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Lecture Schedule

Dynamical programming

1 The finite-horizon decision problem
7 February

2 Dynamical Programming
14 February

3 DP reformulations and introduction to
Control
21 February

Control

4 Discretization and PID control
28 February

5 Direct methods and control by
optimization
7 March

6 Linear-quadratic problems in control
14 March

7 Linearization and iterative LQR
21 March

Reinforcement learning

8 Exploration and Bandits
28 March

9 Bellmans equations and exact planning
4 April

10 Monte-carlo methods and TD learning
11 April

11 Model-Free Control with tabular and
linear methods
25 April

12 Eligibility traces
2 May

13 Deep-Q learning
9 May

Syllabus: https://02465material.pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn
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Reading material:
• [SB18, Chapter 10.2; 12-12.7]

Learning Objectives
• Using the TD-lambda return to interpolate between MC and TD(0)
• Eligibility traces as an efficient implementation of TD(lambda) and

Sarsa(lambda)
• Function approximators and Sarsa(lambda)
• The online lambda-return, with emphasis on linear function approximators
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DP backups

V (St)← Eπ [Rt+1 + γV (St+1)]
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Last week: MC backups

V (St)← V (St) + α (Gt − V (St))
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Last week: TD backups

V (St)← V (St) + α (Rt+1 + γV (St+1)− V (St))
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Last week: n-step backup
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General plan

• The λ-return provides a method to interpolate between TD(0) and Monte-Carlo
• There are forward and backward variant of λ-return methods

• Forward: Quite easy to understand; annoying to implement
• Backward: Harder to understand; it has the same updates of

value-function but applied immediately. Much easier to implement.
• Additionally, [SB18] distinguishes between (i) regular TD(λ) and a more

advanced variant (ii) online TD(λ)
• ...and the online-version also has a forward and backward view...
• ...and [SB18] presents the methods in context of function approximators...

We will focus on the tabular version.
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From last week: The n-step return
• Recall return is Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · ·

n = 1: (TD) G
(1)
t = Rt+1 + γGt+1

n = 2: G
(2)
t = Rt+1 + γRt+2 + γ2Gt+2

n: G
(n)
t = Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γn−1Rt+n + γnGt+n

n =∞ (MC): G
(∞)
t = Rt+1 + γRt+2 + · · ·+ γT −1RT

• Using the rules of expectations:

vπ(s) = E[Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnGt+n|s]
= E

[
Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + E [γnGt+n|St+n] |St = s

]
= E[Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnvπ(St+n)|St = s]

Therefore, the n-step return is an estimate of V (St)

Gt:t+n = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnV (St+n)

• This gives n-step temporal difference update:

V (St)← V (St) + α (Gt:t+n − V (St))
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Averaging n-step returns

Gt:t+n
.= Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnV (St+n)

• We can average n-step returns for different n. The estimator

Ḡt = 1
3Gt:t+2 + 2

3Gt:t+4

is still an estimator of the return
• More generally assuming that

∑∞
i=1 wi = 1 then

Ḡt =
∞∑

i=1
wiGt:t+i

is an estimator of the return
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The λ-return

• Combine returns Gt:t+n using weights (1−λ)λn−1 (note
∑∞

n=1(1−λ)λn−1 = 1)

Gλ
t

.= (1− λ)
∞∑

n=1
λn−1Gt:t+n

• For t + n > T it is the case that Gt:t+n = Gt:

λ-return: Gλ
t = (1− λ)

T −t−1∑
n=1

λn−1Gt:t+n + λT −t−1Gt
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• Forward-view TD(λ) update rule is

V (St)← V (St) + α
(
Gλ

t − V (St)
)

• Forward-view TD(λ) looks into the future to compute Gλ
t

• Like MC, it can only be computed from complete episodes
• Theoretically simple, but computationally impractical
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Backwards TD(λ)

• We want to update V (st)← V (St) + α
(
Gλ

t − V (St)
)

Gλ
t = (1− λ)

T −t−1∑
n=1

λn−1Gt:t+n + λT −t−1Gt

= (1− λ)Gt:t+1 + (1− λ)λGt:t+2 + (1− λ)λ2Gt:t+3 + · · ·+ λT −t−1Gt

• The return Gλ
t includes the term (1− λ)λ2Gt:t+3

• This means V (st) is updated towards
Gλ

t = · · ·+ (1− λ)λ2(Rt+1 + γRt+2 + γ2Rt+3 + γ3V (St+3)) + · · ·

• Idea: Wait until time t + 3, compute above terms and update V (st) in the past
• The further in the future a term Rt+n is, the less it influences past term V (st)
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Eligibility trace

• The eligibility trace Et is just af function of states: Et : S → R
• Measures both how frequent and how recent a state was visited
• Initialized to Et=0(s) = 0
• Updated at each time step as

Et(s) =
{

γλEt−1(s) if s ̸= st

γλEt−1(s) + 1 if s = st

• States decay at a rate of γλ
• Each time they are visited they get a bonus of +1,
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Backward view TD(λ)

• Initialize value function for each state.
• At start of each episode, initialize eligibility trace for each state to E(s) = 0
• For each transition St = s→ St+1 = s′, giving reward Rt+1 = r, compute

ordinary TD error
δt = r + γV (s′)− V (s)

• Update eligibility trace
Et(s) = Et(s) + 1

• For every state s where Et(s) > 0 update

V (s)← V (s) + αδE(s)
E(s)← γλE(s)

• See http://incompleteideas.net/book/ebook/node75.html
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λ = 0 is equivalent TD(0)

• When λ = 0 only the current state is updated:

Et(s) = 1 if and only if s = St

V (s)← V (s) + αδtEt(s)

• This means TD(λ) is equal to TD(0) when λ = 0
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Equivalence of forward/Backward TD(λ)

Suppose a state St = s is visited just once at time step t

Forward-view The change in value-function V (s) in the forward-view update
is α(Gλ

t − V (St))
Eligibility traces Implied update is:

• At t we change E(St = s) = 1
• In subsequent steps we iterate

V (s)← V (s) + αδE(s)
E(s)← γλE(s)

• The last update means that at step t + n we have
E(s) = (γλ)n

• Total change to value function V (s) is therefore

α
(
δt + γλδt+1 + (γλ)2δt+2 + . . .

)
Are these two updates the same (is the red stuff equal)?
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Proof:
Recall Gt:t+n

.= Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnV (St+n)

Gλ
t − V (St) = −V (St) + (1− λ)

∞∑
n=1

λn−1Gt:t+n

= −V (St) +
( ∞∑

n=1
λn−1Gt:t+n

)
+
( ∞∑

n=1
−λnGt:t+n

)

= −V (St) +
(

Gt:t+1 +
∞∑

n=2
λn−1Gt:t+n

)
+
( ∞∑

n=2
−λn−1Gt:t+n−1

)

= Gt:t+1 − V (St) +
∞∑

n=2
λn−1 (Gt:t+n −Gt:t+n−1)

Recall that δt = Rt+1 + γV (St+1)− V (St) then

Gt:t+n −Gt:t+n−1 = γn−1Rt+n + γnV (St+n)− γn−1V (St+n−1)
= γn−1δt+n−1
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Proof II

Gλ
t − V (St) = Gt:t+1 − V (St) +

∞∑
n=2

λn−1 (Gt:t+n −Gt:t+n−1)

= (Rt+1 + γV (St+1)− V (St)) +
∞∑

n=2
λn−1

(
γn−1δt+n−1

)
= (γλ)0δt +

∞∑
n=2

(γλ)n−1δt+n−1

= (γλ)0δt + (γλ)1δt+1 + (γλ)2δt+2 + · · ·
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Forward/Backward TD

Suppose a state St = s is visited just once at time step t

Forward-view The change in value-function V (s) in the forward-view update
is α(Gλ

t − V (St))
Eligibility traces Implied update is:

• At t we change E(St = s) = 1
• In subsequent steps we iterate

V (s)← V (s) + αδE(s)
E(s)← γλE(s)

• The last update means that at step t + n we have
E(s) = (γλ)n

• Total change to value function V (s) is therefore

α
(
δt + γλδt+1 + (γλ)2δt+2 + . . .

)
Same updates!
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Forward/Backward TD (Summary)

• Forward view is just using Gλ
t is an estimate of return

• Forward/Backwards TD are equivalent
• Both change the value function the same way
• Forward-view just changes value-function during an episode

• TD(λ = 0) is equivalent to TD(0)
• TD(1) corresponds to MC
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Control
From last week: n-step Sarsa
Recall the decomposition:

Gt = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnGt+n

• As before:

qπ(s, a) = E[Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnGt+n|St = s, At = a]
= E[Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnqπ(St+n, At+n)|St = s, At = a]

• Therefore, the following n-step action-value return is an unbiased estimate of qπ

q
(n)
t = Rt+1 + γRt+2 + . . . + γn−1Rt+n + γnqπ (St+n, At+n)

• Suggest the following bootstrap update of the action-value function

Q (St, At)← Q (St, At) + α
(

q
(n)
t −Q (St, At)

)
s lecture_12_sarsa_nstep_open.py
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Control
Forward-view Sarsa

• Use weights to combine returns qt:t+n

qt:t+n = Rt+1 + γRt+2 + . . . + γn−1Rt+n + γnQ (St+n, At+n)

• For t + n ≥ T it is the case qt:t+n = Gt:

qλ
t = (1− λ)

T −t−1∑
n=1

λn−1qt:t+n + λT −t−1Gt

• We therefore obtain the following generalized update rule
Q (St, At)← Q (St, At) + α

(
qλ

t −Q (St, At)
)
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Control
Backward view Sarsa(λ)

• We once more introduce an eligibility trace Et, updated as before:

Et(s, a) =
{

γλEt−1(s, a) + 1 if s = st and a = at;
γλEt−1(s, a) otherwise. for all s, a

• Each each step, given (s, a, r, s′), update

δt = Rt+1 + γQ (St+1, At+1)−Q (St, At)
Q(s, a)← Q(s, a) + αδtEt(s, a)
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Control
Sarsa(λ) control algorithm (tabular version)
See http://incompleteideas.net/book/first/ebook/node77.html

s lecture_11_sarsa_lambda_open.py
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Control
Implied updates in the Open gridworld example

Recall only terminal state has a reward of +1

s lecture_12_sarsa_open.py , s lecture_12_mc_open.py ,
s lecture_12_sarsa_lambda_open.py
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λ-methods and value-function approximations
From last time: Feature vectors and linear representations

• Represent value function by a linear combination of features

v̂(s, w) = x(s)⊤w, w ∈ Rd

Where feature vector is defined as:

x(s) =

x1(s)
...

xd(s)


• The gradient is simply:

∇v̂(s, w) = x(s)

• For Q-values we only need to change the feature vector:

q̂(s, a, w) = x(s, a)⊤w

27 DTU Compute Lecture 12 2 May, 2025



λ-methods and value-function approximations
From last time: implementation details

• TD learning

V (s)← V (s)+α(r + γV (s′)− V (s))
w ← w +α (r + γv̂(s′, w)− v̂(s, w))∇v̂(s, w)

• Sarsa learning

q(s, a)← q(s, a)+α (r + γq(s′, a′)− q(s, a))
w ← w +α (r + γq̂(s′, a′, w)− q̂(s, a, w))∇q̂(s, a, w)

• Using a general estimator:

q(s, a)← q(s, a)+α (G− q(s, a))
w ← w +α (G− q̂(s, a, w))∇q̂(s, a, w)
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λ-methods and value-function approximations
Forward and backward view
Assuming linear function approximators: ∇q̂(s, a, w) = x(s, a)
• Forward view Sarsa(λ) is exactly as before

w ← w+α
(
Gλ

t − q̂(s, a, w)
)
∇q̂(s, a, w)

• Keep track of terms that include which gradient to get backward view of
Sarsa(λ):

δt = Rt+1 + γq̂ (St+1, At+1, wt)− q̂ (St, At, wt)
zt = γλzt−1 +∇q̂(St, At, wt)

wt+1 ← wt + αδtzt

• The gradient plays the role of state-action pairs visited. It is propagated into the
future but attenuated by γλ

• A change in the past (gradient) which lead to a poor (or good) result δt will be
penalized (promoted)
• Forward/backward view equivalent in the linear case
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λ-methods and value-function approximations
Cliffwalk example

Comparison of Sarsa(λ) and Sarsa on the cliffwalk example
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(Note that results are somewhat sensitive to the to learning rate)

30 DTU Compute Lecture 12 2 May, 2025



λ-methods and value-function approximations
Quiz: Exam problem spring 2023

Which one of the following questions are correct?
a. TD(λ) cannot be used with function approximators
b. The role of the eligibility trace is to let reward obtained earlier in an
episode affect the change in the value function later in the episode
c. The eligibility trace cannot be negative
d. The eligibility trace is a measure of the amount of reward obtained in a
given state weighted by an exponential factor
e. Don’t know.
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λ-methods and value-function approximations
Using binary features
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λ-methods and value-function approximations
Truncated, online and true online λ-return algorithms
(advanced)

• Recall the λ-return is defined as:

Gλ
t = (1− λ)

T −t−1∑
n=1

λn−1Gt:t+n + λT −t−1Gt

• Each Gt is an estimate of the return and the sum of the weights is 1
• More generally the truncated λ-return estimator is

Gλ
t:h = (1− λ)

h−t−1∑
n=1

λn−1Gt:t+n + λh−t−1Gt:h, 0 ≤ t < h ≤ T
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λ-methods and value-function approximations
Using the estimator

• Recall the forward-view TD(λ) algorithm:

V (St)← V (St) + α(Gλ
t − V (St))

• The truncated λ return fixes h = n and do:

V (St)← V (St) + α(Gλ
t:t+n − V (St))

• Or as weight updates

wt+n = wt+n−1 + α
(
Gλ

t:t+n − v̂(St, wt+n−1)
)
∇v̂(St, wt+n−1)

• This requires a fixed n and that we store previous results. Can we do better?
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λ-methods and value-function approximations
Online λ-return

Gλ
t:h = (1− λ)

h−t−1∑
n=1

λn−1Gt:t+n + λh−t−1Gt:h, 0 ≤ t < h ≤ T

• Once we have observed h steps of an episode, we can evaluate
Gλ

0:h, Gλ
1:h, . . . , Gλ

h−1:h

• Online λ-return: After h steps, perform h updates corresponding to all h returns
• Repeat each time h is increased

• I.e. for each new step h− 1→ h repeat t = 0, . . . , h− 1:
wh

t+1 = wh
t + α

[
Gλ

t:h − v̂(St, wh
t )
]
∇v̂(St, wh

t )
35 DTU Compute Lecture 12 2 May, 2025



λ-methods and value-function approximations
True online TD(λ)

• Online TD(λ) is computationally very wasteful
• For linear function approximators online TD(λ) allows a backwards view known

as True online TD(λ)

wt+1 = wt + αδtzt + α(w⊤
t xt −w⊤

t−1xt)(zt − xt)
zt = γλzt−1 + (1− αγλz⊤

t−1xt)xt

• The control algorithm is true online Sarsa(λ)
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λ-methods and value-function approximations
True online Sarsa(λ)
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λ-methods and value-function approximations
Mountaincar example

Comparison of Sarsa(λ) and Sarsa on the Mountaincar example
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Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.
(Freely available online).
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Appendix:
Appendix
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Appendix:
A more challenging pacman environment

• Use successor representation: q̂(s, a, w) = x(s′)⊤w, s′ = f(s, a)
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Appendix:
A more challenging pacman environment
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