=
=
=

n

02465: Introduction to reinforcement learning and control

Monte-carlo methods and TD learning

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)

)(_\u.\):i (i{\)}”‘(«\)

i!

DTU Compute
Depart t of Applied Mathematics and Computer Science

=
=
=

n

Lecture Schedule

Dynamical programming Reinforcement learning
@ The finite-horizon decision problem @ Exploration and Bandits
7 February 28 March
@ Dynamical Programming @ Bellmans equations and exact planning
14 February 4 April
© DP reformulations and introduction to @ Monte-carlo methods and TD
Control learning
21 February 11 April
Control @® Model-Free Control with tabular and
@ Discretization and PID control linear methods
28 February 25 April
@ Direct methods and control by ® Eligibility traces
optimization 2 May .
7 March ® Deep-Q learning
@ Linear-quadratic problems in control 9 May

14 March
@ Linearization and iterative LQR

21 March
Syllabus: https://02465material .pages.compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn

=]
=
=

i

Reading material:
® [SB18, Chapter 5-5.4+5.10; 6-6.3]

Learning Objectives

® Monte-Carlo rollouts to estimate the value function
® Monte-carlo rollouts for control

® Temporal difference learning

2 DTU Compute Lecture 10 11 April, 2025
DU
. -
Housekeeping =

® DTU Course survey is online; remember to give your TAs feedback
® Remember that concrete feedback is easier to act on

® This week the theoretical exercise is a bit longer because MC methods are less
nice to implement (but try the TD(0) problem)

4 DTU Compute Lecture 10 11 April, 2025

3 DTU Compute Lecture 10 11 April, 2025
Bias/Variance high bias low variance High bias high variance Low bias high variance &

/
® An estimator can be unbiased and biased

1) 1 n
]E[X]Z;Z:L'l=[“. E[X]zmzl
i=1

i=1

® A biased estimator is asymptotically consistent if it is unbiased as n — oc:

n

_ 1 no 1 1
M_n+\/ﬁ; _n+\/ﬁﬁz BTN

i=1 n

5 DTU Compute Lecture 10 11 April, 2025

=]
=
=

i

Monte-Carlo estimation and control

Observation
Cost
/— - O,,/)
The Interpreter Environment %’b
$

The robot

&
S
IS
o
~

Internal statew

W State x

® Model free; requires no knowledge of MDP
® Uses simplest possible idea: State value = mean return

® Limitation: Can only be used on episodic MDPs

6 DTU Compute Lecture 10 11 April, 2025

=
=
=

n

From last time

Value and action-value function

The state-value function v.(s) is the expected return starting in s and assuming
actions are selected using 7:

vr(s) =By [Ge|Sy = 5], Ar ~7(-|Sh)

The action-value function ¢, (s, a) is the expected return starting in s, taking
action a, and then follow 7:

Gr(s,a) = Er [Ge|Sy = s, Ay = a]

Gt = Rey1 +vRio + 7V Ry + -+

DTU

Monte Carlo evaluation: Idea =

® Recall return defined by

Gi = Repr +vRip2 + Y Regs + -+
® Each rollout by a policy 7, starting in s, is an estimate of
vx(s) = Ex [Gi]Sy = 5], Ay ~7(-[S)
® Each rollout of , starting in s and taking action a, is an estimate
qﬂ(sﬂa) =E, [Gr|St, =54 = (l]

[+) unf_policy_evaluation_gridworld.py [+] mc_value_first_one_state_.py ,

[+) mc_value_first_one_state_b.py

8 DTU Compute Lecture 10 11 April, 2025
DTU
>
=
=

on, for estimating |

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € §
Returns(s) < an empty list, for all s € 8

Loop forever (for each episode):
Generate an episode following 7: Sp, Ao, Ry, S1, A1, Ra,
G0
Loop for each step of episode, t = T—1,T-2,..., 0:
G G + R
Unless S, appears in Sy, Si,..., Se—1:
Append G to Returns(St)
V(S:) « average(Returns(S;))

-,87-1,Ar-1, Ry

[+) lecture_09_mc_value_first.py , [+] mc_value_every_one_state.py ,
[+) lecture_09_mc_value_every.py

10 DTU Compute Lecture 10 11 April, 2025

7 DTU Compute Lecture 10 11 April, 2025
DTU
Every-Visit Monte-Carlo value estimation =
Simulate an episode of experience sg, ag, 1, $1,a1,72,...,Tp using T
® First step ¢ we visit a state s Every step ¢ we visit a state s
® Increment number of times s visited N(s) < N(s) + 1
® Increment total return S(s) < S(s) + G
. . _ S(s)
® Value estimate is V(s) = N
Value estimate converge to v, (s)
® Every-visit is biased but consistent (non-trivial)
9 DTU Compute Lecture 10 11 April, 2025
DTU
. . >
Quiz: A two-state gridworld =

R=11-
R:l,pC@ b {52]

Figure: A simple MRP with one non-terminal state s; and one terminal state s,.
With probability p the process stay in s; and with probability 1 — p it jumps to sg,
and in each jump it gets a reward of R, = 1.

Assume that v = 1 and we evaluate the agent for the episode:
® 51,581,581, 82 (accumulated reward 3)

What is the estimated return using (1) first visit and (2) every-visit
Monte-Carlo?

a. First-visit: Vfirst(s;)
b. First-visit: Vfirst(s;)
c. First-visit: V/first(

d. First-visit: Vfirst(s;)

11 DTU Compute Lecture 10 11 April, 2025

every-visit: Ve (s;

every-visit: Vevery

-3, (
= 3, every-visit: VY (s;

s1 1, (
1, (

every-visit: Vever

=]
=
=

i

Incremental mean

Recall from the bandit-lecture that:

Hn =

1 1
= ;-’En + pn—1 — ;Lﬂn—l

1
= fin—1+ n (Tn = pn—1)

12 DTU Compute Lecture 10 11 April, 2025

=
=
=

n

Incremental updates

mating |

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € 8
Returns(s) « an empty list, for all s € §

Loop forever (for each episode):
Generate an episode following 7: So, Ao, R1, 51, A1, Ra, ..., St—1,Ar—1,Rr
G0
Loop for each step of episode, t = T—1,T-2,..., 0:
G + 7G + Rt
Unless S; appears in So, S1,...,Si—1:
Append G to Returns(S:)
V/(S:) < average(Returns(S:))

® No a: Update N(s) «+ N(s)+1, S(s) « S(s)+ G and estimate V(s) = ;‘(‘\’J
® With a: V(s) < V(s) + a(G —V(s))
13 DTU Compute Lecture 10 11 April, 2025

=
=
=

n

TD(0) value-function estimation

Bellman equation

® Recursive decomposition of value function

vz (8) = E[Rey1 4+ 70r (Se41) |Se =]

® Observation: By the MC principle R;y1 + Yvx (Si4+1) is an estimate of v (s)
® The estimate of v involves v. This is known as bootstrapping.

® TD(0) uses bootstrapping
® Monte-Carlo does not use bootstrapping

=]
=
=

TD(0)
® MC learning: G, estimate of v, (s); update:
V(S) < V(S) +a(G =V (Sy))

i

[

® TD learning: R;i1 + Yvx (Si+1) estimate of v, (s); update:
V(St) <V (St) + a(Res1 +9V (Se1) =V (St))

Tabular TD(

Input: the policy 7 to be evaluated
Algorithm parameter: step size a € (0,1]
Initialize V (s), for all s € 8, arbitrarily except that V (terminal) =0
Loop for each episode:
Initialize S
Loop for each step of episode:
A « action given by = for S
Take action A, observe R, S’
V(S) « V(S) + a[R+V(S) - V(S)]

O
until S is terminal

[+]
157 DR EESQ0-td_keyboard.py Lecture 10 11 April, 2025

14 DTU Compute Lecture 10 11 April, 2025
DU
. -
Comparisons =

® TD can learn online

® TD can learn after each step
® MC must wait until the end of episode to learn

® TD can learn without knowing the final outcome

® TD can learn from incomplete sequences
® MC requires complete sequences

® TD works in non-episodic environments

® TD work in non-terminating environments
® MC only works in episodic environments

16 DTU Compute Lecture 10 11 April, 2025

=]
=
=

"

Bias variance tradeof

® Return Gy = Ryy1 + yRis2 + ...+ 7T 'Ry is an unbiased estimate of v (S;)
® True TD target R;i1 + yvx (Si4+1) is an unbiased estimate of v (.S;)

® Actual TD target R;11 + 7V (Si4+1) is a biased estimate of of v, (S;)

® TD target has lower variance than the return-target G:

® Return is a sum over rewards involving many steps
® TD target only depend on one action, transition, reward triplet

17 DTU Compute Lecture 10 11 April, 2025

=]
=
=

i

Bias variance tradeof continued

o (first-visit) MC has high variance, no bias

® Good convergence properties

® (..even with function approximators)

® Not very sensitive to initial value of V'

® Simple to use/understand (a bit annoying to implement)

® TD has low variance, some bias

® Usually more efficient to learn than MC
® Asymptotically consistent

® (but not always with function approximators)
® More sensitive to initial value (bootstrapping)

18 DTU Compute Lecture 10 11 April, 2025

=
=
=

How to turn value-function iteration to controller =
starting v*
V= T*
® Given initial policy m
® Compute v, using policy evaluation
e Let 7’ be greedy policy vrt. v,
® Repeat until v; = v,
@ unt_policy_improvement_gridworld.py
20 DTU Compute Lecture 10 11 April, 2025
DTU
First-Visit Monte-Carlo value estimation =

PAYAYAYAN

VU R, VU Rg VU 4
Simulate an episode of experience sg, ag, 1, $1,a1,72, ..., rp using T
® First step ¢ we visit a state s
® Increment number of times s visited N(s) < N(s) + 1
® Increment total return S(s) < S(s) + G,

® Value estimate is V(s) = ﬁ(“))

Value estimate converge to v.(s) = E[G;|S; = s]

(+) lecture_10_mc_action_value_first_one_state.py

22 DTU Compute Lecture 10 11 April, 2025

DTU
MC vs. TD =
® TD exploits Markov property
® Usually more efficient in Markov environments
® MC does not exploit Markov property:
® Usually more efficient in non-Markovian environments
19 DTU Compute Lecture 10 11 April, 2025
DTU
Two problems =
starting v*
Vo T+
® Problem: We need a model to do policy improvement
7'(s) = argmax E[R + vV (5)]s, a]
a
® Solution: Estimate/save ¢x(s,a) instead of v (s):
w'(s) = argmax, Q(s, a)
® Problem: Acting greedily means all ¢(s,a)-values are not estimated by MC
® Solution: Be e-greedy in 7
e/m+1—e ifa* =argmaxQ(s,a)
m(als) = a€
e/m otherwise)
21 DTU Compute Lecture 10 11 April, 2025
DTU
First-Visit Monte-Carlo action-value estimation =

Simulate an episode of experience sg, ag, 71, $1,@1,72, . . ., rp using T
® First step ¢ we visit a pair (s,a)
® Increment number of times s visited N(s,a) < N(s,a) + 1

® Increment total return S(s,a) < S(s,a) + G,
a
)

® Action-value estimate is Q(s,a) =

N(s,a)

Action-value estimate converge to ¢ (s,a) = E[G|S; = s, A; = d]
@B 1ecture_10_mc_q_estimation.py (first-visit)

23 DTU Compute Lecture 10 11 April, 2025

=]
=
=

i

Quiz: Control and incremental updates

A first-visit Monte-Carlo agent (with incremental updates) is trained for one
episode (terminal reward of +1). What was the discount factor 7?7

a.v=0.5
b.y=04
c.y=0.6
d.y=0.3

e. Don't know.
24 DTU Compute Lecture 10 11 April, 2025

=
=
=

Convergence result

n

Policy improvement, c-greedy version

For any e-greedy policy 7, the e-greedy policy 7’ with respect to ¢, is an
improvement: vz (s) > vx(s).

25 DTU Compute Lecture 10 11 April, 2025
DTU
. -
Implementation =

® To implement this, store (Q-values in self.q[s,a] in the TabularAgent class

® Note we already have implemented the epsilon-greedy exploration method

27 DTU Compute Lecture 10 11 April, 2025

DTU

Monte-Carlo control =

Starting Q
g Qs T

Repeat for every episode

® Policy evaluation: Monte-Carlo policy evaluation to approximate ¢, ~ Q

® Policy improvement: e-greedy policy improvement on Q

26 DTU Compute Lecture 10 11 April, 2025
DTU
>

MC control =

On-policy fi isit MC control (for

Initialize:
7 < an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s,a) < empty list, for all s € 8, a € A(s)

Repeat forever (for each episode):

Generate an episode following 7: Sy, Ao, Ry, ..., Sr—1,Ar_1, Ry
G0
Loop for each step of episode, t = T—-1,T-2,..., 0:

G —1G+ Ry

Unless the pair Sy, A; appears in Sy, Ag, S1, Ay ..., Si—1,Ai—1:
Append G to Returns(S;, A;)
Q(S¢, A;) < average(Returns(Si, Ar))
A* « argmax, Q(S;, a)
For all a € A(S;):

(with ties broken arbitrarily)

1—c+e/lAGS)| ifa=A*
wels) = { s Herd

@ 1ccture_10_mc_control.py (¢ = 0.15, v = 0.9).

28 DTU Compute Lecture 10 11 April, 2025

=]
=
=

"

Greedy in the limit with infinite exploration

Greedy in limit of infinite exploration (GLIE)

GLIE means that

® All state-action pairs are explored infinitely often

lim Ni(s,a) =00
k—o00

® The exploration rate € decays to zero

lim mp(a =a*|s) =1, a" =argmaxQy (s,a’)
k—o0 a

® One way to ensure GLIE is letting &), = Al

® Assuming GLIE then MC control will converge to the optimal policy.

29 DTU Compute Lecture 10 11 April, 2025

=]
=
=

i

[Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.
(Freely available online).

30 DTU Compute Lecture 10 11 April, 2025

