
02465: Introduction to reinforcement learning and control

Dynamical Programming

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)

Lecture Schedule

Dynamical programming

1 The finite-horizon decision problem
7 February

2 Dynamical Programming
14 February

3 DP reformulations and introduction to
Control
21 February

Control

4 Discretization and PID control
28 February

5 Direct methods and control by
optimization
7 March

6 Linear-quadratic problems in control
14 March

7 Linearization and iterative LQR
21 March

Reinforcement learning

8 Exploration and Bandits
28 March

9 Bellmans equations and exact planning
4 April

10 Monte-carlo methods and TD learning
11 April

11 Model-Free Control with tabular and
linear methods
25 April

12 Eligibility traces
2 May

13 Deep-Q learning
9 May

Syllabus: https://02465material.pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn

2 DTU Compute Lecture 2 14 February, 2025

 https://02465material.pages.compute.dtu.dk/02465public

Reading material:
• [Her25, Chapter 5-6.2] Formalization of the decision problem and the DP

algorithm

Learning Objectives
• Dynamical Programming
• Principle of optimality
• Optimal policy/value function using DP

3 DTU Compute Lecture 2 14 February, 2025

Practicals

• Issue with recording 1
• Numpy-core issue fixed (old numpy; see guide)
• Fixed page numbering (thanks!)

4 DTU Compute Lecture 2 14 February, 2025

The decision problem

Environment
The robot

Actions

Le
ar

ni
ng

State

Dynam
ics

Internal state

The Interpreter

Observation

Cost

State The configuration of the environment x

Action What we do u

Cost/reward A number which depends on the state and action

5 DTU Compute Lecture 2 14 February, 2025

Example: Shortest path graph traversal

Find shortest path from starting node x0 = 2 to final node t = 5
State Current node xk = 4

Actions next possible node: uk ∈ {1, 2, . . . , 5}
Dynamics Deterministic, known

xk+1 = f(xk = 4, uk = 5) = 5

Cost Sum of edge weights
N−1∑
k=0

axk,uk
+
{

0 if xN = t

∞ otherwise

We want optimal path {2, 3, 4, 5}
6 DTU Compute Lecture 2 14 February, 2025

shortestpath

shortestpath

Inventory control

• We order a quantity of an item at period k = 0, . . . , N so as to meet a
stochastic demand

xk stock available at the beginning of the kth period,
uk ≥ 0 stock ordered (and immediately delivered) at the beginning of the

kth period.
wk ≥ 0 Demand during the k’th period

• Dynamics: xk+1 = xk + uk − wk

• Cost function (in each step)

uk + (xk + uk − wk)2

• Select actions u0, . . . , uN−1 to minimize cost

We want proven optimal rule for ordering

7 DTU Compute Lecture 2 14 February, 2025

inventory

inventory

The basic problem
Basic control setup: Environment dynamics

Finite time Problem starts at time 0 and terminates at fixed time N .
Indexed as k = 0, 1, . . . , N .

State space The states xk belong to the state space Sk

Control The available controls uk belong to the action space Ak(xk),
which may depend on xk

Dynamics
xk+1 = fk (xk, uk, wk) , k = 0, 1, . . . , N − 1

Disturbance/noise A random quantity wk with distribution

wk ∼ Pk(Wk|xk, uk)

8 DTU Compute Lecture 2 14 February, 2025

The basic problem
Cost and control
Agent observe xk, agent choose uk, environment generates wk

Cost At each stage k we obtain cost

gk(xk, uk, wk), k = 0, . . . , N−1 and gN (xk) for k = N .

Action choice Chosen as uk = µk(xk) using a function µk : Sk → Ak(xk)

µk (xk) = {Action to take in state xk in period k}

Policy The collection π = {µ0, µ1, . . . , µN−1}
Rollout of policy Given x0, select uk = µk(xk) to obtain a trajectory

x0, u0, x1, . . . , xN and accumulated cost

gN (xN) +
N−1∑
k=0

gk (xk, µk (xk) , wk)

9 DTU Compute Lecture 2 14 February, 2025

The basic problem
Expected cost/value function

Expected cost Given π, x0 it is the average cost of all trajectories:

Jπ(x0) = E
[
gN (xN) +

N−1∑
k=0

gk (xk, µk (xk) , wk)
]

Optimal policy Given x0, an optimal policy π∗ is one that minimizes the
cost

π∗(x0) = arg min
π={µ0,...,µN−1}

Jπ(x0)

Optimal cost function The optimal cost, given x0, is denoted J∗(x0) and is
defined as

J∗(x0) = min
π={µ0,...,µN−1}

Jπ(x0)

Jπ is the key quantity in control/reinforcement learning

10 DTU Compute Lecture 2 14 February, 2025

The basic problem
Open versus closed loop

Our goal is to find the policy π which minimize:

Jπ (x0) = E
[
gN (xN) +

N−1∑
k=0

gk (xk, µk (xk) , wk)
]

Closed-loop minimization Select uk last-minute as uk = µk(xk) when
information xk is available

Open-loop minimization Select actions u0, . . . , uN−1 at k = 0

• Open-loop minimization is simpler

11 DTU Compute Lecture 2 14 February, 2025

The basic problem
Open or closed loop

• If environment is stochastic, we need a closed-loop controller
• If environment is deterministic, we know the position xk with certainty given

u0, . . . , uk−1. Therefore, there is no advantage in delaying choice

12 DTU Compute Lecture 2 14 February, 2025

openloop

openloop

The basic problem
Quiz: Chess and DP

Suppose the game of chess was formulated as dynamical programming (N ,
Sk, Ak, etc.) with the intention of obtaining a good policy µk using
dynamical programming.
This will lead to several practical problems, however, focusing just on the
potential problems listed below, which one will be a main obstacle?
a. The policy function µk will require too much memory to store
b. Given a state xk, it is not practical to define the action spaces Ak(xk)
c. It will require too much space to store the state space S2.
d. We cannot define a meaningful cost function gk.
e. Don’t know.

13 DTU Compute Lecture 2 14 February, 2025

quiz21

quiz21

Principle of optimality
Summary: Discrete stochastic decision problem
• The states are x0, . . . , xN , and the controls are u0, . . . , uN−1

• wk ∼ Pk(Wk = wk|xk, uk), k = 0, . . . , N − 1 are random disturbances
• The system evolves as

xk+1 = fk(xk, µk(xk), wk), k = 0, . . . , N − 1

• At time k, the possible states/actions are xk ∈ Sk and uk ∈ Ak(xk)
• Policy is a sequence of functions π = {µ0, . . . , µN−1}, µk : Sk 7→ Ak(xk)
• The cost starting in x0 is:

Jπ (x0) = E

[
gN (xN) +

N−1∑
k=0

gk (xk, µk (xk) , wk)
]

• The control problem: Given x0, determine optimal policy by minimizing

π∗(x0) = arg min
π={µ0,...,µN−1}

Jπ(x0)

14 DTU Compute Lecture 2 14 February, 2025

Principle of optimality
Graph representation

Starting in x0, decision problem can be seen as traversing a graph

• Nodes are states, edges are possible transitions, cost is sum of edges
• In deterministic case, actions are edges and a policy is just a path

15 DTU Compute Lecture 2 14 February, 2025

Principle of optimality
Principle of optimality (PO), deterministic case

The blue line is a path corresponding to an optimal policy
J∗(x0) = Jπ∗(x0) = min

π
Jπ(x0)

Suppose at stage i optimal path π∗ =
{

µ∗
0, µ∗

1, . . . , µ∗
N−1

}
pass through xi

• PO: The tail policy
{

µ∗
i , µ∗

i+1, . . . , µ∗
N−1

}
is optimal from xi to xN

• Why? Suppose alternative tail policy
{

µ′
i, . . . , µ′

N−1
}

is better; then
combined policy

{
µ∗

0, . . . , µ∗
i−1
}

∪
{

µ′
i, . . . , µ′

N−1
}

would be better than π∗

16 DTU Compute Lecture 2 14 February, 2025

determpathdetermpathbdetermpathbdetermpath3determpath4

determpath
determpathb
determpathb
determpath3
determpath4

Principle of optimality
Definitions

For any policy π = {µ0, µ1, . . . , µN−1}
• For any k = 0, . . . , N − 1, πk = {µk, µk+1, . . . , µN−1} is a tail policy
• For any xk the cost of the tail policy is

Jk,π (xk) = E

{
gN (xN) +

N−1∑
i=k

gi (xi, µi (xi) , wi)
}

• And the optimal cost of a tail policy starting in xk

J∗
k (xk) = min

πk
Jk,πk

(xk)

• Note that J∗
0 (x0) = J∗(x0)

17 DTU Compute Lecture 2 14 February, 2025

Principle of optimality
Proof of PO in deterministic case

Jπ∗(x0) = gN (xN) +
N−1∑
k=0

gk(xk, µ∗
k(xk)) =

(
i−1∑
k=0

gk(xk, µ∗
k(xk))

)
+
(

gN (xN) +
N−1∑
k=i

gk(xk, µ∗
k(xk))

)

≥
(

i−1∑
k=0

gk(xk, µ∗
k(xk))

)
+ gN (x′

N) +
N−1∑
k=i

gk(x′
k, µ′

k(x′
k))

= Jπ=(µ0,...,µi−1,π′
k

)

If the optimal tail policy π′
i had a lower tail cost than the tail of optimal

policy this means:

gN (xN) +
N−1∑
k=i

gk(xk, µ∗
k(xk)) > gN (x′

N) +
N−1∑
k=i

gk(x′
k, µ′

k(x′
k))

and so the combined policy (µ0, . . . , µi−1, π′
i) would have lower cost than

optimal policy π∗

18 DTU Compute Lecture 2 14 February, 2025

podecomp

podecomp

Principle of optimality
The stochastic case

Consider the stochastic case. Trajectories are now random

19 DTU Compute Lecture 2 14 February, 2025

Principle of optimality
The stochastic case

• Consider tail policy of π∗: Ji,π∗(x0)
• Suppose optimal tail policy J∗

i (xi) is an improvement
• It seems true the combined policy is an improvement over π∗ [Her25, appendix A]

20 DTU Compute Lecture 2 14 February, 2025

spathaspathbspathb2spath3

spatha
spathb
spathb2
spath3

Principle of optimality
Principle of optimality

Consider a general, stochastic/discrete finite-horizon decision problem

The principle of optimality
Let π∗ =

{
µ∗

0, µ∗
1, . . . , µ∗

N−1
}

be an optimal policy for the problem, and assume
that when using π∗, a given state xi occurs at stage i with positive probability.
Suppose π̃∗

k is the optimal tail policy obtained by minimizing the tail cost starting
from xi

Jk,π (xi) = E

{
gN (xN) +

N−1∑
i=k

gi (xi, µi (xi) , wi)
}

.

Then the truncated policy
{

µ∗
i , µ∗

i+1, . . . , µ∗
N−1

}
of π∗ is optimal for the tail

problem
Jk,π̃∗,k

(xk) = Jk,π∗ (xk) .

21 DTU Compute Lecture 2 14 February, 2025

Principle of optimality
The dynamical programming algorithm: Informal

• Suppose we know the optimal tail policy at stage k + 1 for all xk+1

• Cost of optimal path π∗
k from k to N is the cost of optimal path xk → xk+1 and

then xk+1 → xN

• The later part is the same as J∗
k+1(xk+1) by the PO

• We find optimal cost by minimizing
J∗

k (xk) = min
uk∈Ak(xk)

[
gk(xk, uk) + J∗

k+1(xk+1)
]

, µk(xk) = u∗
k

22 DTU Compute Lecture 2 14 February, 2025

dp1dp2

dp1
dp2

Principle of optimality
The Dynamical Programming algorithm

The Dynamical Programming algorithm
For every initial state x0, the optimal cost J∗(x0) is equal to J0 (x0), and optimal
policy π∗ is π∗ = {µ0, . . . , µN−1}, computed by the following algorithm, which
proceeds backward in time from k = N to k = 0 and for each xk ∈ Sk computes

JN (xN) = gN (xN) (1)
Jk (xk) = min

uk∈Ak(xk)
E
wk

{gk (xk, uk, wk) + Jk+1 (fk (xk, uk, wk))} (2)

µk(xk) = u∗
k (u∗

k is the uk which minimizes the above expression). (3)

• There are N µ’s and N + 1 J ’s. This will also be the case in the code
• In the deterministic case:

Jk (xk) = min
uk∈Ak(xk)

{gk (xk, uk) + Jk+1 (fk (xk, uk))}

23 DTU Compute Lecture 2 14 February, 2025

Principle of optimality
Example: Inventory control

• Consider the inventory control problem where we plan over N = 3 stages
• Customers can buy wk = 0 to wk = 2 units and we can order uk = 0 to uk = 2

units
• We assume the stock can hold from 0 to 2 units (no excess stock; no backlog)

xk+1 = fk(xk, uk, wk) = xk + uk − wk (threshold s.t. 0 ≤ xk+1 ≤ 2)

• The cost to buy an item is 1 plus quadratic penalty for excess stock and unmet
demand:

uk + (xk + uk − wk)2

• There is no terminal cost gN (xN) = 0
• The demand has distribution

p (wk = 0) = 0.1, p (wk = 1) = 0.7, p (wk = 2) = 0.2

24 DTU Compute Lecture 2 14 February, 2025

Implementation

1 # inventory.py
2 class InventoryDPModel(DPModel):
3 def __init__(self, N=3):
4 super().__init__(N=N)
5
6 def A(self, x, k): # Action space A_k(x)
7 return {0, 1, 2}
8
9 def S(self, k): # State space S_k

10 return {0, 1, 2}
11
12 def g(self, x, u, w, k): # Cost function g_k(x,u,w)
13 return u + (x + u - w) ** 2
14
15 def f(self, x, u, w, k): # Dynamics f_k(x,u,w)
16 return max(0, min(2, x + u - w))
17
18 def Pw(self, x, u, k): # Distribution over random disturbances
19 return {0:.1, 1:.7, 2:0.2}
20
21 def gN(self, x):
22 return 0

25 DTU Compute Lecture 2 14 February, 2025

Principle of optimality
Option 1: Pen-and-paper

First step: J3 (x3) = 0 (for all x3)
Step k = 2 For x2 = 0

J2(0) = min
u2=0,1,2

E
w2

{
u2 + (u2 − w2)2

}
= min

u2=0,1,2

[
u2 + 0.1 (u2)2 + 0.7 (u2 − 1)2 + 0.2 (u2 − 2)2

]
= min

u2=0,1,2
{0.7·1+0.2·4, 1+0.1·1+0.2·1, 2+0.1·4+0.7·1}

= min
u2=0,1,2

{1.5, 1.3, 3.1}

Therefore µ∗
2(0) = 1 and J∗

2 (0) = 1.3
Until nails bleed Keep at it for x2 = 1, 2 and then for k = 1 and finally

k = 0...

26 DTU Compute Lecture 2 14 February, 2025

Principle of optimality
Quiz: Manual DP
Suppose that for a given k:
• Ak(xk) = {0, 1}, fk(xk, uk, wk) = xk + ukwk

• gk(xk, uk, wk) = −xkuk, Jk+1(xk+1) = xk+1

• E[wk] = 1

What is the value of Jk(xk = 1)?. Tip:

Jk (xk) = min
uk∈Ak(xk)

E
wk

{gk (xk, uk, wk) + Jk+1 (fk (xk, uk, wk))}

a. Jk(1) = −2
b. Jk(1) = −1
c. Jk(1) = 0
d. Jk(1) = 1
e. Jk(1) = 2
f. Don’t know.

27 DTU Compute Lecture 2 14 February, 2025

Principle of optimality
Option 2: Computer

1 # inventory.py
2 inv = InventoryDPModel()
3 J,pi = DP_stochastic(inv)
4 print(f"Inventory control optimal policy/value functions")
5 for k in range(inv.N):
6 print(", ".join([f" J_{k}(x_{k}={i}) = {J[k][i]:.2f}" for i in inv.S(k)]))
7 for k in range(inv.N):
8 print(", ".join([f"pi_{k}(x_{k}={i}) = {pi[k][i]}" for i in inv.S(k)]))

1 Inventory control optimal policy/value functions
2 J_0(x_0=0) = 3.70, J_0(x_0=1) = 2.70, J_0(x_0=2) = 2.82
3 J_1(x_1=0) = 2.50, J_1(x_1=1) = 1.50, J_1(x_1=2) = 1.68
4 J_2(x_2=0) = 1.30, J_2(x_2=1) = 0.30, J_2(x_2=2) = 1.10
5 pi_0(x_0=0) = 1, pi_0(x_0=1) = 0, pi_0(x_0=2) = 0
6 pi_1(x_1=0) = 1, pi_1(x_1=1) = 0, pi_1(x_1=2) = 0
7 pi_2(x_2=0) = 1, pi_2(x_2=1) = 0, pi_2(x_2=2) = 0

s lecture_02_optimal_dp_g1.py

s lecture_02_optimal_inventory.py

28 DTU Compute Lecture 2 14 February, 2025

Principle of optimality
Project 1: Pacman

How?
• Define a DP model
• Apply the DP algorithm

1 # chapter3dp/pacman_dp_excerpt.py
2 from irlc.pacman.pacman_environment import PacmanEnvironment
3 from irlc.pacman.gamestate import GameState
4 from irlc.ex02.dp_model import DPModel
5 from irlc.ex02.dp import DP_stochastic
6
7 class MyPacmanDPModel(DPModel):
8 def __init__(self, env, N : int):
9 self.env = env

10 super().__init__(N)
11
12 def A(self, x : GameState, k):
13 # See online documentation!
14 return x.A()
15
16 # remember f, g, gN, S, ...
17
18 if __name__ == "__main__":
19 model = MyPacmanDPModel(PacmanEnvironment())
20 J, pi = DP_stochastic(model)

https://www2.compute.dtu.dk/courses/02465/models/models_dp.html

https://www2.compute.dtu.dk/courses/02465/models/week2_pacman_g1.html
29 DTU Compute Lecture 2 14 February, 2025

https://www2.compute.dtu.dk/courses/02465/models/models_dp.html
https://www2.compute.dtu.dk/courses/02465/models/week2_pacman_g1.html

Principle of optimality
Part 1 of the project
• you should be all set!

30 DTU Compute Lecture 2 14 February, 2025

project

project

Tue Herlau.
Sequential decision making.
(Freely available online), 2025.

31 DTU Compute Lecture 2 14 February, 2025

	The basic problem
	Principle of optimality

