02465: Introduction to reinforcement learning and control

Model-Free Control with tabular and linear methods

Tue Herlau

DTU Compute

DTU Compute, Technical University of Denmark (DTU)

Lecture Schedule

Dynamical programming

1 The finite-horizon decision problem 7 February

2 Dynamical Programming 14 February

3 DP reformulations and introduction to Control

21 February

Control

- 4 Discretization and PID control 28 February
- **5** Direct methods and control by

optimization

7 March

- 6 Linear-quadratic problems in control
- Linearization and iterative LQR

21 March

Syllabus: https://02465material.pages.compute.dtu.dk/02465public Help improve lecture by giving feedback on DTU learn

Reinforcement learning

- 8 Exploration and Bandits 28 March
- Bellmans equations and exact planning 4 April
- Monte-carlo methods and TD learning ^{11 April}
- Model-Free Control with tabular and linear methods

25 April

Eligibility traces

2 May

Beep-Q learning

9 May

Reading material:

• [SB18, Chapter 6.4-6.5; 7-7.2; 9-9.3; 10.1]

Learning Objectives

- Sarsa on-policy learning
- Q off-policy learning
- the n-step return
- value-function approximations and linear methods

Recap: First-Visit Monte-Carlo value estimation

We want to calculate the value function $v_{\pi}(s) = \mathbb{E}[G_t|S_t = s]$. Simulate an episode of experience $s_0, a_0, r_1, s_1, a_1, r_2, \dots, r_T$ using π

- First step t we visit a state s
- Measure return $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$ for rest of the episode
- Estimate value function as $v_{\pi}(s_t) = \mathbb{E}[G_t|S_t = s] \approx \frac{1}{n} \sum_{i=1}^n G_t^{(n)}$

• The average can be computed incrementally:

$$V(s) \leftarrow V(s) + \frac{1}{n}(G_t - V(s))$$

• We use a fixed learning rate α

$$V(s) \leftarrow V(s) + \alpha(G_t - V(s))$$

4 DTU Compute

Lecture 11 25 April, 2025

Dynamical Programming

Bellman equation	Learning algorithm	
Bellman expectation equation for v_{π} $v_{\pi}(s) = \mathbb{E}_{\pi} \left[R + \gamma v_{\pi} \left(S' \right) s \right]$	Iterative policy evaluation to learn v_{π} $V(s) \leftarrow \mathbb{E}_{\pi} [R + \gamma V(S') s]$	
Bellman expectation equation for q_{π} $q_{\pi}(s,a) = \mathbb{E}_{\pi} \left[R + \gamma q_{\pi} \left(S', A' \right) s, a \right]$	Iterative policy evaluation to learn q_{π} $Q(s, a) \leftarrow \mathbb{E}_{\pi} \left[R + \gamma Q \left(S', A' \right) s, a \right]$	$r^{s,a}_{\pi^{s'}a'}$

Policy iteration: Use policy evaluation to estimate v_{π} or q_{π}

Improve by acting greedily: $\pi'(s) \leftarrow \arg \max_a q_{\pi}(s, a)$

Bellman optimality equation for v_* $v_*(s) = \max_a \mathbb{E} \left[R + \gamma v_*(S') s, a \right]$	Value iteration $V(s) \leftarrow \max_{a} \mathbb{E} \left[R + \gamma V(S') s, a \right]$	so max r a o os'o
Bellman optimality equation for q_* $q_*(s, a) = \mathbb{E} \left[R + \gamma \max_{a'} q_*(S', a') s, a \right]$	$Q -value iteration$ $Q(s, a) \leftarrow \mathbb{E} \left[R + \gamma \max_{a'} Q(S', a') s, a \right]$	s, a r s' a'

Sarsa control TD and MC value estimation

- Recall $v_{\pi}(s) = \mathbb{E}[G_t | S_t = s]$
- MC learning: G_t estimate of $v_{\pi}(s)$; update:

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\mathbf{G_t} - V(S_t) \right)$$

• Bellman equation:

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma V(S_{t+1})|S_t = s]$$

• TD learning: $R_{t+1} + \gamma V(S_{t+1})$ is also an estimate of $v_{\pi}(s)$; update:

$$V(S_{t}) \leftarrow V(S_{t}) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_{t}) \right)$$

- TD learning has several advantages
 - Lower variance
 - Don't have to wait for episode to finish
- Natural idea: Apply TD to Q(s, a)
 - Still ε-greedy policy improvement
 - \bullet Update Q estimates at each time step

Sarsa control Sarsa estimation of action-value function

- Bellman equation:
 - $q_{\pi}(s,a) = \mathbb{E}\left[R_{t+1} + \gamma q_{\pi}\left(S_{t+1}, A_{t+1}\right)|S_{t} = s, A_{t} = a\right]$
- Implies $R_{t+1} + \gamma q_{\pi} \left(S_{t+1}, A_{t+1} \right)$ is an estimate of $q_{\pi}(s, a)$
- Implies the update equation

 $Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q \left(S', A' \right) - Q(S,A) \right)$

• We use bootstrapping (i.e. biased estimate)

DTU

S,A

Sarsa control Sarsa control

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

```
Algorithm parameters: step size \alpha \in (0, 1], small \varepsilon > 0

Initialize Q(s, a), for all s \in S^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)

Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]

S \leftarrow S'; A \leftarrow A';

until S is terminal
```


Convergence of Sarsa

Sarsa converge to optimal action-value function $Q \rightarrow q_{\ast}$ assuming

- GLIE sequence of policies (decreasing but non-trivial exploration)
- Robbins-Monro sequence of step-sizes α_t

$$\sum_{t=1}^{\infty} \alpha_t = \infty, \quad \sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

Q-learning Using the Bellman optimality equation

• Bellman equation:

$$q_*(s,a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} q_* (S_{t+1}, a') | S_t = s, A_t = a\right]$$

- Implies $R_{t+1} + \gamma \max_{a'} q_* \left(S_{t+1}, a'\right)$ is a Monte-Carlo estimate of $q_*(s, a)$
- Implied update equation

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma \max_{a'} Q\left(S', a'\right) - Q(S, A) \right)$$

• Note we use bootstrapping (i.e. biased estimate)

Q-learning Q-learning is off-policy

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma \max_{a'} Q\left(S', a'\right) - Q(S, A) \right)$$

- The **behavior policy** determines which S_t, A_t are visited
- The environment determines what happens next (S')
- The Q-values are updated without reference to the behavior policy
- Q-learning is therefore **off-policy**

Q-learning Q-learning

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Algorithm parameters: step size \alpha \in (0, 1], small \varepsilon > 0

Initialize Q(s, a), for all s \in S^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Take action A, observe R, S'

Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]

S \leftarrow S'

until S is terminal
```


- a. The first step in training a $Q\mbox{-learning}$ agent is to compute the set of all states the agent can be in
- b. The Q-table Q(s,a) in Q-learning is a measure of the reward the agent will obtain in the very next step multiplied by γ
- **c.** $Q\text{-learning still works if we initialize the <math display="inline">Q\text{-table to }-1\text{, i.e. }Q(s,a)=-1$ for all $s\in\mathcal{S}$
- **d.** When Q-learning is applied to a deterministic environment, the agent will follow a deterministic policy
- e. Don't know.

Convergence of *Q*-learning

 $Q\text{-}\mathsf{learning}$ converge to optimal action-value function $Q\to q_*$ assuming

- All s, a pairs visited infinitely often
- Robbins-Monro sequence of step-sizes α_t

$$\sum_{t=1}^{\infty} \alpha_t = \infty, \quad \sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

Q-learning Comparing *Q*-learning and SARSA

- Reward -100 if we fall
- Reward -1 per step
- Both use ε -greedy exploration

Q-learning Algorithms so far

Bellman equation	Learning algorithm TD Learning $V(S) \stackrel{\alpha}{\leftarrow} R + \gamma V(S')$	
Bellman expectation equation for v_{π} $v_{\pi}(s) = \mathbb{E}_{\pi} \left[R + \gamma v_{\pi} \left(S' \right) s \right]$	Iterative policy evaluation to learn v_{π} $V(s) \leftarrow \mathbb{E}_{\pi} [R + \gamma V(S') s]$	
Bellman expectation equation for q_{π}	Iterative policy evaluation to learn q_{π}	
$q_{\pi}(s,a) = \mathbb{E}_{\pi} \left[R + \gamma q_{\pi} \left(S', A' \right) s, a \right]$	$Q(s,a) \leftarrow \mathbb{E}_{\pi} \left[R + \gamma Q \left(S' \right]^{-1} \right]$	
Policy iteration : Use policy evaluation to estimate v_{π} or q_{π} $Q(S, A) \stackrel{\alpha}{\leftarrow} R + \gamma Q(S', A')$		
Improve by acting greedily: $\pi'(s) \leftarrow rg \max_a q_\pi(s,a)$		
Bellman optimality equation for v_* $v_*(s) = \max_a \mathbb{E} \left[R + \gamma v_*(S') s, a \right]$	Value iterationSo max $V(s) \leftarrow \max_a \mathbb{E}[R + \gamma V(S') s, a]$ $r a > r a $	
Bellman optimality equation for q_*	<i>Q</i> -value iteration r, s , a , r , s'	
$q_{*}(s, a) = \mathbb{E} \left[R + \gamma \max_{a'} q_{*}(S', a') s, a \right]$ $where \ x \stackrel{\alpha}{\leftarrow} y \equiv x \leftarrow$ 16 DTU Compute	Q-Leanning	

n-step backups From two weeks ago: DP backups

n-step backups Last week: MC backups

n-step backups Last week: TD backups

- **Bootstrapping**: Update involves an estimate (e.g. V)
 - TD and DP bootstraps
 - MC does not bootstrap
- Sampling: Update involves a sample estimate of an expectation
 - MC and TD sample
 - DP does not sample

Let's combine methods and avoid either/or choices

n-step backups n-step predictions

n-step backups *n*-step return

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n G_{t+n} | s]$$

= $\mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \mathbb{E}[\gamma^n G_{t+n} | S_{t+n}] | S_t = s]$
= $\mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n v_{\pi}(S_{t+n}) | S_t = s]$

Therefore, the *n*-step return is an estimate of $V(S_t)$

$$G_{t:t+n} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

• This gives *n*-step temporal difference update:

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\mathbf{G}_{t:t+n} - V(S_t) \right)$$

n-step backups *n*-step TD: Implementation details

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+1} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$
$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(n)} - V(S_t) \right)$$

• We cannot compute ${\cal G}_t^{(n)}$ until we have the n next steps episodes

- Maintain buffer of size n
- \bullet At end of episode, we are still missing n-1 updates
 - Do a for-loop and perform missing updates

n-step backups *n*-step Sarsa

Recall the decomposition:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n G_{t+n}$$

• As before:

$$q_{\pi}(s,a) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1}R_{t+n} + \gamma^n G_{t+n}|S_t = s, A_t = a]$$

= $\mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1}R_{t+n} + \gamma^n q_{\pi}(S_{t+n}, A_{t+n})|S_t = s, A_t = a]$

• Therefore, the following *n*-step action-value return is an unbiased estimate of q_{π}

$$q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n q_\pi \left(S_{t+n}, A_{t+n} \right)$$

• Suggest the following bootstrap update of the action-value function

$$Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right) + \alpha\left(q_{t}^{\left(n\right)} - Q\left(S_{t}, A_{t}\right)\right)$$

Lecture 11 25 April, 2025

DTU

Value-function approximations Scaling up reinforcement learning

We want to apply RL to large problems

- Chess: $> 10^{40}$ states
- Go: $> 10^{170}$ states
- Robot arm: continuous state space
- Example: Mountain-Car position, velocity. Discrete actions

$$oldsymbol{s} = \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \in \mathbb{R}^2$$

DTU

Value-function approximations Value Function Approximation

- \bullet We have used loopup table representation (stored Q(s,a) as a big table)
 - \bullet Every state s has an entry V(s) or
 - Every state-action pair s,a has an entry Q(s,a)
- Issues with lookup tables
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
- Idea:
 - Estimate value function or state-action value with function approximation

$$\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$$

$$\hat{q}(s, a, \mathbf{w}) \approx q_{\pi}(s, a)$$

• Generalize from seen states to unseen states

Value-function approximations Feature Vectors and linear representations

• Represent value function by a linear combination of features

$$\hat{v}(s, \mathbf{w}) = \mathbf{x}(s)^{\top} \mathbf{w}, \quad \mathbf{w} \in \mathbb{R}^d$$

Where **feature vector** is defined as:

$$\mathbf{x}(s) = \begin{bmatrix} \mathbf{x}_1(s) \\ \vdots \\ \mathbf{x}_d(s) \end{bmatrix}$$

• The gradient is simply:

$$\nabla \hat{v}(s, \mathbf{w}) = \mathbf{x}(s)$$

 \bullet For Q-values we only need to change the feature vector:

$$\hat{q}(s, a, \boldsymbol{w}) = \boldsymbol{x}(s, a)^{\top} \boldsymbol{w}$$

Value-function approximations Example: Mountain-car

Ъ

-

- Mountain-car has two actions a = 0, 1 (left, right); the reward is $R_t = -1$.
- The state is two-dimensional $s = (position, velocity) = (s_1, s_2)$

• Naive example 1:
$$\boldsymbol{x}(s) = \begin{bmatrix} s_1 \\ s_2 \end{bmatrix}$$
. Naive example 2: $\boldsymbol{x}(s) = \begin{bmatrix} s_1 \\ s_2 \\ \sin(s_1)\cos(s_2) \\ \vdots \end{bmatrix}$

 \bullet How about $\boldsymbol{x}(s,a)?$ Idea: Re-use $\boldsymbol{x}(s)$ by zero-padding:

$$\begin{split} \boldsymbol{x}(s, a = 0)^\top &= [\underbrace{0, 0, 0, 0, 0, \dots, 0}_{\text{pad with } |\boldsymbol{x}(s)| \text{ zeros}}, \ \boldsymbol{x}(s)^\top] \\ \boldsymbol{x}(s, a = 1)^\top &= [\boldsymbol{x}(s)^\top, \quad \underbrace{0, 0, 0, 0, 0, \dots, 0}_{\text{pad with } |\boldsymbol{x}(s)| \text{ zeros}}] \end{split}$$

Value-function approximations Details: Tile coding

- Divide each dimension of s into a number of tiles n_T
- Translate tiles in fraction of tile width to get overlap

• \boldsymbol{x} has now n_T non-zero elements corresponding to the number of active tiles

lecture_11_mountaincar_random_weights.py

DTU

Value-function approximations Recall from 02450: Gradient Descent

- \bullet Let $E(\mathbf{w})$ be a differentiable function of parameter vector \mathbf{w}
- The gradient of $E(\mathbf{w})$ is

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \begin{bmatrix} \frac{\partial E(\mathbf{w})}{\partial w_1} \\ \vdots \\ \frac{\partial E(\mathbf{w})}{\partial w_n} \end{bmatrix}$$

• Adjust w in direction of negative gradient to find a local minimum of $E(\mathbf{w})$

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla_{\mathbf{w}} E(\mathbf{w})$$

with step-size parameter α (learning rate)

• Consider TD learning which implements Bellman equation:

$$v_{\pi}(s) = \mathbb{E}[R + \gamma v(S')|s]$$

• Standard TD update

$$V(s) \leftarrow V(s) + \alpha(r + \gamma V(s') - V(s))$$

• Easy to plug in $\hat{v}(s, w)$ instead of V(s) on right-hand side

$$\hat{v}(s, \boldsymbol{w}) \leftarrow \hat{v}(s, \boldsymbol{w}) + \alpha(r + \gamma \hat{v}(s', \boldsymbol{w}) - \hat{v}(s, \boldsymbol{w}))$$

• ..but how do we update w on the left-hand side so $\hat{v}(s, \pmb{w})$ agrees with r.h.s.?

Value-function approximations

Take a step back: What do we want to do?

- No function approximators: $v(s) = \mathbb{E}[R + \gamma v(S')|s]$
- With function approximators: Find $oldsymbol{w}$ so that:

$$\hat{v}(s, \boldsymbol{w}) = \mathbb{E}[R + \gamma v(S')|s]$$

• Find w so that:

$$\boldsymbol{w} = \operatorname*{arg\,min}_{\boldsymbol{w}} \frac{1}{2} \big(\hat{v}(s, \boldsymbol{w}) - \mathbb{E}[\boldsymbol{R} + \gamma v(\boldsymbol{S}')|s] \big)^2$$

• Find w using gradient descent:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha \nabla_{\boldsymbol{w}} \frac{1}{2} \big(\hat{v}(s, \boldsymbol{w}) - \mathbb{E}[R + \gamma \boldsymbol{v}(S')|s] \big)^2$$

= $\boldsymbol{w} + \alpha \big(\hat{v}(s, \boldsymbol{w}) - \underbrace{\mathbb{E}[R + \gamma \boldsymbol{v}(S')|s]}_{\approx \frac{1}{B} \sum_{n=1}^{B} r^{(n)} + \boldsymbol{v}(s'^{(n)})} \big) \nabla \hat{v}(s, \boldsymbol{w})$

• Use a sample-size of B = 1 to compute the average

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha \big(\hat{v}(s, \boldsymbol{w}) - \boldsymbol{r} + \gamma \boldsymbol{v}(s') \big) \nabla \hat{v}(s, \boldsymbol{w})$$

32 DTU Compute

Lecture 11 25 April, 2025

DTU

Value-function approximations Summary

- Given $f(x) = \mathbb{E}_{z}[g(x, z)]$ and approximation-function $\hat{f}(x, w)$
- To find \boldsymbol{w} such that $\hat{f}(x, \boldsymbol{w}) \approx f(x)$ iterate:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha \left(\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{z}) - \hat{f}(\boldsymbol{x}, \boldsymbol{w}) \right) \nabla \hat{f}(\boldsymbol{x}, \boldsymbol{w})$$

• TD learning: $V(s) = \mathbb{E}[R + \gamma V(S')|s]$ and $\hat{v}(s, w) \approx v(s)$

$$V(s) \leftarrow V(s) + \alpha(r + \gamma V(s') - V(s))$$
$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha \left(r + \gamma \hat{v}(s', \boldsymbol{w}) - \hat{v}(s, \boldsymbol{w})\right) \nabla \hat{v}(s, \boldsymbol{w})$$

• Sarsa learning: $q(s,s) = \mathbb{E}[R + \gamma q(S', A')|s, a]$ and $\hat{q}(s, a, w) \approx q(s, a)$ $q(s, a) \leftarrow q(s, a) + \alpha (r + \gamma q(s', a') - q(s, a))$ $w \leftarrow w + \alpha (r + \gamma \hat{q}(s', a', w) - \hat{q}(s, a, w)) \nabla \hat{q}(s, a, w)$

• Q-learning: $q(s,s) = \mathbb{E}[R + \gamma \max_{a'} q(S',a')|s,a]$ and $\hat{q}(s,a,w) \approx q(s,a)$ $q(s,a) \leftarrow q(s,a) + \alpha(r + \gamma \max_{a'} q(s',a') - q(s,a))$ $w \leftarrow w \qquad + \alpha \left(r + \gamma \max_{a'} \hat{q}(s',a',w) - \hat{q}(s,a,w)\right) \nabla \hat{q}(s,a,w)$

• Remember that $\nabla \hat{q}(s,a,{\bm w}) = {\bm x}(s,a)$ and $\nabla v(s,{\bm w}) = {\bm x}(s)$

33 DTU Compute

Value-function approximations Linear Sarsa with tile coding in mountain car

DTU

- Sarsa with linear tile-encoding ($|{m x}(s)| pprox 2000)$
- We plot $\max_a \hat{q}(s,a; m{w})$; 🕶 lecture_11_mountaincar_feature_space.py

Which of the following statements is true about reinforcement learning and linear function approximators?

- **a.** Linear function approximators can only be used with continuous state spaces and not with discrete spaces.
- **b.** Linear function approximators provide a way to generalize from known states to unknown states, which can be useful in tabular reinforcement learning situations with large state spaces.
- **c.** Linear function approximators in SARSA or Q-learning requires that we store all state-action pairs.
- d. When using linear function approximators the policy will be deterministic
- e. Don't know.

Value-function approximations Implementing this

1	# semi_grad_q.py
2	class LinearSemiGradQAgent(QAgent):
3	<pre>definit(self, env, gamma=1.0, alpha=0.5, epsilon=0.1, q_encoder=None):</pre>
4	""" The Q-values, as implemented using a function approximator, can now be accessed as follows:
5	
6	>> self.Q(s,a) # Compute q-value
7	>> self. $Q.x(s,a)$ # Compute gradient of the above expression wrt. w
8	>> self.Q.w # get weight-vector.
9	
10	I would recommend inserting a breakpoint and investigating the above expressions yourself;
11	you can of course al check the class LinearQEncoder if you want to see how it is done in practice.
12	"""
13	<pre>super()init(env, gamma, epsilon=epsilon, alpha=alpha)</pre>
14	<pre>self.Q = LinearQEncoder(env, tilings=8) if q_encoder is None else q_encoder</pre>

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second edition, 2018. (Freely available online).

Appendix Approximation: The big picture

- Suppose f is a real-valued function $f: \mathcal{X} \mapsto \mathbb{R}$ which happens to be defined using an expectation:

$$f(x) = \mathbb{E}_{z} \left[g(x, z) \right] = \int p(z|x)g(x, z)dz$$

- Assume that $\hat{f}(x, \boldsymbol{w})$ is a neural network we want to use to approximate f with
- Problem: How do we find \boldsymbol{w} such that $\hat{f}(x, \boldsymbol{w}) \approx f(x)$?
- Idea: Select w to minimize

$$\boldsymbol{w}^* = \operatorname*{arg\,min}_{\boldsymbol{w}} \mathbb{E}_x \left[\left[\hat{f}(x, \boldsymbol{w}) - f(x) \right]^2 \right]$$
(1)

• Solve this using gradient descent:

$$w \leftarrow w - \alpha \nabla \left(\mathbb{E} \left[f(x) - \hat{f}(x, \boldsymbol{w}) \right]^2 \right)$$
 (2)

Appendix Evaluating the gradient

$$\nabla \left(\mathbb{E} \left[\hat{f}(x, \boldsymbol{w}) - f(x) \right]^2 \right) = \mathbb{E} \left[\nabla \left(\hat{f}(x, \boldsymbol{w}) - f(x) \right)^2 \right]$$
$$= 2\mathbb{E} \left[\left(\hat{f}(x, \boldsymbol{w}) - f(x) \right) \nabla \hat{f}(x, \boldsymbol{w}) \right]$$
$$= 2\mathbb{E} \left[\left(\hat{f}(x, \boldsymbol{w}) - \mathbb{E}_{\boldsymbol{z}}[\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{z})] \right) \nabla \hat{f}(x, \boldsymbol{w}) \right]$$

Implication: Given samples $x \sim p$ and $z \sim p(z|x)$ then

$$2\left(\hat{f}(x, \boldsymbol{w}) - g(x, \boldsymbol{z})\right) \nabla \hat{f}(x, \boldsymbol{w})$$

is an unbiased estimate of the gradient

Stochastic gradient descent

Given minimization problem $\arg\min F(w)$ and (technical conditions!) then

$$\boldsymbol{w}_{t+1} \leftarrow \boldsymbol{w}_t - \alpha_t \hat{g}(\boldsymbol{w}_t)$$

converge to w^* provided $\hat{g}(w)$ is an **unbiased estimate** of the gradient $\nabla F(w)$