02465: Introduction to reinforcement learning and control

Eligibility traces

Tue Herlau

DTU Compute

DTU Compute, Technical University of Denmark (DTU)

Lecture Schedule

Dynamical programming

1 The finite-horizon decision problem 7 February

2 Dynamical Programming 14 February

3 DP reformulations and introduction to Control

21 February

Control

- Discretization and PID control
 28 February
- **6** Direct methods and control by

optimization

7 March

- 6 Linear-quadratic problems in control
- Linearization and iterative LQR

21 March

Syllabus: https://02465material.pages.compute.dtu.dk/02465public Help improve lecture by giving feedback on DTU learn

Reinforcement learning

- 8 Exploration and Bandits 28 March
- Bellmans equations and exact planning 4 April
- Monte-carlo methods and TD learning 11 April
- Model-Free Control with tabular and linear methods

25 April

Eligibility traces

2 May

Beep-Q learning

9 May

Reading material:

• [SB18, Chapter 10.2; 12-12.7]

Learning Objectives

- Using the TD-lambda return to interpolate between MC and TD(0)
- Eligibility traces as an efficient implementation of TD(lambda) and Sarsa(lambda)
- Function approximators and Sarsa(lambda)
- The online lambda-return, with emphasis on linear function approximators

DP backups

Last week: MC backups

Last week: TD backups

Last week: *n*-step backup

General plan

- The λ -return provides a method to interpolate between TD(0) and Monte-Carlo
- There are **forward** and **backward** variant of λ -return methods
 - Forward: Quite easy to understand; annoying to implement
 - **Backward:** Harder to understand; it has the same updates of value-function but applied immediately. Much easier to implement.
- Additionally, [SB18] distinguishes between (i) regular $TD(\lambda)$ and a more advanced variant (ii) online $TD(\lambda)$
 - ...and the online-version also has a forward and backward view...
 - ...and [SB18] presents the methods in context of function approximators...

We will focus on the tabular version.

From last week: The *n*-step return

• Recall return is $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots$

 $n = 1: (TD) \qquad G_t^{(1)} = R_{t+1} + \gamma G_{t+1}$ $n = 2: \qquad G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 G_{t+2}$ $n: \qquad G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n G_{t+n}$ $n = \infty (MC): \qquad G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$

• Using the rules of expectations:

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n G_{t+n} | s]$$

= $\mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \mathbb{E}[\gamma^n G_{t+n} | S_{t+n}] | S_t = s]$
= $\mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n v_{\pi}(S_{t+n}) | S_t = s]$

Therefore, the *n*-step return is an estimate of $V(S_t)$

$$G_{t:t+n} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

• This gives *n*-step temporal difference update:

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\mathbf{G}_{t:t+n} - V(S_t) \right)$$

9 DTU Compute

Lecture 12 2 May, 2025

Averaging *n*-step returns

$$G_{t:t+n} \doteq R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V\left(S_{t+n}\right)$$

• We can average n-step returns for different n. The estimator

$$\bar{G}_t = \frac{1}{3}G_{t:t+2} + \frac{2}{3}G_{t:t+4}$$

is still an estimator of the return

• More generally assuming that $\sum_{i=1}^{\infty} w_i = 1$ then

$$\bar{G}_t = \sum_{i=1}^{\infty} w_i G_{t:t+i}$$

is an estimator of the return

• Combine returns $G_{t:t+n}$ using weights $(1-\lambda)\lambda^{n-1}$ (note $\sum_{n=1}^{\infty}(1-\lambda)\lambda^{n-1}=1$)

$$G_t^{\lambda} \doteq (1-\lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_{t:t+n}$$

• For t + n > T it is the case that $G_{t:t+n} = G_t$:

$$\lambda\text{-return:} \quad G_t^{\lambda} = (1-\lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_t$$

Lecture 12 2 May, 2025

• Forward-view $TD(\lambda)$ update rule is

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t)\right)$$

- Forward-view $TD(\lambda)$ looks into the future to compute G_t^{λ}
- Like MC, it can only be computed from complete episodes
- Theoretically simple, but computationally impractical
- 12 DTU Compute

Backwards $TD(\lambda)$

• We want to update $V(s_t) \leftarrow V^{\text{Time}}(S_t) + \alpha \left(G_t^{\lambda} - V\left(S_t\right)\right)$

$$G_t^{\lambda} = (1-\lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_t$$

= $(1-\lambda) G_{t:t+1} + (1-\lambda) \lambda G_{t:t+2} + (1-\lambda) \lambda^2 G_{t:t+3} + \dots + \lambda^{T-t-1} G_t$

- The return G_t^λ includes the term $(1-\lambda)\lambda^2 G_{t:t+3}$
- This means $V(s_t)$ is updated towards

$$G_t^{\lambda} = \dots + (1 - \lambda)\lambda^2 (R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 V(S_{t+3})) + \dots$$

- Idea: Wait until time t + 3, compute above terms and update $V(s_t)$ in the past
- The further in the future a term R_{t+n} is, the less it influences past term $V(s_t)$ 13 DTU Compute Lecture 12 2 May, 2025

Eligibility trace

- The eligibility trace E_t is just af function of states: $E_t : S \to \mathbb{R}$
- Measures both how frequent and how recent a state was visited
- Initialized to $E_{t=0}(s) = 0$
- Updated at each time step as

$$E_t(s) = \begin{cases} \gamma \lambda E_{t-1}(s) & \text{if } s \neq s_t \\ \gamma \lambda E_{t-1}(s) + 1 & \text{if } s = s_t \end{cases}$$

- States decay at a rate of $\gamma\lambda$
- Each time they are visited they get a bonus of +1,

Backward view $TD(\lambda)$

- Initialize value function for each state.
- At start of each episode, initialize eligibility trace for each state to E(s) = 0
- For each transition $S_t = s \rightarrow S_{t+1} = s'$, giving reward $R_{t+1} = r$, compute ordinary TD error

$$\delta_t = r + \gamma V(s') - V(s)$$

• Update eligibility trace

$$E_t(s) = E_t(s) + 1$$

• For every state s where $E_t(s) > 0$ update

$$V(s) \leftarrow V(s) + \alpha \delta E(s)$$
$$E(s) \leftarrow \gamma \lambda E(s)$$

• See http://incompleteideas.net/book/ebook/node75.html

 δ_t

$\lambda = 0$ is equivalent TD(0)

• When $\lambda = 0$ only the current state is updated:

$$E_t(s) = 1$$
 if and only if $s = S_t$
 $V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$

• This means $TD(\lambda)$ is equal to TD(0) when $\lambda = 0$

Equivalence of forward/Backward $TD(\lambda)$

Suppose a state $S_t = s$ is visited just once at time step t

Forward-view The change in value-function V(s) in the forward-view update is $\alpha(G_t^\lambda-V(S_t))$

Eligibility traces Implied update is:

- At t we change $E(S_t = s) = 1$
- In subsequent steps we iterate

$$V(s) \leftarrow V(s) + \alpha \delta E(s)$$
$$E(s) \leftarrow \gamma \lambda E(s)$$

- The last update means that at step t+n we have $E(s)=(\gamma\lambda)^n$
- \bullet Total change to value function $V(\boldsymbol{s})$ is therefore

$$\alpha \left(\delta_t + \gamma \lambda \delta_{t+1} + (\gamma \lambda)^2 \delta_{t+2} + \ldots \right)$$

Are these two updates the same (is the red stuff equal)?

Proof:

Recall
$$G_{t:t+n} \doteq R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V\left(S_{t+n}\right)$$

$$\begin{aligned} G_t^{\lambda} - V(S_t) &= -V(S_t) + (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_{t:t+n} \\ &= -V(S_t) + \left(\sum_{n=1}^{\infty} \lambda^{n-1} G_{t:t+n} \right) + \left(\sum_{n=1}^{\infty} -\lambda^n G_{t:t+n} \right) \\ &= -V(S_t) + \left(G_{t:t+1} + \sum_{n=2}^{\infty} \lambda^{n-1} G_{t:t+n} \right) + \left(\sum_{n=2}^{\infty} -\lambda^{n-1} G_{t:t+n-1} \right) \\ &= G_{t:t+1} - V(S_t) + \sum_{n=2}^{\infty} \lambda^{n-1} \left(G_{t:t+n} - G_{t:t+n-1} \right) \end{aligned}$$

Recall that $\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$ then

$$G_{t:t+n} - G_{t:t+n-1} = \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n}) - \gamma^{n-1} V(S_{t+n-1})$$

= $\gamma^{n-1} \delta_{t+n-1}$

Proof II

$$G_{t}^{\lambda} - V(S_{t}) = G_{t:t+1} - V(S_{t}) + \sum_{n=2}^{\infty} \lambda^{n-1} \left(G_{t:t+n} - G_{t:t+n-1} \right)$$

= $(R_{t+1} + \gamma V(S_{t+1}) - V(S_{t})) + \sum_{n=2}^{\infty} \lambda^{n-1} \left(\gamma^{n-1} \delta_{t+n-1} \right)$
= $(\gamma \lambda)^{0} \delta_{t} + \sum_{n=2}^{\infty} (\gamma \lambda)^{n-1} \delta_{t+n-1}$
= $(\gamma \lambda)^{0} \delta_{t} + (\gamma \lambda)^{1} \delta_{t+1} + (\gamma \lambda)^{2} \delta_{t+2} + \cdots$

Forward/Backward TD

Suppose a state $S_t = s$ is visited just once at time step t

Forward-view The change in value-function V(s) in the forward-view update is $\alpha(G_t^\lambda-V(S_t))$

Eligibility traces Implied update is:

- At t we change $E(S_t = s) = 1$
- In subsequent steps we iterate

$$V(s) \leftarrow V(s) + \alpha \delta E(s)$$
$$E(s) \leftarrow \gamma \lambda E(s)$$

- The last update means that at step t+n we have $E(s)=(\gamma\lambda)^n$
- \bullet Total change to value function $V(\boldsymbol{s})$ is therefore

$$\alpha \left(\delta_t + \gamma \lambda \delta_{t+1} + (\gamma \lambda)^2 \delta_{t+2} + \ldots \right)$$

Same updates!

Forward/Backward TD (Summary)

- Forward view is just using G_t^{λ} is an estimate of return
- Forward/Backwards TD are equivalent
 - Both change the value function the same way
 - Forward-view just changes value-function during an episode
- $TD(\lambda = 0)$ is equivalent to TD(0)
- TD(1) corresponds to MC

Control

From last week: *n*-step Sarsa

Recall the decomposition:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n G_{t+n}$$

• As before:

$$q_{\pi}(s,a) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1}R_{t+n} + \gamma^n G_{t+n}|S_t = s, A_t = a]$$

= $\mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1}R_{t+n} + \gamma^n q_{\pi}(S_{t+n}, A_{t+n})|S_t = s, A_t = a]$

• Therefore, the following n-step action-value return is an unbiased estimate of q_{π}

$$q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n q_\pi \left(S_{t+n}, A_{t+n} \right)$$

• Suggest the following bootstrap update of the action-value function

$$Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right) + \alpha\left(q_{t}^{\left(n\right)} - Q\left(S_{t}, A_{t}\right)\right)$$

lecture_12_sarsa_nstep_open.py

Forward-view Sarsa Weighting $J_{1-\lambda}$ weight given to $G_t ext{ is } \lambda^{T-t-1}$ t Time T

• Use weights to combine returns $q_{t:t+n}$

$$q_{t:t+n} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n}, A_{t+n})$$

• For $t + n \ge T$ it is the case $q_{t:t+n} = G_t$:

$$q_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} q_{t:t+n} + \lambda^{T-t-1} G_t$$

• We therefore obtain the following generalized update rule

$$Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right) + \alpha\left(q_{t}^{\lambda} - Q\left(S_{t}, A_{t}\right)\right)$$

23 DTU Compute

Lecture 12 2 May, 2025

Control Backward view Sarsa(λ)

• We once more introduce an eligibility trace E_t , updated as before:

$$E_t(s,a) = \begin{cases} \gamma \lambda E_{t-1}(s,a) + 1 & \text{ if } s = s_t \text{ and } a = a_t; \\ \gamma \lambda E_{t-1}(s,a) & \text{ otherwise.} \end{cases} \quad \text{ for all } s,a$$

• Each each step, given (s, a, r, s'), update

$$\delta_t = R_{t+1} + \gamma Q \left(S_{t+1}, A_{t+1} \right) - Q \left(S_t, A_t \right)$$
$$Q(s, a) \leftarrow Q(s, a) + \alpha \delta_t E_t(s, a)$$

Control Sarsa(λ) control algorithm (tabular version)

See http://incompleteideas.net/book/first/ebook/node77.html

$$\begin{array}{l} \mbox{Initialize } Q(s,a) \mbox{ arbitrarily, for all } s \in \mathbb{S}, a \in \mathcal{A}(s) \\ \mbox{Repeat (for each episode):} \\ E(s,a) = 0, \mbox{ for all } s \in \mathbb{S}, a \in \mathcal{A}(s) \\ \mbox{Initialize } S, A \\ \mbox{Repeat (for each step of episode):} \\ \mbox{ Take action } A, \mbox{ observe } R, S' \\ \mbox{ Choose } A' \mbox{ from } S' \mbox{ using policy derived from } Q \mbox{ (e.g., ε-greedy)} \\ \mbox{ } \delta \leftarrow R + \gamma Q(S', A') - Q(S, A) \\ E(S, A) \leftarrow E(S, A) + 1 \\ \mbox{ For all } s \in \mathbb{S}, a \in \mathcal{A}(s): \\ \mbox{ } Q(s,a) \leftarrow Q(s,a) + \alpha \delta E(s,a) \\ E(s,a) \leftarrow \gamma \lambda E(s,a) \\ S \leftarrow S'; \mbox{ } A \leftarrow A' \\ \mbox{ until } S \mbox{ is terminal} \end{array}$$

Control Implied updates in the Open gridworld example

Recall only terminal state has a reward of $+1\,$

• Represent value function by a linear combination of features

$$\hat{v}(s, \mathbf{w}) = \mathbf{x}(s)^{\top} \mathbf{w}, \quad \mathbf{w} \in \mathbb{R}^d$$

Where **feature vector** is defined as:

$$\mathbf{x}(s) = \begin{bmatrix} \mathbf{x}_1(s) \\ \vdots \\ \mathbf{x}_d(s) \end{bmatrix}$$

• The gradient is simply:

$$\nabla \hat{v}(s, \mathbf{w}) = \mathbf{x}(s)$$

 \bullet For Q-values we only need to change the feature vector:

$$\hat{q}(s, a, \boldsymbol{w}) = \boldsymbol{x}(s, a)^{\top} \boldsymbol{w}$$

$\lambda\text{-methods}$ and value-function approximations From last time: implementation details

• TD learning

$$V(s) \leftarrow V(s) + \alpha(r + \gamma V(s') - V(s))$$
$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha \left(r + \gamma \hat{v}(s', \boldsymbol{w}) - \hat{v}(s, \boldsymbol{w})\right) \nabla \hat{v}(s, \boldsymbol{w})$$

Sarsa learning

$$\begin{aligned} q(s,a) &\leftarrow q(s,a) + \alpha \left(r + \gamma q(s',a') - q(s,a) \right) \\ \boldsymbol{w} &\leftarrow \boldsymbol{w} \qquad + \alpha \left(r + \gamma \hat{q}(s',a',\boldsymbol{w}) - \hat{q}(s,a,\boldsymbol{w}) \right) \nabla \hat{q}(s,a,\boldsymbol{w}) \end{aligned}$$

• Using a general estimator:

$$\begin{array}{l} q(s,a) \leftarrow q(s,a) + \alpha \left(\boldsymbol{G} - q(s,a) \right) \\ \boldsymbol{w} \leftarrow \boldsymbol{w} & + \alpha \left(\boldsymbol{G} - \hat{q}(s,a,\boldsymbol{w}) \right) \nabla \hat{q}(s,a,\boldsymbol{w}) \end{array}$$

$\lambda\text{-methods}$ and value-function approximations Forward and backward view

Assuming linear function approximators: $\nabla \hat{q}(s, a, w) = x(s, a)$

• Forward view Sarsa(λ) is exactly as before

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha \left(\boldsymbol{G}_{t}^{\boldsymbol{\lambda}} - \hat{q}(s, a, \boldsymbol{w}) \right) \nabla \hat{q}(s, a, \boldsymbol{w})$$

 Keep track of terms that include which gradient to get backward view of Sarsa(λ):

$$\begin{split} \delta_t &= R_{t+1} + \gamma \hat{q} \left(S_{t+1}, A_{t+1}, \mathbf{w}_t \right) - \hat{q} \left(S_t, A_t, \mathbf{w}_t \right) \\ \mathbf{z}_t &= \gamma \lambda \mathbf{z}_{t-1} + \nabla \hat{q} (S_t, A_t, \mathbf{w}_t) \\ \mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha \delta_t \mathbf{z}_t \end{split}$$

- The gradient plays the role of state-action pairs visited. It is propagated into the future but attenuated by $\gamma\lambda$
- A change in the past (gradient) which lead to a **poor** (or good) result δ_t will be **penalized** (promoted)
- Forward/backward view equivalent in the linear case

$\lambda\text{-methods}$ and value-function approximations Cliffwalk example

(Note that results are somewhat sensitive to the to learning rate)

Which one of the following questions are correct?

- **a.** $\mathrm{TD}(\lambda)$ cannot be used with function approximators
- **b.** The role of the eligibility trace is to let reward obtained earlier in an episode affect the change in the value function later in the episode
- c. The eligibility trace cannot be negative
- **d.** The eligibility trace is a measure of the amount of reward obtained in a given state weighted by an exponential factor
- e. Don't know.

Using binary features

 $Sarsa(\lambda)$ with binary features and linear function approximation for estimating $\mathbf{w}^{\top}\mathbf{x} \approx q_{\pi}$ or q_{*} Input: a function $\mathcal{F}(s, a)$ returning the set of (indices of) active features for s, a Input: a policy π (if estimating q_{π}) Algorithm parameters: step size $\alpha > 0$, trace decay rate $\lambda \in [0, 1]$ Initialize: $\mathbf{w} = (w_1, \dots, w_d)^\top \in \mathbb{R}^d$ (e.g., $\mathbf{w} = \mathbf{0}$), $\mathbf{z} = (z_1, \dots, z_d)^\top \in \mathbb{R}^d$ Loop for each episode: Initialize SChoose $A \sim \pi(\cdot | S)$ or ε -greedy according to $\hat{q}(S, \cdot, \mathbf{w})$ $\mathbf{z} \leftarrow \mathbf{0}$ Loop for each step of episode: Take action A, observe R, S' $\delta \leftarrow B = \delta \leftarrow B = w^{\top} x$ Loop for i in $\mathcal{F}(S, A)$: $\delta \leftarrow \delta - w_i$ $z_i \leftarrow z_i + 1 \quad z \leftarrow z + x$ (accumulating traces) or $z_i \leftarrow 1$ (replacing traces) If S' is terminal then: $\mathbf{w} \leftarrow \mathbf{w} + \alpha \delta \mathbf{z}$ Go to next episode Choose $A' \sim \pi(\cdot | S')$ or near greedily $\sim \hat{q}(S', \cdot, \mathbf{w})$ Loop for *i* in $\mathcal{F}(S', A')$: $\delta \leftarrow \delta + \gamma w_i \ \delta \leftarrow \delta + \gamma w^\top x'$ $\mathbf{w} \leftarrow \mathbf{w} + \alpha \delta \mathbf{z}$ $\mathbf{z} \leftarrow \gamma \lambda \mathbf{z}$ $S \leftarrow S' : A \leftarrow A'$

λ -methods and value-function approximations Truncated, online and true online λ -return algorithms (advanced)

• Recall the λ -return is defined as:

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_t$$

- Each G_t is an estimate of the return and the sum of the weights is 1
- More generally the **truncated** λ -return estimator is

$$G_{t:h}^{\lambda} = (1 - \lambda) \sum_{n=1}^{h-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{h-t-1} G_{t:h}, \quad 0 \le t < h \le T$$

• Recall the forward-view $\mathrm{TD}(\lambda)$ algorithm:

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t^{\lambda} - V(S_t))$$

• The **truncated** λ return fixes h = n and do:

$$V(S_t) \leftarrow V(S_t) + \alpha(G_{t:t+n}^{\lambda} - V(S_t))$$

• Or as weight updates

$$\boldsymbol{w}_{t+n} = \boldsymbol{w}_{t+n-1} + \alpha \left(G_{t:t+n}^{\lambda} - \hat{v}(S_t, \boldsymbol{w}_{t+n-1}) \right) \nabla \hat{v}(S_t, \boldsymbol{w}_{t+n-1})$$

• This requires a fixed n and that we store previous results. Can we do better?

$$G_{t:h}^{\lambda} = (1 - \lambda) \sum_{n=1}^{h-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{h-t-1} G_{t:h}, \quad 0 \le t < h \le T$$

 \bullet Once we have observed h steps of an episode, we can evaluate

$$G_{0:h}^{\lambda}, G_{1:h}^{\lambda}, \dots, G_{h-1:h}^{\lambda}$$

- Online λ -return: After h steps, perform h updates corresponding to all h returns
- Repeat each time *h* is increased

$$\begin{split} h &= 1: \quad \mathbf{w}_{1}^{1} \doteq \mathbf{w}_{0}^{1} + \alpha \left[G_{0,1}^{\lambda} - \hat{v}(S_{0}, \mathbf{w}_{0}^{1}) \right] \nabla \hat{v}(S_{0}, \mathbf{w}_{0}^{1}), \\ h &= 2: \quad \mathbf{w}_{1}^{2} \doteq \mathbf{w}_{0}^{2} + \alpha \left[G_{0,2}^{\lambda} - \hat{v}(S_{0}, \mathbf{w}_{0}^{2}) \right] \nabla \hat{v}(S_{0}, \mathbf{w}_{0}^{2}), \\ \mathbf{w}_{2}^{2} \doteq \mathbf{w}_{1}^{2} + \alpha \left[G_{1,2}^{\lambda} - \hat{v}(S_{1}, \mathbf{w}_{1}^{2}) \right] \nabla \hat{v}(S_{1}, \mathbf{w}_{1}^{2}), \\ h &= 3: \quad \mathbf{w}_{1}^{3} \doteq \mathbf{w}_{0}^{3} + \alpha \left[G_{0,3}^{\lambda} - \hat{v}(S_{0}, \mathbf{w}_{0}^{3}) \right] \nabla \hat{v}(S_{0}, \mathbf{w}_{0}^{3}), \\ \mathbf{w}_{2}^{2} \doteq \mathbf{w}_{1}^{3} + \alpha \left[G_{1,3}^{\lambda} - \hat{v}(S_{1}, \mathbf{w}_{1}^{3}) \right] \nabla \hat{v}(S_{1}, \mathbf{w}_{1}^{3}), \\ \mathbf{w}_{3}^{3} \doteq \mathbf{w}_{2}^{3} + \alpha \left[G_{2,3}^{\lambda} - \hat{v}(S_{2}, \mathbf{w}_{2}^{3}) \right] \nabla \hat{v}(S_{2}, \mathbf{w}_{2}^{3}). \end{split}$$

• I.e. for each new step $h - 1 \rightarrow h$ repeat $t = 0, \dots, h - 1$:

$$\boldsymbol{w}_{t+1}^{h} = \boldsymbol{w}_{t}^{h} + \alpha \left[G_{t:h}^{\lambda} - \hat{v}(S_{t}, \boldsymbol{w}_{t}^{h}) \right] \nabla \hat{v}(S_{t}, \boldsymbol{w}_{t}^{h})$$

35 DTU Compute

Lecture 12

2 May, 2025

DTU

λ -methods and value-function approximations True online $\mathrm{TD}(\lambda)$

- \bullet Online ${\rm TD}(\lambda)$ is computationally very wasteful
- For linear function approximators online $TD(\lambda)$ allows a backwards view known as True online $TD(\lambda)$

$$w_{t+1} = w_t + \alpha \delta_t z_t + \alpha (w_t^\top x_t - w_{t-1}^\top x_t) (z_t - x_t)$$
$$z_t = \gamma \lambda z_{t-1} + (1 - \alpha \gamma \lambda z_{t-1}^\top x_t) x_t$$

• The control algorithm is **true online** $Sarsa(\lambda)$

λ -methods and value-function approximations True online Sarsa(λ)

True online Sarsa(λ) for estimating $\mathbf{w}^{\top}\mathbf{x} \approx q_{\pi}$ or q_{*} Input: a feature function $\mathbf{x}: S^+ \times A \to \mathbb{R}^d$ such that $\mathbf{x}(terminal, \cdot) = \mathbf{0}$ Input: a policy π (if estimating q_{π}) Algorithm parameters: step size $\alpha > 0$, trace decay rate $\lambda \in [0, 1]$ Initialize: $\mathbf{w} \in \mathbb{R}^d$ (e.g., $\mathbf{w} = \mathbf{0}$) Loop for each episode: Initialize SChoose $A \sim \pi(\cdot | S)$ or near greedily from S using **w** $\mathbf{x} \leftarrow \mathbf{x}(S, A)$ $\mathbf{z} \leftarrow \mathbf{0}$ $Q_{old} \leftarrow 0$ Loop for each step of episode: Take action A, observe R, S'Choose $A' \sim \pi(\cdot | S')$ or near greedily from S' using **w** $\mathbf{x}' \leftarrow \mathbf{x}(S', A')$ $O \leftarrow \mathbf{w}^{\top} \mathbf{x}$ $Q' \leftarrow \mathbf{w}^\top \mathbf{x}'$ $\delta \leftarrow R + \gamma Q' - Q$ $\mathbf{z} \leftarrow \gamma \lambda \mathbf{z} + (1 - \alpha \gamma \lambda \mathbf{z}^\top \mathbf{x}) \mathbf{x}$ $\mathbf{w} \leftarrow \mathbf{w} + \alpha (\delta + Q - Q_{old}) \mathbf{z} - \alpha (Q - Q_{old}) \mathbf{x}$ $Q_{old} \leftarrow Q'$ $\mathbf{x} \leftarrow \mathbf{x}'$ $A \leftarrow A'$ until S' is terminal

 v_{D} will implement this during the exercises)

$\lambda\text{-methods}$ and value-function approximations Mountaincar example

Comparison of $\mathrm{Sarsa}(\lambda)$ and Sarsa on the Mountaincar example

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second edition, 2018. (Freely available online).

Appendix: Appendix

Appendix: A more challenging pacman environment

Appendix: A more challenging pacman environment

