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Lecture Schedule

Dynamical programming
@ The finite-horizon decision problem
7 February
® Dynamical Programming
14 February
© DP reformulations and introduction to
Control
21 February
Control
@ Discretization and PID control
28 February
@ Direct methods and control by
optimization
7 March
@ Linear-quadratic problems in control
14 March

@ Linearization and iterative LQR
21 March
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Reinforcement learning

@ Exploration and Bandits
28 March

@ Bellmans equations and exact planning
4 April

@ Monte-carlo methods and TD learning
11 April

@® Model-Free Control with tabular and
linear methods
25 April

® Eligibility traces
2 May

@® Deep-Q learning

9 May

Syllabus: https://02465material . pages. compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn
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Reading material:

® [Her25, Chapter 5-6.2] Formalization of the decision problem and the DP
algorithm

Learning Objectives

® Dynamical Programming
® Principle of optimality

® Optimal policy/value function using DP
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Practicals

® |ssue with recording 1
® Numpy-core issue fixed (old numpy; see guide)

® Fixed page numbering (thanks!)
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The decision problem

Observation
Cost
OJ/
> : 2,
£ The Interpreter Environment %,
& The robot Q
[
~ \
N
/| Internal statew
N

W State T

State The configuration of the environment x
Action What we do u

Cost/reward A number which depends on the state and action

5 DTU Compute

)
o |
=

M

Lecture 2 14 February, 2025



Find shortest path from starting node zy = 2 to final node t =5

State Current node z;, = 4
Actions next possible node: uy € {1,2,...,5}
Dynamics Deterministic, known
Tpr1 = flzp =4,up =5)=5
Cost Sum of edge weights

Nz—:l L0 ifav =t
a
o ot oo otherwise

We want optimal path {2,3,4,5}
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shortestpath

DTU
Inventory control Buy up =3 Buy u; =1 =
e —— —_—
Sell wg =1 .. Sell w; =2 | @
o = 0 T = 2 To = 1
® We order a quantity of an item at period £k =0,..., N so as to meet a

stochastic demand

x, stock available at the beginning of the kth period,

uy, > 0 stock ordered (and immediately delivered) at the beginning of the
kth period.

wg > 0 Demand during the k'th period

® Dynamics: zp41 = T + up — Wy

® Cost function (in each step)

® Select actions ug, . .

up + (xr + ug — wk)2

., unN_1 to minimize cost

We want proven optimal rule for ordering
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Basic control setup: Environment dynamics

M

Finite time Problem starts at time 0 and terminates at fixed time V.
Indexed as £k =0,1,..., N.

State space The states x; belong to the state space Sy,

Control The available controls uy belong to the action space Ay (zy),
which may depend on zy,

Dynamics
:J:k+1:fk(mk,uk,wk), kIO,l,...,N—l

Disturbance/noise A random quantity wy, with distribution

wy ~ Pp(Wy|zg, ug)
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Cost and control
Agent observe xj, agent choose ug, environment generates wy

M

Cost At each stage k£ we obtain cost

gk(mk,uk,wk), kZO,...,N—l and gN(xk) fork=N.

Action choice Chosen as uy = ux(xy) using a function py : S — Ag(xy)

ux (z) = {Action to take in state xj in period k}

Policy The collection m = {po, pi1, ..., pun—1}
Rollout of policy Given zg, select uy = ug(xy) to obtain a trajectory
xg, Uo, L1, - -.,xn and accumulated cost
N-1

gn (@n) + D gk (wr, ik (x) , wi)
k=0
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Expected cost/value function

Expected cost Given 7, xg it is the average cost of all trajectories:

N-1

Jx(x0) = E |gn (on) + Y g (@, o () , wp)
k=0

Optimal policy Given xg, an optimal policy 7* is one that minimizes the
cost
7 (xo) = argmin  J(xo)
ﬂ-:{lu‘OP"hu’N—l}

Optimal cost function The optimal cost, given x, is denoted J*(z¢) and is
defined as

J*(z9) = min Jr(z0)
w={p0, ., N1}

Jr is the key quantity in control/reinforcement learning
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Open versus closed loop

Our goal is to find the policy ™ which minimize:

N-1

Jr (20) = E |gn (2n) + D gr (ko e (21) , wi)
k=0

Closed-loop minimization Select wy, last-minute as uy = pg(xx) when
information x;, is available

Open-loop minimization Select actions ug,...,uny_1 at k=0

® Open-loop minimization is simpler
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Open or closed loop

® |f environment is stochastic, we need a closed-loop controller

® |f environment is deterministic, we know the position x; with certainty given
ug, . ..,ugp—1. Iherefore, there is no advantage in delaying choice
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Quiz: Chess and DP

Suppose the game of chess was formulated as dynamical programming (NN,
Sk, Ak, etc.) with the intention of obtaining a good policy u using
dynamical programming.

This will lead to several practical problems, however, focusing just on the
potential problems listed below, which one will be a main obstacle?

a. The policy function py will require too much memory to store
b. Given a state xy, it is not practical to define the action spaces Ay (zy)

c. It will require too much space to store the state space So.

m;-xm‘
Lecture 2 14 February, 2025
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Summary: Discrete stochastic decision problem

® The states are zg,...,ZN, and the controls are ug,...,un_1
® wy ~ Pp,(Wy, = wg|zk,ur), k=0,...,N — 1 are random disturbances

® The system evolves as
xk—i-l:fk(xkvﬂk(mk)awk)a k:()vaN*l

e At time k, the possible states/actions are xj, € Sy and ug € Ag(xy)
® Policy is a sequence of functions 7 = {pg, ..., un—1}, pr : Sk — Ap(zk)
® The cost starting in zg is:

N-1

Tr (20) = E |gn (z5) + Y gr (s i, (21)  wi)
k=0

® The control problem: Given z(, determine optimal policy by minimizing

7 (xg) = argmin  Jr(x0)
m={po,....uN—-1}
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Graph representation

Starting in xg, decision problem can be seen as traversing a graph

z1 = fo(zo,w0)  wp = fr(z1,u1) an (@1 UN-1),

g1(z1, uy)

Stage 0 Stage 1 Stage2 ... StageN-2 StageN -1 Stage N

® Nodes are states, edges are possible transitions, cost is sum of edges

® In deterministic case, actions are edges and a policy is just a path
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Principle of optimality (PO), deterministic case

M

zy = fo(zo,u0)  my = fi(w1,u1) gn-1(TN-1,uN-1)

g1(z1,u1)

Stage 0 Stage 1 Stage2 ... StageN-2 StageN -1 Stage N

The blue line is a path corresponding to an optimal policy

J*(w0) = Jr= (20) = min Jr (o)

Suppose at stage i optimal path 7" = {,ua,u*{, . ,ujv_l} pass through x;

:6P91J-£ohneputt:§ul pOIlcy {‘uZ ’ MH’I’ e ’MN—l} 1S optlmal from :I{_Yéc‘ttuore%N 14 February, 2025
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determpath
determpathb
determpathb
determpath3
determpath4

Definitions

For any p0|lcy ™= {MO?/’Lh vee 7/’LN—1}
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®Forany k=0,...,N —1, 7% = {ug, ptes1,- - -, iv—1} is a tail policy

® For any xj the cost of the tail policy is

Jpr (xr) =E {QN (xn) + i i (i, i () ﬂUz‘)}

i=k
® And the optimal cost of a tail policy starting in

Ji (xx) = min Jg x, (1)

® Note that Ji(zo) = J*(z0)

17 DTU Compute Lecture 2
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Proof of PO in deterministic case

M

N1
Jee(20) = gy (xn) + > gel@r, pi(zr)) =
i—1 = N-1
<Z gk(%;/ﬂ?(%))) + <9N(33N) +> gk(ﬂﬁk,MZ(ka)))
k=0 o

i1 N-1
> (Zﬁk(wk’“zuk))) +on (@) + D gl p(2))

k=0 k=1
= JT(':(

HO S5 i — 15T

If the optimal tail policy 7/ had a lower tail cost than the tail of optimal
policy this means:

N-1 N-1
gn(zN) + Z 9k (ks pip (k) > gn (2ly) + Z Ik (@, p ()

and so the combined policy (10, -, 1ti—1,7.) would have lower cost than
optimal policy 7*
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The stochastic case

M

Consider the stochastic case. Trajectories are now random

a1 = fo(zo,u0)  xy = fi(wr,w) gn1(TN—1,uN-1)

g1(zy,u1)

Stage 0 Stage 1 Stage2 ... StageN-2 StageN -1 Stage N

19 DTU Compute Lecture 2 14 February, 2025



(=]
=
=

M

The stochastic case

z1 = fo(xo, o) 2o = fi(z1,u1) gn—1(TN—1,UN-1)

)
. IN)

Stage 0 Stage 1 Stage2 ... StageN-2 StageN-1 Stage N

e Consider tail policy of 7*: J; 1+ (o)
® Suppose optimal tail policy J(z;) is an improvement

® |t seems true the combined policy is an improvement over 7* [Her25, appendix A]
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Principle of optimality

Consider a general, stochastic/discrete finite-horizon decision problem

The principle of optimality

Let 7* = {pg, 1, ..., }_1 } be an optimal policy for the problem, and assume
that when using 7*, a given state x; occurs at stage ¢ with positive probability.
Suppose 7} is the optimal tail policy obtained by minimizing the tail cost starting
from x;

N-1
Jir () =K {QN (xn) + Z i (x4, ps (4) JUZ)} .
i—k

Then the truncated policy {u}, puf 1, .., pui_y } of 7 is optimal for the tail
problem

7w (T) = Jioe (k) -

21 DTU Compute Lecture 2 14 February, 2025
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The dynamical programming algorithm: Informal
21 = fo(zo,uo)  xo = fi(z1,u1)

M

gn-1(ZN-1, un-1)

G—0

g1(z1,u1)

Stage 0 Stage 1 Stage2 ... StageN-2 StageN-1 Stage N

® Suppose we know the optimal tail policy at stage k + 1 for all x441

® Cost of optimal path 7} from k to IV is the cost of optimal pathand

then
® The later part is the same as J;/,  (v41) by the PO

® We find optimal cost by minimizing

Ji(zp) = min [gr(ze up) + T (@nen)] s pe(ee) =
ukE.Ak(a:k)
22 DTU Compute Lecture 2 14 February, 2025
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The Dynamical Programming algorithm

The Dynamical Programming algorithm

For every initial state xg, the optimal cost J*(xg) is equal to Jy (z¢), and optimal
policy 7* is m* = {0, ..., un—1}, computed by the following algorithm, which
proceeds backward in time from k = N to k = 0 and for each x; € S; computes

—_
~—

In (zn) = gn (zN) (
Ji(xr) =  min  E {gx (z, ug, wi) + Jet1 (i (0r, ug, wi)) (

up €A (T)) Wk

N
~

pr(zk) =y (uy is the uy, which minimizes the above expression).  (3)

v

® There are N p's and N 4+ 1 J's. This will also be the case in the code

® |n the deterministic case:

Ji(vx) =  min - {gr (zg, ur) + Jry1 (fr (T, ur)) }
’u,k,G.Ak(mk)
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]
=

Example: Inventory control

M

® Consider the inventory control problem where we plan over N = 3 stages

® Customers can buy wy = 0 to wi = 2 units and we can order uy = 0 to ux = 2
units

® We assume the stock can hold from 0 to 2 units (no excess stock; no backlog)

Tt1 = fe(Tr, ug, wg) = T + ur — wg (threshold s.t. 0 < xpp1 < 2)

® The cost to buy an item is 1 plus quadratic penalty for excess stock and unmet
demand:

up + (2 + up — wy,)?
® There is no terminal cost gn(zn) =0

® The demand has distribution

p(w,=0)=0.1, p(w,=1)=0.7, pwp,=2)=0.2
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# inventory.py
class InventoryDPModel (DPModel) :

def __init__(self, N=3):
super() . __init__(N=N)
def A(self, x, k): # Action space A_k(z)
return {0, 1, 2}
def S(self, k): # State space S_k
return {0, 1, 2}
def g(self, x, u, w, k): # Cost function g_k(z,u,w)
return u + (x + u - w) ** 2
def f(self, x, u, w, k): # Dynamics f_k(z,u,w)
return max(0, min(2, x +u - w ))
def Pw(self, x, u, k): # Distribution over random disturbances
return {0:.1, 1:.7, 2:0.2}
def gN(self, x):
return O
25 DTU Compute Lecture 2 14 February, 2025
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Option 1: Pen-and-paper

M

First step: J3 (x3) = 0 (for all z3)
Step k=2Forxo =0

J2(0) = min E {UQ + (ug — wg)Q}

u2=0,1,2 w2

= min P [uz + 0.1 (u2)® + 0.7 (ug — 1)* + 0.2 (ug — 2)2}

u2=0,

= In(l]l’i {0.7-140.2-4,140.1-140.2-1,2+0.1-440.7-1}
ug=

= Inll’l {15 1.3,3.1}
u2=0,1

Therefore p5(0) = 1 and J5(0) = 1.3

Until nails bleed Keep at it for xo = 1,2 and then for £ = 1 and finally
k=0..

26 DTU Compute Lecture 2 14 February, 2025
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Quiz: Manual DP
Suppose that for a given k:

M

® Ap(z) = {0, 1}, T (Trs up, wi) = T + upwy
® gr(Th, up, wi) = —xpup,  Jpp1(Thg1) = Trgr
L4 E[wk] =1

What is the value of Ji(zp = 1)?. Tip:

Ji (k) = min  E {gx (xk, ug, wi) + T (fr (@k, g, wi)) }
’U.kEAk(fL‘k) W

a. Ji(l) = -2
b. Jir(1) = -1
c. Ju(1) =0
d. Jp(1) =1
e. Ji(1) =2

..,
O
(]
=]
=
=~
5
Q
3
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Option 2: Computer
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# inventory.py
inv = InventoryDPModel ()
J,pi = DP_stochastic(inv)

print(f"Inventory control optimal policy/value functions")

for k in range(inv.N):

print(", ".join([f" J_{k}(x_{k}={i})

for k in range(inv.N):

print (", ".join([f"pi_{k}(x_{k}={i})

{J[k][i]:.2f}" for i in inv.S(k)] ) )

{pilk] [i]}" for i in inv.S(k)] ) )

Inventory control optimal policy/value functions

J_0(x_0=0) = 3.70, J_0(x_0=
J_1(x_1=0) = 2.50, J_1(x_1=
1.30, J_2(x_2=

J_2(x_2=0)
pi_0(x_0=0) = 1, pi_0(x_0=1)
pi_1(x_1=0) 1, pi_1(x_1=1)
pi_2(x_2=0) 1, pi_2(x_2=1)

1) = 2.70,
1) = 1.50,
1) = 0.30,

= 0, pi_0(x_0=2)
=0, pi_1(x_1=2)
0, pi_2(x_2=2)

J_0(x_0=2) = 2.82

J_1(x_1=2)

J_2(x_2=2)
0

non
o
= o
o 0

0
0

(+ ) lecture_02_optimal_dp_gil.

12

+ ) lecture_02_optimal_inventory.py
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Project 1: Pacman
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How? 15

® Define a DP model 17

® Apply the DP algorithm 19

=
—
=

M

# chapter3dp/pacman_dp_excerpt.py

from irlc.pacman.pacman_environment import PacmanEnvi
from irlc.pacman.gamestate import GameState

from irlc.ex02.dp_model import DPModel

from irlc.ex02.dp import DP_stochastic

class MyPacmanDPModel (DPModel) :
def __init__(self, env, N : int):
self.env = env
super () . __init__(N)

def A(self, x : GameState, k):
# See online documentation!
return x.A()

# remember f, g, gN, S,

if __name__ == "__main__":

model = MyPacmanDPModel (PacmanEnvironment ())
J, pi = DP_stochastic(model)

https://www2.compute.dtu.dk/courses/02465/models/models_dp.html
https://www2.compute.dtu.dk/courses/02465/models/week2_pacman_gil.html
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Part 1 of the project
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® you should be all set!
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tromes | 02465

Sequential Decision-Making

vnov¥

Information v
Models and Environments v
Exercises v
Projects v

Project 1: Dynamical
Programming

Project 2: Control theory
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Project 1: Dynamical Programming

© Note
When? Thursday_ Before 23:59
What? To get started, download the project description here: 02465projectl.pdf
Where? Under assignments on DTU Learn 02465

What to hand in? (see project description)

e irlc/project1/Projecti_handin_k_of_n.token
« irlc/projectl/Latex/02465projectl_handin.tex

e irlc/projectl/Latex/02465projectl handin.pdf

Consult the project description (above) for details about the problems. To get the newest version of the course
material, please see Making sure your files are up to date.

Creating your hand-in

Lecture 2 14 February, 2025
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[% Tue Herlau.
Sequential decision making.
(Freely available online), 2025.
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