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02465: Introduction to reinforcement learning and control

Monte-carlo methods and TD learning
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Lecture Schedule

Dynamical programming
@ The finite-horizon decision problem
7 February
@® Dynamical Programming
14 February
© DP reformulations and introduction to
Control
21 February
Control
@ Discretization and PID control
28 February
@ Direct methods and control by
optimization
7 March
@ Linear-quadratic problems in control
14 March

@ Linearization and iterative LQR
21 March
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Reinforcement learning

@ Exploration and Bandits
28 March

@ Bellmans equations and exact planning
4 April

i Monte-carlo methods and TD
learning
11 April

@® Model-Free Control with tabular and
linear methods

25 April

@ Eligibility traces
2 May

® Deep-Q learning
9 May

Syllabus: https://02465material . pages. compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn
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Reading material:
¢ [SB18, Chapter 5-5.445.10; 6-6.3]

Learning Objectives
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® Monte-Carlo rollouts to estimate the value function
® Monte-carlo rollouts for control

® Temporal difference learning
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Housekeeping
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® DTU Course survey is online; remember to give your TAs feedback

® Remember that concrete feedback is easier to act on

® This week the theoretical exercise is a bit longer because MC methods are less
nice to implement (but try the TD(0) problem)
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® An estimator can be unbiased and biased
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® A biased estimator is asymptotically consistent if it is unbiased as n — oo:
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Monte-Carlo estimation and control

Observation
Cost
9
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® Model free; requires no knowledge of MDP
® Uses simplest possible idea: State value = mean return

® Limitation: Can only be used on episodic MDPs
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Value and action-value function

The state-value function v, (s) is the expected return starting in s and assuming
actions are selected using :

r(8) =En [Ge|St = 8], A ~ 7(-|St)

The action-value function ¢, (s, a) is the expected return starting in s, taking
action a, and then follow 7:

G (s,a) = E; [Ge| St = s, Ay = a

Gy = Rop1 + YRira + 7 Regy + -+
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Monte Carlo evaluation: ldea

® Recall return defined by
Gy = Ryy1 +YRipo + 7V Roys + -+
® Each rollout by a policy 7, starting in s, is an estimate of
vr(8) =En [Ge|S: = 8], A ~ (-] St)
® Each rollout of 7, starting in s and taking action a, is an estimate

qr(s,a) = E, [Gt|S: = s, A; = a

unf_policy_evaluation_gridworld.py (+ ) mc_value_first_one_state_.py ,
(+ ) mc_value_first_one_state_b.py
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Every-Visit Monte-Carlo value estimation

9 R, R; @ R4
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Simulate an episode of experience sg, ag,r1, S1,01,72,...,TT Using 7

® First step ¢ we visit a state s  Every step ¢ we visit a state s
® Increment number of times s visited N(s) < N(s) + 1
® Increment total return S(s) < S(s) + G

® Value estimate is V(s) = f,((ss)

|

Value estimate converge to v.(s)

¢ Every-visit is biased but consistent (non-trivial)
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First-visit MC prediction, for estimating V ~ v,
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Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € 8
Returns(s) < an empty list, for all s € 8

Loop forever (for each episode):
Generate an episode following 7: So, Ao, R1,S51, A1, Ra,...,Sr—1,Ar—1, Rr
G+ 0
Loop for each step of episode, t =T—1,7-2,...,0:
G <+ vG + Ry
Unless S; appears in Sp, S1,...,S:—1:
Append G to Returns(St)
V(S¢) < average(Returns(St))

(+ ) lecture_09_mc_value_first.py , (+ ) mc_value_every_one_state.py ,
+ lecture_09_mc_value_every.py
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Quiz: A two-state gridworld

R=11-
R:l,pc@ P

Figure: A simple MRP with one non-terminal state s; and one terminal state ss.
With probability p the process stay in s; and with probability 1 — p it jumps to ss,
and in each jump it gets a reward of R; = 1.
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Assume that v = 1 and we evaluate the agent for the episode:

® 51,51, 51, S2 (accumulated reward 3)

What is the estimated return using (1) first visit and (2) every-visit

Monte-Carlo?
a. First-visit: Vfist(g,

(s1)
b. First-visit: Vfist(s)
(s1)
(s1)

c. First-visit: Vfirst(g;

d. First-visit: Vfirst(g;

11 DTU Compute

e (s1)
(s1)
every-visit: V&Y (sq)
(s1)

very-visit: V€Y (s,

every-visit: Vevery

S1
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every-visit: VY (s
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Incremental mean

Recall from the bandit-lecture that:
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Incremental updates
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First-visit MC prediction, for estimating V ~ v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € 8
Returns(s) < an empty list, for all s € 8

Loop forever (for each episode):
Generate an episode following 7: So, Ao, R1,S1, A1, Ra,...,Sr—1,Ar—1, Rr
G+ 0
Loop for each step of episode, t =T—1,7—-2,...,0:
G+ YG + R4
Unless S; appears in So, S1,...,Si—1:
Append G to Returns(St)
V(S:) « average(Returns(St))

®* No a: Update N(s) < N(s)+1, S(s) < S(s)+ G and estimate V (s) = S(s)
® With a: V(s) « V(s) +a(G —V(s))
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TD(0) value-function estimation
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Bellman equation

® Recursive decomposition of value function

U (s) = E[Riy1 +yvr (Sey1) |St = 5]

® Observation: By the MC principle Ri11 + yvr (S¢+1) is an estimate of v, (s)
® The estimate of v involves v. This is known as bootstrapping.

® TD(0) uses bootstrapping
® Monte-Carlo does not use bootstrapping

14 DTU Compute Lecture 10 11 April, 2025



TD(0)
® MC learning: G} estimate of v,(s); update:
\%4 (St) «~V (St) + « (Gt -V (St))

e 0 O—e—0

O—e

® TD learning: Rii1 + Yr (Sty1) estimate of v, (s); update:
V(St) <V (St) + o (Riyr + 9V (Si41) =V (Sh))
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Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size a € (0, 1]
Initialize V (s), for all s € 8, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
A <+ action given by 7 for S
Take action A, observe R, S’
V(S) «+ V(S)+a[R+~V(S) - V(9)]
S« S

until S is terminal

\

O

(+ )
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Comparisons

® TD can learn online

® TD can learn after each step
® MC must wait until the end of episode to learn

® TD can learn without knowing the final outcome

® TD can learn from incomplete sequences
® MC requires complete sequences

® TD works in non-episodic environments

® TD work in non-terminating environments
® MC only works in episodic environments
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Bias variance tradeof
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® Return Gy = Ry 1 +YRii2 + ...+ 7T 'Ry is an unbiased estimate of v, (S;)

® True TD target Riy1 + Yur (Si41) is an unbiased estimate of v, (S;)
® Actual TD target Ryy1 + YV (Si41) is a biased estimate of of v, (.S;)
® TD target has lower variance than the return-target G;:

® Return is a sum over rewards involving many steps
® TD target only depend on one action, transition, reward triplet
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Bias variance tradeof continued

® (first-visit) MC has high variance, no bias

® Good convergence properties

® (..even with function approximators)

® Not very sensitive to initial value of V'

® Simple to use/understand (a bit annoying to implement)

® TD has low variance, some bias

® Usually more efficient to learn than MC
® Asymptotically consistent
® (but not always with function approximators)

® More sensitive to initial value (bootstrapping)
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MCvs. TD

® TD exploits Markov property
® Usually more efficient in Markov environments
® MC does not exploit Markov property:

® Usually more efficient in non-Markovian environments

19 DTU Compute Lecture 10

=
—
=

M

11 April, 2025



How to turn value-function iteration to controller

starting
Var

® Given initial policy m

® Compute v, using policy evaluation
® Let 7’ be greedy policy vrt. v,

® Repeat until v, = v,

W uns _policy_improvement_gridworld.py
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Two problems

M

® Problem: We need a model to do policy improvement

7' (s) = argmax E[R + vV (S')]s, d]

® Solution: Estimate/save ¢ (s,a) instead of v, (s):
7'(s) = argmax, Q(s,a)

® Problem: Acting greedily means all ¢(s, a)-values are not estimated by MC
® Solution: Be e-greedy in 7

e/m+1—e if a* =argmaxQ(s,a)

m(als) = a€A
e/m otherwise
21 DTU Compute Lecture 10 11 April, 2025



First-Visit Monte-Carlo value estimation

GG, RS,
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Simulate an episode of experience sg, ag,r1, S1,01,72,-..,TT Using 7

® First step ¢ we visit a state s
® Increment number of times s visited N(s) < N(s) + 1
® Increment total return S(s) < S(s) + G

® Value estimate is V(s) = f,((‘?)

Value estimate converge to v, (s) = E[G}|S; = 5]

(+ ) lecture_10_mc_action_value_first_one_state.py
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First-Visit Monte-Carlo action-value estimation

(49 (4
GG, RS,

Simulate an episode of experience sg, ag,r1, S1,01,72,-..,TT Using 7

® First step ¢ we visit a pair (s,a)
® Increment number of times s visited N(s,a) < N(s,a) +1
® Increment total return S(s,a) < S(s,a) + Gy

® Action-value estimate is Q(s,a) = }?/((SS(Z))

Action-value estimate converge to ¢.(s,a) = E[G¢|S; = s, Ar = d]
(+ ) lecture_10_mc_q_estimation.py (first—visit)
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Quiz: Control and incremental updates

=
—
=

M

A first-visit Monte-Carlo agent (with incremental updates) is trained for one

episode (terminal reward of +1). What was the discount factor ~y?

a.v=0.5
b.y=0.4
c.vy=0.6
d.~vy=03

e. Don't know.
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quiz2

Convergence result

Policy improvement, c-greedy version
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For any e-greedy policy 7, the e-greedy policy 7’ with respect to g, is an
improvement: v,/ (s) > v (s).
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Monte-Carlo control

Starting Q QT
ks Ik

Repeat for every episode
® Policy evaluation: Monte-Carlo policy evaluation to approximate ¢, ~ @

® Policy improvement: e-greedy policy improvement on )
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Implementation
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® To implement this, store ()-values in self.Q[s,al in the TabularAgent class

® Note we already have implemented the epsilon-greedy exploration method
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MC control
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Initialize:
7 4— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)

Repeat forever (for each episode):

G+ 0
GG+ Ry

Append G to Returns(St, At)

Q(St, Ay) <+ average(Returns(Si, At))
A* + argmax, Q(St, a)

For all a € A(S;):

On-policy first-visit MIC control (for e-soft policies), estimates 7 ~ .

Returns(s,a) < empty list, for all s € 8, a € A(s)

Generate an episode following 7: Sy, Ao, R1,...,57-1,Ar_1, Ry

Loop for each step of episode, t = T—1,T7-2,...,0:

Unless the pair S, A; appears in Sy, Ag, S1, A1 ...,5t-1,As—1

(with ties broken arbitrarily)

1—e+¢e/|A(Sy)| ifa=A*
w(els) < { Lk if 0 # A"

lecture_10_mc_control.py (6 = 015, Y= 09)
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Greedy in the limit with infinite exploration

Greedy in limit of infinite exploration (GLIE)
GLIE means that

® All state-action pairs are explored infinitely often

lim Ng(s,a) = o0
k—o0

® The exploration rate € decays to zero

lim 7i(a=a*|s) =1, a* =argmaxQy (s,a’)
k—ro00 a

® One way to ensure GLIE is letting e, = %

® Assuming GLIE then MC control will converge to the optimal policy.
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[ Richard S. Sutton and Andrew G. Barto.

Reinforcement Learning: An Introduction.

The MIT Press, second edition, 2018.
(Freely available online).
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