

1				$ \mathcal{S} $
1	0.00	0.00	1.00	12.0
2	0.00	0.00	2.00	41.0
3	0.00	0.00	2.50	155.0
4	0.75	0.72	3.72	278.0
6	0.81	0.81	4.30	1098.0
8	0.82	0.82	4.33	3565.0
12	0.85	0.86	4.54	18956.0
16	0.85	0.84	4.51	37516.0
20	0.85	0.84	4.56	47811.0

DTU

≡

17 DTU Compute

The control problem Simulation: Euler integration				
Apply a Taylor expansion:				
$oldsymbol{x}(t+\delta) = oldsymbol{x}(t)\delta + rac{1}{2}\ddot{oldsymbol{x}}(t)\delta^2 + \mathcal{O}(\delta^3)$				
Define $\Delta = rac{t_F - t_0}{N}$ and introduce				
$t_1 = t_0 + \Delta$				
$t_2 = t_0 + 2\Delta$				
$t_k = t_0 + k\Delta$				
$t_N = t_0 + N\Delta = t_F$				
Then we can iteratively update:				
$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \Delta \boldsymbol{f}(\boldsymbol{x}_k, \boldsymbol{u}_k, t_k)$				
30 DTU Compute Lecture 3	21 February, 2025			

The control problem Simulation: Runge-Kutta 4 (RK4) • Discretize time similar to Euler $t_k = t_0 + k\Delta$ • Compute $\begin{aligned} h_1 = f(x_k, u_k) \\ h_2 = f(x_k + \Delta \frac{h_2}{2}, u(t_k + \frac{\lambda}{2}), t_k + \frac{\lambda}{2}) \\ h_3 = f(x_k + \Delta k_3, u(t_{k+1}), t_{k+1}) \end{aligned}$ • Set $x_{k+1} \leftarrow x_k + \frac{1}{6}\Delta(t_1 + 2t_2 + 2t_3 + t_4)$ • Repeat for all k

