tF

N
. (8)
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True solution
Euler integration, N = 150
Euler integration, N = 1000
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The control problem
Simulation: Runge-Kutta 4 (RK4)

• Discretize time similar to Euler tk = t0 + k∆
• Compute

k1 = f (xk, uk)
k2 = f

(
xk + ∆ k1

2 , u
(
tk + ∆

2
)

, tk + ∆
2

)
k3 = f

(
xk + ∆ k2

2 , u
(
tk + ∆

2
)

, tk + ∆
2

)
k4 = f (xk + ∆k3, u(tk+1), tk+1)

• Set xk+1 ← xk + 1
6 ∆ (k1 + 2k2 + 2k3 + k4)

• Repeat for all k
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The control problem
Implementation: Continuous symbolic model

1 # basic_pendulum.py
2 class BasicPendulumModel(ControlModel):
3 def sym_f(self, x, u, t=None):
4 g = 9.82
5 l = 1
6 m = 2
7 theta_dot = x[1] # Parameterization: x = [theta, theta']
8 theta_dot_dot = g / l * sym.sin(x[0]) + 1 / (m * l ** 2) * u[0]
9 return [theta_dot, theta_dot_dot]

10
11 def get_cost(self) -> SymbolicQRCost:
12 return SymbolicQRCost(Q=np.eye(2), R=np.eye(1))
13
14 def u_bound(self) -> Box:
15 return Box(np.asarray([-10]), np.asarray([10]), dtype=float)
16
17 def x0_bound(self) -> Box:
18 return Box(np.asarray( [np.pi, 0] ), np.asarray( [np.pi, 0]), dtype=float)

Implements:

• ẋ =
[
θ̇

θ̈

]
= f

([
θ

θ̇

]
, u

)
=

[
θ̇

g
l sin(θ) + 1

ml2 u

]
• J(x0) =

∫ tF

t0

( 1
2 x(t)⊤Qx(t)+ 1

2 u(t)⊤Ru(t)
)

dt = 1
2

∫ tF

t0

(
∥x(t)∥2 + u(t)2)

dt

• −10 ≤ u(t) ≤ 10, and x0 =
[
π
0

]
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The control problem
Simulation

1 # chapter7contiuous/model_example_plot.py
2 cmodel = PendulumModel()
3 x0 = cmodel.x0_bound().low
4
5 def policy(x, t):
6 return [3 * np.sin(2 * t)]
7
8 xx, uu, tt, cost = cmodel.simulate(x0, policy, t0=0, tF=10)
9 plt.plot(tt, xx[:, 0], label="$\\theta$")

10 plt.plot(tt, uu[:, 0], label="$u$")
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The control problem
Resources and references

https://en.wikipedia.org Overview of alternative discretization approaches
of a ODE to discrete system (https://en.wikipedia.org/wiki/Discretization)

Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong.
Combining deep reinforcement learning and search for
imperfect-information games, 2020.

Tue Herlau.
Sequential decision making.
(Freely available online), 2025.
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