02465: Introduction to reinforcement learning and control

Deep-Q learning

Tue Herlau

DTU Compute

DTU Compute, Technical University of Denmark (DTU)

Lecture Schedule

Dynamical programming

1 The finite-horizon decision problem 7 February

2 Dynamical Programming 14 February

3 DP reformulations and introduction to Control

21 February

Control

- Discretization and PID control
 28 February
- **5** Direct methods and control by

optimization

7 March

- 6 Linear-quadratic problems in control 14 March
- Linearization and iterative LQR

21 March

Syllabus: https://02465material.pages.compute.dtu.dk/02465public Help improve lecture by giving feedback on DTU learn

Reinforcement learning

- 8 Exploration and Bandits 28 March
- Bellmans equations and exact planning 4 April
- Monte-carlo methods and TD learning 11 April
- Model-Free Control with tabular and linear methods

25 April

Eligibility traces

2 May

Beep-Q learning

9 May

Reading material:

• [SB18, Chapter 6.7-6.9; 8-8.4; 16-16.2; 16.5; 16.6]

Learning Objectives

- Double-Q learning
- Dyna-Q and the replay buffer
- Deep-Q learning

Housekeeping

- \bullet Unofficial exam Q/A about a week before the exam. Put your wishes on the blackboard in the break.
- Please take time to fill out the course survey (what went well/ less well /what can be improved). You can find it in the menu to the right on DTU Learn. I am particularly interesting in how the exercise sessions can be improved.
- I have updated the video on preparing for the exam, https://www2.compute.dtu.dk/courses/02465/exam.html, and uploaded solutions to the previous exams, and updated the exam instructions.
- You can find a link to an online test exam on the course homepage (see exam practicals)
- As per the previous announcement the exam will be in English. Please let me know as soon as possible if this presents a problem.

Q-Learning Recap: Q-learning

• Bellman optimality condition:

$$q_*(s,a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1},a') | S_t = s, A_t = a\right]$$

- **Theorem:** q_* satisfies the above recursions if (and only if) it corresponds to the **optimal value function**
- Value iteration: Replace q_* arbitrary Q and iterate:

$$Q(s,a) \leftarrow \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} Q(S_{t+1},a') | S_t = s, A_t = a\right]$$

- Theorem: Q will converge to q_*
- Q-learning: Given $(S_t, A_t, R_{t+1}, S_{t+1}) = (s, a, r, s')$ transition, update

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$

Uses that red expression is a **biased** but **consistent** estimate of Q

5 DTU Compute

Q-Learning Q-learning

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize Q(s, a), for all $s \in S^+, a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S Loop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$ $S \leftarrow S'$ until S is terminal

Convergence of *Q*-learning

- \bullet All s,a pairs visited infinitely often
- Robbins-Monro sequence of step-sizes α_t

$$\sum_{t=1}^{\infty} \alpha_t = \infty, \quad \sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

Q-Learning and planning

• Value iteration uses a model of the environment to plan a policy

$$Q(s,a) \leftarrow \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} Q(S_{t+1},a') | S_t = s, A_t = a\right]$$

• Q-learning uses samples from the environment (s, a, r, s') to learn a policy

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$

- Both uses value functions and backups
- Can we combine these ideas?

- A distributional model is an estimate of the MDP p(s', r|s, a)
- A sample model is a mechanism to generate samples (s, a, r, s') from the MDP (weaker assumption)
- Idea: Learn sample model and use it to improve value function by regular backups
- Allows re-use of data for faster convergence (sample efficiency)

Q-Learning Tabular planning

Random-sample one-step tabular Q-planning

Loop forever:

- 1. Select a state, $S \in S$, and an action, $A \in \mathcal{A}(S)$, at random
- 2. Send S,A to a sample model, and obtain a sample next reward, R, and a sample next state, S^\prime
- 3. Apply one-step tabular Q-learning to S, A, R, S': $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$

Q-Learning Dyna-Q planning

Tabular Dyna-Q

 $\begin{array}{l} \mbox{Initialize } Q(s,a) \mbox{ and } Model(s,a) \mbox{ for all } s \in \mathbb{S} \mbox{ and } a \in \mathcal{A}(s) \\ \mbox{Loop forever:} \\ (a) \ S \leftarrow \mbox{ current (nonterminal) state} \\ (b) \ A \leftarrow \varepsilon \mbox{-greedy}(S,Q) \\ (c) \ Take \mbox{ action } A; \mbox{ observe resultant reward, } R, \mbox{ and state, } S' \\ (d) \ Q(S,A) \leftarrow Q(S,A) + \alpha \big[R + \gamma \max_a Q(S',a) - Q(S,A) \big] \\ (e) \ Model(S,A) \leftarrow R, S' \mbox{ (assuming deterministic environment)} \\ (f) \ \mbox{ Loop repeat } n \mbox{ times:} \\ S \leftarrow \mbox{ random previously observed state} \\ A \leftarrow \mbox{ random action previously taken in } S \\ R, S' \leftarrow Model(S,A) \end{array}$

 $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$

Q-Learning Dyna-Q on deterministic Maze environment

Q-Learning Dyna-Q implementation

Tabular Dyna-Q

 $\begin{array}{l} \mbox{Initialize } Q(s,a) \mbox{ and } Model(s,a) \mbox{ for all } s \in \mathbb{S} \mbox{ and } a \in \mathcal{A}(s) \\ \mbox{Loop forever:} \\ (a) \ S \leftarrow \mbox{current (nonterminal) state} \\ (b) \ A \leftarrow \ensuremath{\varepsilon}\mbox{-greedy}(S,Q) \\ (c) \ Take \mbox{ action } A; \mbox{ observe resultant reward, } R, \mbox{ and state, } S' \\ (d) \ Q(S,A) \leftarrow Q(S,A) + \alpha \big[R + \gamma \max_a Q(S',a) - Q(S,A) \big] \\ (e) \ Model(S,A) \leftarrow R, S' \mbox{ (assuming deterministic environment)} \\ (f) \ \mbox{ Loop repeat } n \ \mbox{ times:} \\ S \leftarrow \mbox{ random previously observed state} \\ A \leftarrow \mbox{ random action previously taken in } S \\ R, S' \leftarrow Model(S,A) \\ Q(S,A) \leftarrow Q(S,A) + \alpha \big[R + \gamma \max_a Q(S',a) - Q(S,A) \big] \end{array}$

- The model is simply a list of experience (a replay buffer)
- Deterministic assumption not used

Double-Q learning Double-Q learning

• Target for the Q-values can be considered noisy (random)

 $r + \max_{a'} Q(s', a').$

• Q-update is

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(r + \max_{a'} Q(s',a') - Q(s,a) \right)$$

- By chance some of the Q(s',a') values are likely to be unusually large
- This leads to over-estimate Q(s, a):

 $\mathbb{E}[\max(X_1, X_2)] \ge \max(\mathbb{E}[X_1], \mathbb{E}[X_2])$

• Conclusion:

- Q-values systematically over-estimated
- the worse the estimate of a state, the more we will prefer it

Double-Q learning Double-Q learning

Given transition $(S_t, A_t, R_{t+1}, S_{t+1}) = (s, a, r, s')$

$$Q\left(s,a\right) \leftarrow Q\left(s,a\right) + \alpha \left[r + \gamma \max_{a'} Q\left(s',a'\right) Q\left(s',\arg\max_{a} Q\left(s',a\right)\right) Q_2\left(s',\arg\max_{a} Q\left(s',a\right)\right) Q_2\left(s',\max_{a} Q\left($$

- Where Q_2 is another Q-function
- Q_2 is independent of Q which avoids systematic over-estimation

Double-Q learning Double-Q learning

Double Q-learning, for estimating $Q_1 \approx Q_2 \approx q_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize $Q_1(s, a)$ and $Q_2(s, a)$, for all $s \in S^+$, $a \in \mathcal{A}(s)$, such that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using the policy ε -greedy in $Q_1 + Q_2$ Take action A, observe R, S'With 0.5 probabilility: $Q_1(S,A) \leftarrow Q_1(S,A) + \alpha \Big(R + \gamma Q_2 \big(S', \operatorname{arg\,max}_a Q_1(S',a) \big) - Q_1(S,A) \Big)$ else: $Q_2(S,A) \leftarrow Q_2(S,A) + \alpha \Big(R + \gamma Q_1 \big(S', \operatorname{arg\,max}_a Q_2(S',a) \big) - Q_2(S,A) \Big)$ $S \leftarrow S'$ until S is terminal

• Twice as slow to learn

Double-Q learning Double-Q learning on bias-example environment

16

DTU

Q-learning and function approximators Q-learning with function approximators

$$s \rightarrow \bullet \widehat{q}(s, a_1, \mathbf{w})$$

$$s \rightarrow \bullet \vdots$$

$$\hat{q}(s, a_m, \mathbf{w})$$

- We want an approximation of the Q-values $Q(\boldsymbol{s},\boldsymbol{a})$
- Assume $oldsymbol{y}=\hat{q}_{\phi}(s)$ is a vector of dimension $|\,\mathcal{A}\,|$ such that

 $y_a \approx Q(s, a)$

is our approximation of the Q-value

- In practice, $\hat{q}_{\phi} : \mathbb{R}^d \mapsto \mathbb{R}^{|\mathcal{A}|}$ is a deep network
 - Input-dimension is dimension of each state $s \in \mathcal{S} = \mathbb{R}^d$
 - Output dimension $|\mathcal{A}|$

Q-learning and function approximators Q-learning with function approximators

Regular *Q*-learning:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]$$

Regular Q-learning with function approximators

 \bullet Given $(S_t,A_t,R_{t+1},S_{t+1})=(s,a,r,s^\prime)$ update:

$$\phi \leftarrow \phi + \alpha \left(r + \gamma \max_{a'} \hat{q}_{\phi}(s', a') - \hat{q}_{\phi}(s, a) \right) \nabla_{\phi} \hat{q}_{\phi}(s, a)$$

• Defining $y = r + \gamma \max_{a'} \hat{q}_{\phi}(s',a')$ this can be written as

$$\phi \leftarrow \phi - \alpha \frac{1}{2} \nabla_{\phi} \left(\boldsymbol{y} - \hat{q}_{\phi}(s, a) \right)^2$$

Fitted *Q*-iteration algorithm

- **1** At step t observe $(s_t, a_t, r_{t+1}, s_{t+1})$
- **2** $y_t = r_{t+1} + \gamma \max_{a'} \hat{q}_{\phi}(s_{t+1}, a')$
- **3** Repeat fit step one or more times:

•
$$\phi \leftarrow \phi - \alpha \nabla_{\phi} \left[\frac{1}{2} \left(y_t - \hat{q}_{\phi}(s_t, a_t) \right)^2 \right]$$

- The use of a single sample gives a high variance in the gradient estimate
- The samples are only used once

Initialize a replay buffer ${\mathcal B}$

Q-learning with a replay buffer

1 At step t observe $(s_t, a_t, r_{t+1}, s_{t+1})$ and add it to \mathcal{B}

2 Repeat K times:

1 Sample a batch
$$(s_i, a_i, r_i, s'_i)_{i=1}^B$$
 from \mathcal{B}
2 Set $y_i = r_i + \gamma \max_{a'} \hat{q}_{\phi}(s'_i, a')$
3 $\phi \leftarrow \phi - \alpha \nabla_{\phi} \left[\frac{1}{2B} \sum_{i=1}^B (y_i - \hat{q}_{\phi}(s_i, a_i))^2 \right]$

- \bullet Similar to dyna-Q
- Lower gradient variance, quicker convergence
- Replay buffer should be large (thousands to a few millions)
- You can implement this in the exercises

Q-learning and function approximators Basic deep Q learning on Cartpole

Q-learning and function approximators **An issue with deep** Q learning

• Consider the target

- \bullet We don't compute gradients through y
- This is to a great extend why deep-Q sometimes do not converge: We adapt towards y, without taking into account that y changes during the adaption
- Idea 1: Use an alternative weight network ϕ'

$$y = r_{t+1} + \gamma \max_{a'} \hat{q}_{\phi'}(s_{t+1}, a')$$

• Idea 2: Let ϕ' be an old version of ϕ

Initialize $\mathcal B$ and make a copy $\phi' \leftarrow \phi$ of the weights

Deep-Q **learning**

1 At step t observe $(s_t, a_t, r_{t+1}, s_{t+1})$ and add it to \mathcal{B}

2 Repeat K times:

1 Sample a batch
$$(s_i, a_i, r_i, s'_i)_{i=1}^B$$
 from \mathcal{B}
2 Set $y_i = r_i + \gamma \max_{a'} \hat{q}_{\phi'}(s'_i, a')$
3 $\phi \leftarrow \phi - \alpha \nabla_{\phi} \left[\frac{1}{2B} \sum_{i=1}^B (y_i - \hat{q}_{\phi}(s_i, a_i))^2 \right]$

③ Update $\phi' \leftarrow \phi' + \tau(\phi - \phi')$ (Slow changes, e.g. $\tau = 0.08$ or less)

• Can we also address the over-estimation problem of the Q-values?

Initialize $\mathcal B$ and make a copy $\phi' \leftarrow \phi$ of the weights

Double-Q learning

1 At step t observe $(s_t, a_t, r_{t+1}, s_{t+1})$ and add it to \mathcal{B}

2 Repeat K times:

1 Sample a batch
$$(s_i, a_i, r_i, s'_i)_{i=1}^B$$
 from \mathcal{B}
2 Set $y_i = r_i + \gamma \hat{q}_{\phi'}(s'_i, \arg \max_{a'} \hat{q}_{\phi}(s', a'))$
3 $\phi \leftarrow \phi - \alpha \nabla_{\phi} \left[\frac{1}{2B} \sum_{i=1}^B (y_i - \hat{q}_{\phi}(s_i, a_i))^2 \right]$

 $\textbf{3 Update } \phi' \leftarrow \phi' + \tau(\phi - \phi')$

- Double-Q: Select actions according to $\phi,$ but evaluate according to ϕ'
- We will implement this in the exercises

Q-learning and function approximators Double-deep Q learning on Cartpole

Implementation The buffer

The buffer is a list with a sample function

```
# deepq_agent.py
self.memory = BasicBuffer(replay_buffer_size) if buffer is None else buffer
self.memory.push(s, a, r, sp, done) # save current observation
""" First we sample from replay buffer. Returns numpy Arrays of dimension
> [self.batch_size] x [...]]
for instance 'a' will be of dimension [self.batch_size x 1].
"""
s,a,r,sp,done = self.memory.sample(self.batch_size)
```

First dimension is batch dimension

(batch_size $\times d$)

Implementation

The network

Implemented in separate class

```
# lecture 12 examples.py
1
     # Initialize a network class
2
     self.Q = Network(env, trainable=True) # initialize the network
3
     """ Assuming s has dimension [batch_dim x d] this returns a float numpy Array
 4
     array of Q-values of [batch dim x actions], such that qvals[i,a] = Q(s i,a) """
5
     gvals = self.Q(s)
6
     actions = env.action space.n # number of actions
 7
     """ Assume we initialize target to be of dimension [batch dim x actions]
8
9
     > target = [batch dim x actions]
     The following function will fit the weights in self.Q by minimizing
10
     > ||self.Q(s)-target||^2
11
     (averaged over Batch dimension) using one step of gradient descent
12
     .....
13
     self.Q.fit(s, target)
14
```

I.e. select target appropriately to implement loss

$$\frac{1}{B}\sum_{i=1}^{B} (\hat{q}_{\phi}(s_i, a_i) - y_i)^2$$

Implementation The network (for double-Q)

```
1 # lecture_12_examples.py
2 self.Q2 = Network(env, trainable=True)
3 """ Update weights in self.Q2 (target, phi') towards those in Q (source, phi)
4 with a factor of tau. tau=0 is no change, tau=1 means overwriting weights
5 (useful for initialization) """
6 self.Q2.update_Phi(Q, tau=0.1)
```

Updates weights ϕ' in Q2 towards ϕ in Q

$$\phi' = \phi' + \tau(\phi - \phi')$$

Implementation *Q*-learning, additional tricks

- Parameters: Decrease exploration rate ε_t and learning rate α_t through training
- Networks
 - Clip gradients or use Huber loss
 - Batch normalization
 - \bullet Tune parameters; linear \rightarrow shallow \rightarrow deep
- Methods:
 - \bullet Double-Q learning always a good idea
 - Replay buffer always a good idea
 - Prioritizing samples (PER) improves convergence speed
 - Check out Rainbow for current(ish) state of the art(ish) [HMVH⁺18]
- Lots of training and results highly variable across seeds

FIN!

 Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver.
 Rainbow: Combining improvements in deep reinforcement learning. In *Thirty-Second AAAI Conference on Artificial Intelligence*, 2018.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second edition, 2018.

(Freely available online).