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Lecture Schedule

Dynamical programming Reinforcement learning
@ The finite-horizon decision problem @ Exploration and Bandits
7 February 28 March
® Dynamical Programming @ Bellmans equations and exact planning
14 February 4 April
© DP reformulations and introduction to @ Monte-carlo methods and TD learning
Control 11 April
21 February @® Model-Free Control with tabular and
Control linear methods
@ Discretization and PID control 25 April
28 February ® Eligibility traces
@ Direct methods and control by 2 May .
optimization & Deep-Q learning
7 March 9 May
@ Linear-quadratic problems in control

14 March
@ Linearization and iterative LQR

21 March
Syllabus: https://02465material .pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn
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Reading material:

® [Her25, Chapter 5-6.2] Formalization of the decision problem and the DP
algorithm

Learning Objectives

® Dynamical Programming
® Principle of optimality

® Optimal policy/value function using DP
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Practicals =

® |ssue with recording 1
® Numpy-core issue fixed (old numpy; see guide)

® Fixed page numbering (thanks!)
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The decision problem

Observation

Cost
9,

i }’/)6
The Interpreter Environment o%
"

The robot

Internal statew

T~ adions __— stex

State The configuration of the environment z
Action What we do u

Cost/reward A number which depends on the state and action
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Find shortest path from starting node x( = 2 to final node t =5
State Current node x) = 4
Actions next possible node: uy € {1,2,...,5}
Dynamics Deterministic, known

pp1 = f(op =4,u, =5) =5
Cost Sum of edge weights

Ni Lo ifan=t
Az up, .
=0 ot oo otherwise

We want optimal path {2,3,4,5}
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Inventory control Buy up =3 Buy uy =1 =
_— —_—
Sell wg =1 .. Sell wy, =2 .
xo =0 T =2 zo =1
® We order a quantity of an item at period k = 0,..., N so as to meet a

stochastic demand

z}. stock available at the beginning of the kth period,
u, > 0 stock ordered (and immediately delivered) at the beginning of the
kth period.
wy. > 0 Demand during the k'th period

® Dynamics: Tpy1 = T + up — Wi

 Cost function (in each step)
ug + (g +up — wy)?

® Select actions ug, ..., ux—1 to minimize cost

We want proven optimal rule for ordering
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Basic control setup: Environment dynamics

Finite time Problem starts at time 0 and terminates at fixed time V.
Indexed as £k =0,1,...,N.

State space The states z, belong to the state space Sy,

Control The available controls u;, belong to the action space Aj(zy),
which may depend on zj,

Dynamics
T = fr (T, up,wg), k=0,1,...,N—1

Disturbance/noise A random quantity wy, with distribution

wg ~ Pr(Wyl|zy, ur)
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Cost and control
Agent observe xj, agent choose uy, environment generates wy,

Cost At each stage k we obtain cost

gk(zkupg,w), k=0,...,N=1 and gn(x) for k= N.

Action choice Chosen as uj, = i (2y) using a function py, : S — Ag(z)

1k (zr) = {Action to take in state z, in period k}

Policy The collection m = {p0, ft1,- .., un—1}
Rollout of policy Given z, select uj, = () to obtain a trajectory
xo,Ug, 1, ...,2N and accumulated cost
N-1
gN (@N) + Y g (s e (2k)  wi)
k=0
9 DTU Compute Lecture 2 14 February, 2025
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Expected cost/value function

Expected cost Given 7, x it is the average cost of all trajectories:

N-1

Jr(wo) = E g (xn) + D gk (@k, i (), wr,)
k=0

Optimal policy Given zy, an optimal policy 7* is one that minimizes the
cost
7 (xo) = argmin  Jr(zg)
m={p0,-in -1}

Optimal cost function The optimal cost, given z, is denoted J*(z¢) and is
defined as
J*(z0) = min Jr(20)

m={p0, N -1}

J is the key quantity in control/reinforcement learning
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Open versus closed loop

Our goal is to find the policy m which minimize:

N-1

Jx (20) = E |gn (xn) + Y gr (s ik (@k)  wi)
k=0

Closed-loop minimization Select uy, last-minute as uy = i (x)) when
information x, is available

Open-loop minimization Select actions ug,...,uny_1 at k=0

® Open-loop minimization is simpler
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Open or closed loop =

=
- I"
o Patcde? el
- o ezan uy - us o0
i
.
£l Bl ; ; g
g T To T3
® |f environment is stochastic, we need a closed-loop controller
® |f environment is deterministic, we know the position zj, with certainty given
Ug, ..., up—1. Therefore, there is no advantage in delaying choice
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Quiz: Chess and DP

n

Suppose the game of chess was formulated as dynamical programming (X,
Sk, Ak, etc.) with the intention of obtaining a good policy s using
dynamical programming.

This will lead to several practical problems, however, focusing just on the
potential problems listed below, which one will be a main obstacle?

a. The policy function 4, will require too much memory to store

b. Given a state xy, it is not practical to define the action spaces Ay (zx)
c. It will require too much space to store the state space Ss.

d. We cannot define a meaningful cost function g.
a

e. Don't know.

n o
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Summary: Discrete stochastic decision problem
® The states are g, ..., 2y, and the controls are ug, ..., un—_1
® wy, ~ Pr(W), = wg|zy,ur), k=0,...,N —1 are random disturbances
® The system evolves as
pp1 = fr(@p, pr(ar), wi), k=0,...,N—1
® At time k, the possible states/actions are z; € Sy and uy, € Ay (xy)
® Policy is a sequence of functions m = {10, ..., un—1}, pr : Sk — Ar(xk)
® The cost starting in z is:
N-1
Tr(w0) =E |gn (an) + Y gr (wn, (@), wy)
k=0

® The control problem: Given x(, determine optimal policy by minimizing

m*(z0) = argmin  Jr(zo)
m={po,-un-1}
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Graph representation
Starting in g, decision problem can be seen as traversing a graph

xy = folxo,u0) @y = fi(zr,m) gn-1(EN-1,uN-1)

Q »\)

gi(x1,w1)

Stage 0 Stage 1 Stage2 ... StageN-2 StageN-1 Stage N

® Nodes are states, edges are possible transitions, cost is sum of edges

® |n deterministic case, actions are edges and a policy is just a path
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Principle of optimality (PO), deterministic case

2y = folzo.wo)  z = filer,w) (Nt o)

g1z, m)

Stage 0 Stage 1 Stage2 ... StageN-2 StageN -1 Stage N
The blue line is a path corresponding to an optimal policy
J*(xg) = Jr=(xg) = min Jr(z0)

Suppose at stage i optimal path 7* = {,u(*),,uf, . ,,uj\,_l} pass through z;

¢, PO The tail policy {B s W1} is optimal from B LOFN 14 February, 2025

ompute
A o o N o . 14 1 '
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For any policy m = {po, 1, ..., N1}

eForany k=0,...,N — 1, 7% = { s, ftr+1,.-.,un—1} is a tail policy

® For any zj. the cost of the tail policy is
N-1
Jiw (1) =E {gN @n)+ D g (i, i () ,uu)}
i=k

® And the optimal cost of a tail policy starting in ;.

Ji (@) = min T, (20)

® Note that J;(zo) = J* ()
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Proof of PO in deterministic case

1

N
Jr(w0) = gn(en) + Y gk, (o)) =

k=0

i—1 N-1
<Z gr (@, /,;;@,».-))) i (f/sv(a:_\-) +3 .chm-.ﬂz.(:z:k)))

k=0 k=i

i1 N-1
> <Z!Ik-("k-/li(-l‘k))) +on (@) + D (e, m.(2h)
k=0 k=i

T=(110,-- Hi ‘,7[)
If the optimal tail policy 7/ had a lower tail cost than the tail of optimal
policy this means:
N-1 N-1
gn(zn) + Z 9 (rs (1)) > gy (2ly) + Z gk (@, h(24,))
k=i k=i
and so the combined policy (/. .. ., fti—1,7.) would have lower cost than

optimal policy 7
18 DTU Compute Lecture 2 14 February, 2025
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The stochastic case

n

Consider the stochastic case. Trajectories are now random

o1 = folzouo) 33 = filerm) g (-1 ux-1)

Q O

gi(x1,u1)
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The stochastic case

n

ay = fo(xo,uo) a2 = fi(x1, 1)

Stage 0 Stage 1 Stage2 ... StageN-2 StageN -1 Stage N

 Consider tail policy of 7*: J; - (20)
® Suppose optimal tail policy J;(z;) is an improvement

® |t seems true the combined policy is an improvement over 7* [Her25, appendix A]
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Stage 0 Stage 1 Stage2 ... StageN-2 StageN-1 Stage N
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Principle of optimality

Consider a general, stochastic/discrete finite-horizon decision problem

The principle of optimality

Let 7* = {pa,u}, ... sl‘?V—l} be an optimal policy for the problem, and assume
that when using 7*, a given state x; occurs at stage i with positive probability.
Suppose 7} is the optimal tail policy obtained by minimizing the tail cost starting
from z;

N-1
T (z1) =E {gN (@x) + D g @i, i () ,u,»,>} :
i=k

Then the truncated policy {u}, pt}y, ..., iy } of ©* is optimal for the tail
problem

iz (k) = Tz (1) -
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The dynamical programming algorithm: Informal
xy = folxo,u0)  x2 = filer,m)

iz, m)

Stage 0 Stage 1 Stage2 ... StageN-2 StageN-1 Stage N

® Suppose we know the optimal tail policy at stage k + 1 for all x4,

® Cost of optimal path 7} from k to N is the cost of optimal pathand

then
® The later part is the same as J;, | (x}41) by the PO
® We find optimal cost by minimizing

Jilep) = min [gr(er,we) + T (@een)] s ) =g
ug €Ak (k)
22 DTU Compute Lecture 2 14 February, 2025
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The Dynamical Programming algorithm

The Dynamical Programming algorithm

For every initial state x(, the optimal cost J*(z) is equal to Jy (z), and optimal
policy 7* is 7* = {uo, ..., tn—1}, computed by the following algorithm, which
proceeds backward in time from k = N to k = 0 and for each z € S;. computes

In (zn) = gn () (1)

Je(ze) = min  E {gx (x, up, wr) + Jps1 (i (@r, we, w))} ()
up €Ak () Wk

pi(xk) =uy,  (uy is the uy which minimizes the above expression).  (3)

® There are N p's and N 41 J's. This will also be the case in the code

® In the deterministic case:

Je (zg) = min  {gr (@, wr) + Jet1 (Fr (@, ur))}
uk €Ay (k)
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Example: Inventory control

® Consider the inventory control problem where we plan over N = 3 stages

® Customers can buy wy = 0 to wy = 2 units and we can order u, = 0 to u; =2
units

® We assume the stock can hold from 0 to 2 units (no excess stock; no backlog)
Ty = [r(Tr, up, wi) = T 4+ up — wy, (threshold s.t. 0 < xpyq < 2)

® The cost to buy an item is 1 plus quadratic penalty for excess stock and unmet
demand:
wp + (25 + up — wy)?

® There is no terminal cost gn(zn) =0

® The demand has distribution

pwp=0)=0.1, pwp=1)=07, p(wp=2) =02
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Implementation
1 # inventory.py
2 class InventoryDPModel(DPModel) :
3 def __init__(self, N=3):
1 super () .__init__(N=N)
5
6 def A(self, x, k): # Action space A_k(z)
7 return {0, 1, 2}
8
9 def S(self, k): # State space S_k
10 return {0, 1, 2}
11
12 def g(self, x, u, w, k): # Cost function g_k(z,u,w)
13 return u + (x + u - w) ** 2
14
15 def f(self, x, u, w, k): # Dynamics f_k(z,u,w)
16 return max(0, min(2, x + u - w ))
17
18 def Pu(self, x, u, k): # Distribution over random disturbances
19 return {0:.1, 1:.7, 2:0.2}
20
21 def gN(self, x):
22 return 0
25 DTU Compute Lecture 2 14 February, 2025
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Quiz: Manual DP =
Suppose that for a given k:
o Ap(zy) ={0,1}, Sre(@p, ug, wi) = zp + upwy
® g (Tr, U, wy) = —Tpup,  Jrp(Tre1) = Tep
® Elw] =1
What is the value of Jy(z) = 1)?. Tip:
Jp(xp) = min  E {g (2, up, wr) + Jpg1 (fr (@p, wg, wi))
up €A (zx) Wk
a. Jk(l) =-2
b. Ji(1) = -1
c. Jp(1) =0
d. Jip(1) =1
e. Jk(l) =2
f. Don't know
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Project 1: Pacman =

# chapter3dp/pacman_dp_ezcerpt.py

from irlc.pacman.pacman_environment import PacmanEnvi
from irlc.pacman.gamestate import GameState

from irlc.ex02.dp_model import DPModel

from irlc.ex02.dp import DP_stochastic

class MyPacmanDPModel(DPModel) :
def __init__(self, env, N : int):
self.env
super() . _

def A(self, x : GameState, k):
# See online documentation!
return x.A()

? 15
How? 16 # remember f, g, gN, S,
® Define a DP model 17
18 if __name__ == "__main__":
® Apply the DP algorithm 19 model = MyPacmanDPModel (PacmanEnvironment ())
20 J, pi = DP_stochastic(model)

https://www2.compute.dtu.dk/courses/02465/models/models_dp.html

https://www2.compute.dtu.dk/courses/02465/models/week2_pacman_gi.html
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Option 1: Pen-and-paper

First step: J3 (23) = 0 (for all z:3)
Step k =2 For 2o =0
= i Us 9 — W- 2
J2(0) = uzrilflﬁm]gz {uz + (u2 — w2) }

= min [ug +0.1 (ug)* + 0.7 (ug — 1)% + 0.2 (ug — 2)2]
up=0,1,2

= nl(i)ri 2{0.7<1+0.2~4, 1+0.1-140.2-1,2+0.1-440.7-1}
uz=0,1,
= u211:1[1)%1]~2{1.5, 1.3,3.1}
Therefore 5(0) = 1 and J5(0) = 1.3

Until nails bleed Keep at it for o = 1,2 and then for &k = 1 and finally
k=0..
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Option 2: Computer

# inventory.py
inv = InventoryDPModel ()
J,pi = DP_stochastic(inv)
print (f"Inventory control optimal policy/value functions")
for k in range(inv.N):
print(", ".join([f" J_{k}(x_{k}={i}) = {J[k][i]:.2f}" for i in inv.S(k)] ) )
for k in range(inv.N):
print(", ".join([f"pi_{k}(x_{k}={i}) = {pilk]1[il}" for i in inv.S(k)] ) )

Inventory control optimal policy/value functions
J_0(x_0=0) = 3.70, J_0(x_0=1) = 2.70, J_0(x_0=2)
J_1(x_1=0) 2.50, J_1(x_1=1) = 1.50, J_1(x_1=2)
J_2(x_2=0) = 1.30, J_2(x_2=1) = 0.30, J_2(x_2=2)
pi_0(x_0=0) = 1, pi_0(x_0=1) = 0, pi_0(x_0=2) = 0
pi_1(x_1=0) = 1, pi_1(x_1=1) = 0, pi_1(x_1=2) = 0
pi_2(x_2=0) = 1, pi_2(x_2=1) = 0, pi_2(x_2=2) = 0

lecture_02_optimal_dp_gl.py
[+ ] lecture_02_optimal_inventory.py
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Part 1 of the project =
® you should be all set!
/ / Project 1: Dynamical Programming
© Note
) When? Thursday [ c.fore 23:59
Sequential Decision-Making
What? To get started, download the project description here:
Where? Under assignments on DTU Learn
What to hand in? (see project description)
Y Y + irlc/project1/Projecti_handin_K_of_n.token
— . + irlc/project/Latex/62485project1_handin.pdf
v Consult the project description (above) for details about the problems. To get the newest version of the course
‘ v material, please see
ec12: Creating your hand-in
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[{ Tue Herlau.
Sequential decision making.
(Freely available online), 2025.
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