(=]
—
=

M

02465: Introduction to reinforcement learning and control

The finite-horizon decision problem

Tue Herlau

DTU Compute, Technical University of Denmark (DTU)

f(x+Ax):§ (?TX&[‘)(x) 8 ‘

DTU Compute

Department of Applied Mathematics and Computer Science

Lecture Schedule

Dynamical programming
@ The finite-horizon decision problem
7 February
@® Dynamical Programming
14 February
© DP reformulations and introduction to
Control
21 February
Control
@ Discretization and PID control
28 February
@ Direct methods and control by
optimization
7 March
@ Linear-quadratic problems in control
14 March

@ Linearization and iterative LQR
21 March

=
—
=

M

Reinforcement learning

@ Exploration and Bandits
28 March

@ Bellmans equations and exact planning
4 April

@ Monte-carlo methods and TD learning
11 April

@® Model-Free Control with tabular and
linear methods
25 April

® Eligibility traces
2 May

@® Deep-Q learning

9 May

Syllabus: https://02465material . pages. compute.dtu.dk/02465public
Help improve lecture by giving feedback on DTU learn

2 DTU Compute

Lecture 1 7 February, 2025

 https://02465material.pages.compute.dtu.dk/02465public

Reading material:

® [Her25, Chapter 4] Introduction

)
o |
=

M

Learning Objectives

® Introduction and key definitions

® Python and object-oriented programming

3 DTU Compute

Lecture 1

7 February, 2025

Course webpage

02465material.pages.compute.dtu.dk/02465public/index.html

4

LECTURE &
foms| 02465

Sequential Decision-Making

LY X4

Q search cert [+ K

Information
Models and Environments
Exercises

Projects

DTU Compute

Practicalities

Time and place:
DTU Learn:
Exercise code:

Course descriptions:

Discord:

Campus-wide python

support:
Contact:

© Building B341, auditorium 21, 08:00-12:00

A 02465

@ hitps://lab.compute. dtu.dk/02465material/02465students.git

W kurser.dtu.dk

@ Discord channel (invitation link)

@ pythonsupport.dtu.dk

& Tue Herlau, uhe@dtu.dk.

Course schedule

The schedule and reading can be found below. Click on the titles to read the exercise and project descriptions.

#

Date
Jan 26th, 2024
Feb 2nd, 2024
Feb 9th, 2024

Feb 16th, 2024
Feb 23th, 2024
Feb 29th, 2024
Mar 1st, 2024

Mar th, 2024

Mar 15th, 2024

Mar 22th, 2024

Title
Installation and self-test
The finite-horizon decision problem

'Dynamical Programming

DP reformulations and introduction to Control
Discretization and PID control

</> Project 1: Dynamical Programming

Direct methods and control by optimization

Linear

dratic problems in control

Linearization and iterative LOR

‘Exploration and Bandits

Reading
Chapter 1-3 ¥, [Her24]

Chapter 4, [Her24]

Chapter 5-6.2, [Her24]

Section 6.3; Chapter 10-11, [Her24]

Chapter 12-14, [Her24

Chapter 15, [Her24
Chapter 16, [Her24]
Chapter 17, [Her24

Chapter 1; Chapter 2-2.7; 2.9-2.10, [SB18]

:= Contents v

© Note

This page is automatically
updated with typos, etc. |
therefore recommend
bookmarking it and using the
newest version of the
exercises.

Homework Exercise ~ Slides

PDF
L2 [PDF] [16x
12 [eDE] [6
L2 [PDF] [161
12 [eDE] 1] [6x]
1, [PDE] [(6x]
tbd [PDF] [161
tbd [PDF] (14 (64
thd [PDE] 14 [6x]

Lecture 1

e

Z February, 2025

02465material.pages.compute.dtu.dk/02465public/index.html
cweb

=
—
=

Where and what

M

DTU Learn Announcements, assignment hand-ins, quizzes

Course homepage Exercises, projects, slides, documentation, installation,
etc. https:
//02465material . pages.compute.dtu.dk/02465public

Off-hours QA Discord. See link on homepage.

® Exercises

® Building B341, auditorium 21
® Building B341, IT-015
® Building B341, IT-019

® Ask project-related question online so that everyone has the same information
(i.e. not in class)

5 DTU Compute Lecture 1 7 February, 2025

https://02465material.pages.compute.dtu.dk/02465public
https://02465material.pages.compute.dtu.dk/02465public

)
o |
=

Project work

W

® Groups of 1, 2 or 3 students

Part 1 Dynamical programming (available now)
Part 2 Control
Part 3 Reinforcement Learning

® The projects are subject to DTUs rules of collaboration/Code of Conduct

® This includes the individual programming in Part 3.

6 DTU Compute Lecture 1 7 February, 2025

exam1

)
o |
=

M

Exam

® The 4-hour written exam will contain:

® Multiple-choice questions
® Written-answer questions
® Programming questions

® Your evaluation is an overall assessment based on the written exam and project
work

® The project work is 20%.

N.b. the exam is planned to be in English and not Danish. You can request
that | change the language to Danish. | don’t think this is to anyones
advantage since many terms don’t have a good Danish equivalent, however,
it is up to you. If you wish that the exam is translated please contact me

before week 6 of the course.
7 DTU Compute Lecture 1 7 February, 2025

exam2

Creating handins

See ’'Lecture 0’
on the homepage

® Tests are available locally for debugging

® A grade script generate a handin

® Example usage:

® python -m irlc.project0.fruit_project_grade
® Hand in your code/scores by uploading the .token file

8 DTU Compute Lecture 1 7 February, 2025

exam3

ChatTutor

[£7 chattutor
a Q Alv| 19 o2

selecta e v

— + AuomaicZoom v Céem Iz »

Consider a general, stochastic/discrete finite-horizon decision problem

The principle of optimality

Let 7* = {yig. ii..... 151 } be an optimal policy for the problem, and assume
that when using 7*, a given state , occurs at stage i with positive probability
Suppose ; is the optimal tail policy obtained by minimizing the tail cost starting

from ;
v
,:h,\.‘;:z{,,w\nz,,(<.‘ i () ;} ‘

Then the truncated policy {1}, 47,
problem

Wy} of 7 is optimal for the tail

Tezon (@8) = Jine (1)

The dynamical

m

‘ ChatTutor

Helo!
pars o the PDF to the lft and igh lckto gt opios,

Can you explain this une # Edit

i1} be an optimal policy for the problem, and assume
. occurs at stage i with positive probability
Supposs 7 5 the opimal tal policy obtained by minimizing th tail cost star

Update selection
1am ot sure what s means

Responses:

< New followup question

)
o |
=

M

Comnected

[CET o |

Ask a question and press enter

® ChatTutor allows you to ask questions to both TAs and an Al (ChatGPT)

® The platform will collect the data you put in (i.e., same as any other webpage!)

® Sign-up link: https://chattutor.dk/s/112/bylink/jWOVynKVW6/as/ST/

9 DTU Compute

Lecture 1

7 February, 2025

https://chattutor.dk/s/112/bylink/jWOVynKVW6/as/ST/

Welcome!

10 DTU Compute

Lecture 1

]
o |
=

M

7 February, 2025

Types of machine learning

Supervised learning Learn a function f(z;) — ¢; to minimize a loss

Unsupervised learning Learn a structure to summarize data

11 DTU Compute

)
o |
=

M

Lecture 1 7 February, 2025

]
=

Sequential decision making

M

Observation

Cost
OJ//)
The Interpreter Environment ‘90,/6
$

The robot

&
&
>,
'
~

N
Internal statew

W State ¢

Make decisions, one after another, to bring about a desired outcome

7
N

® Observe the world
® Take action
® Obtain cost

Minimize total cost
L+) lecture_01_pacman.py

12 DTU Compute Lecture 1 7 February, 2025

)
o |
=

M

Observation

Cost
. %,
The Interpreter Environment %,

The robot

{e S,
/7/,)9

[

Internal statew

W State e

® Time is really important (sequential data)

® Must optimize behavior of dynamical systems using information that becomes
progressively available as the systems evolve

® Future cost and state of the system will depend on current actions and state

13 DTU Compute Lecture 1 7 February, 2025

)
o |
=

Alpha-Go (2016)

M

Google DeepMind 6% AlphaGo
Challenge Match
" 8-35 March 2016

A

AlphaGo Lee Sedol

® Self-learning Go supercomputer
® Defeated world champion Lee Sedol in 2016
® Notable mentions: Atari/Dota/Starcraft Il learners

14 DTU Compute Lecture 1 7 February, 2025

ChatGPT (2022)

(@ RLTrains ChatGPT x o+
< C & chatopenai.com/chat
New chat
RLTrains ChatGPT 2 @

RL Trains Al Text Generati

al of Denmark

Clear conversations
Light mode

Openal Discord

15 Lag out

RLTrains ChatGPT - Chromium

. Can you describe how reinforcement learning was used to train you? Put

&)

itin bullet point form so I can include it in my lecture

Sure, here's a bullet point list on how reinforcement learning was used to
train ChatGPT:

ChatGPT was trained on a large corpus of text data to predict the next

word in a given senten

The model was trained with a combination of supervised learning,

where it was provided with input-output pairs, and reinforcement
rning, where it was provided with a reward signal for generatin.

the model was given a prompt and was asked to
generate a response. The generated response was then evaluated
based on various metrics such as coherence, fluency, and relevance.
* The evaluation results were used to compute a reward signal that
reflected how well the model ned with human
expectations.

* The reinforcement learning algorithm used the reward signal to

the model to continuously improve its
* The final model was able to generate human-like text by leveraging the
ccumulated knowledge from reinforcement learning and superv

' Regenerate res|

ok but wow your lectures must be terrible.

)
o |
=

M

ebruary, 2025

How to address this problem

e Establish vocabulary
® Build a mathematical model

® Use the model to solve problems

16 DTU Compute

Lecture 1

=
—
=

M

7 February, 2025

The decision problem

Observation
Cost
OJ/
> : 2,
£ The Interpreter Environment %,
& The robot Q
[
~ \
N
/| Internal statew
N

W State T

State The configuration of the environment x
Action The robots output-signal

Cost/reward A number. Depends on state x and action u

17 DTU Compute

)
o |
=

M

Lecture 1 7 February, 2025

=
=
=

Example: Atari

>
>
>

States RAM memory state

Observations Pixel-based snapshots H x W x 3

Actions Discrete joystick actions

Dynamics Discrete, stochastic (what the emulator does)

Cost High seoe =_=_=- ==

Don’t know dynamics; must learn from scratch

18 DTU Compute Lecture 1 7 February, 2025

osvg-38

]
=

Example: Mars landing CU(t)

Time Continuous Ql

State/Actions x(t): (Position, velocity, fuel mass)
u(t): thruster outputs

M

Dynamics A differential equation u(x, t)

Cost Land the right place
and use little fuel and keep everyone alive

Constraints Thrusters deliver limited force,
ship cannot go into mars, etc.

Objective Determine u(t) to minimize final cost

Really important constraints; no learning
+ lecture_01_car_random.py

19 DTU Compute Lecture 1 7 February, 2025

mars

Inventory control Buy ug = 3 Buy u; =1

—l® |—
Sell wg =1 Sell wy = 2

9 =0 T =2

)
o |
=

M

33‘2:1

® We order a quantity of an item at period k =0,..., N — 1 so as to meet a

stochastic demand

x) stock at the beginning of the kth period,
uy > 0 stock ordered at the beginning of the kth period.
wy > 0 Demand during the k'th period

® Dynamics: 241 = min(max(zg + ugp — wg, 0),2)

® Cost to minimize:

2
U, + (Tx + up — wy)
N~~~ N et
cost-to-order items Satisfy demand + limit inventory size
® Select actions ug, . ..,uN_1 to minimize cost

We want proven optimal rule for ordering

20 DTU Compute Lecture 1

7 February, 2025

inventory

The environment

Observation

mnterpreter

The robot

N ©

) 7
Environment %,
/(:S‘

&L
S
5
@
~

\
N
/| Internal statew

N

Actions State &

® Nature can be stochastic or deterministic
® The problem can be continuous-time or discrete-time

® We can know the dynamics or not

(=]
—
=

M

21 DTU Compute Lecture 1 7 February, 2025

environ2

The agent

Observation

OJ/
The Interpreter

Actions

Policy How the robot chooses actions at given times/states

22 DTU Compute

. 7
Environment %,
/(:S‘

)
o |
=

M

Lecture 1 7 February, 2025

agent2

(=]
—
=

The interpreter

M

Observation

ko)
%

The Interpreter Environment °’/>)/(,\

W State

Reward The immediate evaluation of current step

Agents goal Maximize cumulative reward

Reward Hypothesis

Every desired behavior of the agent can be described by the maximization of
expected cumulative reward

23 DTU Compute Lecture 1 7 February, 2025

interpreter

Making sense of these distinctions

® Why so many things in one course?

® Study-line requirement
® A single problem, and a single solution + tricks
® A better overview (right tool for the job)

® Today, we will look at the problem

24 DTU Compute Lecture 1

=
—
=

M

7 February, 2025

]
=

Basic control setup: Environment dynamics

M

Finite time Problem starts at time 0 and terminates at time N. Indexed
as k=0,1,...,N.

State space The states x; belong to the state space x € S

Control The available controls uy belong to the action space Ay (zy),
which may depend on zy,

Dynamics
:J:k+1:fk(mk,uk,wk), kIO,l,...,N—l

Disturbance/noise A random quantity wy, with distribution

wy, ~ Pp(Wh|zk, ug)

25 DTU Compute Lecture 1 7 February, 2025

]
=

Cost and control
Agent observe xj, agent choose uy, environment generates wy,
Cost At each stage k we obtain cost

gk (T, ug,wg), k=0,...,N—1 and gn(zx) for k = N.

M

Action choice Chosen as uy = g (xy) using a function py : S — Ag(xg)

uk (zx) = {Action to take in state xj, in period k}

Policy The collection m = {uo, 1, -« -, 4N—-1}
Rollout of policy Given zg, select u; = pp(zx) to obtain a trajectory

g, Ug, T1,.-..,xn and accumulated cost
N-1
Cost-of-rollout = gy (zn) + Y gk (@k, . (2x) , wp,)
k=0

Expected return (approximate) Generate T rollouts according to 7

1 L
Jr(x0) = T Z{Cost—of—rollout i}

26 DTU Compute i=1 Lecture 1 7 February, 2025

]
=

M

Quiz 1: Discuss and answer on DTU Learn

How do you feel about this argument? Justify your answer:
Decision-making is about determining the appropriate sequence of actions
Upy -+ -y UN—-1-

Once executed, we get a total cost. Let's say that on average this is c¢(u).
Thus, decision-making is ultimately an optimization problem: Find the
sequence that on average minimize the cost:

ug, ..., UN—1 = argminc(u).
u

a. It is computationally too complicated to solve such an optimization
problem

b. It is infeasible to derive or learn the function c¢(u)

c. Actually nothing is wrong: It is just not a theoretically interesting /fruitful
way to approach decision-making

d. Something else is wrong with the argument

e. Don't know

27 DTU Compute Lecture 1 7 February, 2025

OO0 Uk W~

Pre-semester quiz

chapterl/lecturel_code.py
class MyClass:
def __init__(self, a):
self.my_variable = a

def some_function(self):

print("The variable I got was", self.my_variable)

class MyOtherClass(MyClass):
def __init__(self, a, b):
super () .__init__(a)
print("I also got", b)

THIS IS FINe.

This is new -- | have not used class inheritance before.
The code is mysterious.

| have seen code like this before, but it is not something |
have used. | think | can pick it up.

| have written code that inherit from other classes (i.e.,
something like the second class). | am not an expert, but
it is not something that worries me

This is easy. | have written code like this before and can
reason about what it does.

28 DTU Compute

Lecture 1

7 February, 2025

dogburn

]
=

M

Initiatives
What | have done:

® Re-structured the project work

® Simplification of exercises + videos

® Course notes on Python + online documentation
® This lecture

® Changed exam format

® Course co-responsible for the new mandatory programming course (02002/3) in
2023

What | hope you will do:

® Decide to learn this — you can!

® Set aside some time in the first block
® Don't give up:

® Programming was not taught correctly — 100% valid criticism
® You need to learn new programming techniques through your career

29 DTU Compute Lecture 1 7 February, 2025

© 0 N O Us W N

R e e e
Gk W N = O

(=]
=
=

Pacman game loop (without objects)

M

chapterl/lecturel_code.py

walls = np.ndarray() # Initialize a walls-variable
food = np.ndarray()

pacman_x = 4

pacman_y = 6

for k in range(10):
Use the walls and pacman_z, pacman_y to figure out whal actions are available.
available_actions = ... # compute using the walls-variable
Do some sort of planning (search?) by using the walls, pacman_z, pacman_y.
select the best possible action
Compute the outcome of the action:
pacman_x = pacman_x + action_x
pacman_y = pacman_y + action_y
Compute the reward
Let the agent learn based on the outcome and reward

(about 500 lines total)

30 DTU Compute Lecture 1 7 February, 2025

loop1

© 00 N O s W N

I e e e e e e
= O © 00 9 3 Ok W N O

Same with two agents and two environments

chapterl/lecturel_code.py
for k in range(10):

if environment_type ==
available_actions

else:
available_actions = ... # This environment may differ

if agent_type == 1: # Agent plan it's actions
pass # do planning of first type

elif agent_type ==
pass # do planning of the second type

if environment_type == 1: # Compute the outcome of the action:
pacman_x = pacman_Xx + action_x
pacman_y = pacman_y + action_y
Compute the cost-function

else:
pass # Updates relevant for second environment
Compute the cost function

if agent_type == 2: # Allow the agent to learn based on cost
pass # Learning for the second agent

else:
pass # Learning method for the first agent

compute using the walls-variable

31 DTU Compute Lecture 1 7 February, 2025

loop2

W N =

N OOk W=

(=]
=
=

Using objects

M

chapterl/lecturel_code.py
env = InventoryEnvironment() # Create an instance of the inventory environment
agent = RandomAgent (env) # Create an instance of a random—-action agent

train(env, agent) # Train the agent

Training-function:

chapteri/lecturel_code.py
def train(env, agent):
s = env.reset() # Reset and get first state, z_0
for k in range(10):
a = agent.pi(s) # The policy computes the action
sp, r, done = env.step(a) # Environment computes next state, Teward
agent.train(s, a, sp, r, done) # Let the agent train

(this is a very rough sketch. Well get to the real training function soon)

32 DTU Compute Lecture 1 7 February, 2025

loop3

OO~k WN =

]
=

The simplest class

M

The smallest and friendliest ciass

>>> class BasicClass: # Classnames are usually upper-case
pass # “pass’ is a special keyword which does nothing

Each class instance function like it's own little box of variables:

>>> a = BasicClass() # Create an instance of the class

>>> a.name = "My first class" # You can write data to the class like this

>>> b = BasicClass() # Another instance. a and b are not related and can store different data:
>>> b.name = "Another class"

>>>

>>> print("Class a:", a.name)
Class a: My first class

>>> print("Class b:", b.name)

Class b: Another class

33 DTU Compute Lecture 1 7 February, 2025

cute1

© 0 N O U Ae W N -

=
o

(=]
=
=

A class with a function

M

>>> class BasicDog:
name = "Unnamed dog" # Each dog-instance will have the property name
def read_nametag(self):
This is a class-function. Note we must pass it ‘self’ as a first argument,
instance of the class itself (i.e. the current object). This is how we car
print("This dog is named", self.name, "please give me treats!")

>>> dog = BasicDog()
>>> dog.name
'Unnamed dog'

self refers to the class instance

>>> dog.read_nametag() # Invoke the read_nametag() function. Note we don't pass the ob:
This dog is named Pluto please give me treats!

34 DTU Compute Lecture 1 7 February, 2025

cute2

©0o~TDU ks WN =

W=

W N =

def __init__ function is called when the class is created

)
o |
=

M

>>> class BetterBasicDog:
def __init__(self, name):
self .name = name
self.age = 0
print(£f"The __init__() function has been called with name='{name}'")
def birthday(self):
self.age = self.age + 1
print ("Hurray for", self.name, "you are now", self.age, "years old")

Arguments can be passed along like this

>>> d1 = BetterBasicDog("Pluto") # the __init__ function is now called
The __init__() function has been called with name='Pluto'

>>> d2 = BetterBasicDog(name="Lassie") # Also support named arguments

The __init__() function has been called with name='Lassie'

Functions can change the state of the class

>>> d1.birthday()
Hurray for Pluto you are now 1 years old
>>> d1i.birthday()
Hurray for Pluto you are now 2 years old

35 DTU Compute Lecture 1

7 February, 2025

HO WD U R WN =

o

DU WN =

]
=

Quiz 2: What is the outcome of this code?

M

>>> class BetterBasicDog:
def __init__(self, name):
self .name = name
self.age = 0
print(f"The __init__() function has been called with name='{name}'")
def birthday(self):
self.age = self.age + 1
print("Hurray for", self.name, "you are now", self.age, "years old")

>>> d1 = BetterBasicDog("Pluto")
The __init__() function has been called with name='Pluto'

chapterOpythonC/quiz.py
d1l = BetterBasicDog("Pluto")
d1.birthday ()

dl.age = 5

dl.name = "Lassie"
d1.birthday ()

a. Ignore changes and prints out "Hurray for Pluto you are now 1 years old"
b. Accept changes and prints out "Hurray for Lassie you are now 6 years old"
c. It gives an error — it is not possible to set the age.

d. It uses name but ignores age, so we get:

"Hurray for Lassie you are now 1 years old"

o D@W,ﬁo'klﬂaw_ Lecture 1 7 February, 2025

O V0O U W+

-

OOk WN ~

The parrot

)
o |
=

M

>>> class Parrot:
def __init__(self):
self.words = ["Squack!"]
def learn(self, word):
self.words.append(word)
def speak(self):

return random.choice(self.words) # Return a random word

def vocabulary(self):
return self.words

>>> parrot = Parrot()

>>> words = ["sugar", "sleep well", "(parrot noises)", "xhonkx"]

>>> for word in words:
parrot.learn(word)

parrot . speak()

>>> for _ in range(3): # Say three words

'Squack! '

'Squack! '

'sleep well'

>>> print("Vocabulary", parrot.vocabulary())

Vocabulary ['Squack!', 'sugar', 'sleep well', '(parrot noises)'

'*honk*']

37 DTU Compute

Lecture 1

7 February, 2025

=

]
=

M

Inheritance

>>> class Parrot:
def __init__(self):
self.words = ["Squack!"]
def learn(self, word):
self .words.append(word)
def speak(self):
return random.choice(self.words) # Return a random word
def vocabulary(self):
return self.words

OO0 U WN

ForgetfulParrot : Is like the regular parrot , except the learn-function

>>> class ForgetfulParrot(Parrot):

The Parot class is used as a template

ALl functions in the Parot-class are therefore 'imported' as default, including 'self.words'

def learn(self, word): # This function overwrite the 'actual' learn function in the Parot class
self.words = [word] # This parrot only know a single word

O U W N

~

Inheritance: The functions are "copy-pasted"” into the ForgetfulParrot

>>> old_parrot = ForgetfulParrot()

>>> old_parrot.learn("damn remote'")

>>> old_parrot.learn("Jeopardy")

>>> print("Vocabulary", old_parrot.vocabulary())
Vocabulary ['Jeopardy']

Uk W N =

38 DTU Compute Lecture 1 7 February, 2025

inherit

O © 0O U WN -

-

N0 Uk WN—

Inheritance continued

More inheritance: Make a squeak before and after every word:

)
o |
=

M

>>> class Parrot:
def __init__(self):
self.words = ["Squack!"]
def learn(self, word):
self .words.append (word)
def speak(self):
return random.choice(self.words) # Return a random word
def vocabulary(self):
return self.words

Where is the bug?

>>> class BadSqueekyParrot(Parrot):
def __init__(self, squeek="Quck!"):
self.squeek = squeek
def speak(self):
return f£"{self.squeek} {random.choice(self.words)} {self.squeek}"

>>> squeeky = BadSqueekyParrot(squeek="Kvak-Kvak")
>>> squeeky.learn("Good night!")
Traceback (most recent call last):
File "<comsole>", line 1, in <module>
File "<comnsole>", line 5, in learn
AttributeError: 'BadSqueekyParrot' object has no attribute 'words'

39 DTU Compute Lecture 1

7 February, 2025

©0o~TDU kW~

Use super() to access functions in the parent class

=
—
=

M

>>> class SqueekyParrot(Parrot):
def __init__(self, squeek:”Quck!"):
super().__
self.squeek = squeek # save the squeek variable
def speak(self):
word = super().speak() # Use the speak() function defined in the Parrot class.
return f"{self.squeek} {word} {self.squeek}"

>>> squeeky = SqueekyParrot (squeek="Kvak-Kvak")

>>> squeeky.learn("Good night!")

>>> squeeky.learn("Tell that damn bird to shut it's beak")
>>> squeeky.learn("Sugar!")

>>> squeeky.speak()

'Kvak-Kvak Good night! Kvak-Kvak'

>>> squeeky.speak()

'Kvak-Kvak Sugar! Kvak-Kvak'

init__Q) # Call the 'Parot' class __tinit__ method to set up the words-variable

Why classes in this course?

Consistency When we inherit from Parrot , we know the functions should

be called speak , learn (and not talk, practice)

® Env : (reset , step, action_space and a few other)

® Agent : (pi, train)
Functionality Inheritance allows us to re-use code
® |n control theory, we will use inheritance to add

simulation-functionality to all models
40 DTU Compute Lecture 1

7 February, 2025

© 00 N O A W N

I e e e e e e e
O W W N O U e W N = O

The inventory environment

)
o |
=

M

inventory_environment.py
class InventoryEnvironment (Env) :

def

def

def

__init__(self, N=2):

self.N = N

self.action_space = Discrete(3)
self.observation_space = Discrete(3)

reset(self):
self.s = 0
self.k = 0

return self.s, {}

step(self, a):

w = np.random.choice(3, p=(.1, .7,
s_next = max(0, min(2, self.s-w+a))
reward = -(a + (self.s + a - w)**2)
terminated = self.k == self.N-1
self.s = s_next

self .k += 1

return s_next, reward, terminated, False, {}

planning horizon
Possible actions {0

, 1, 2F

Possible observations {0, 1, 2}

reset initial state
reset time step k=0
Return the state we

z0=0

reset to (and an

Generate random disturbance

next state; z_{k+1} =

reward = -cost

update current

time step

return transition information

=1

Recall 241 = 2 — wi + ay (clipped at 0 and 2) and e.g. P(w = 0) = 15

41

DTU Compute

Lecture 1

7 February, 2025

f k(z_k,
= -g_k(z_k,
Have we terminated? (i.e.

#

18 k=
update environment state

#

#

TR W N =

)
o |
=

M

The Agent:

inventory_environment.py
class RandomAgent (Agent) :
def pi(self, s, k, info=None):
""" Return action to take in state s at time step k """
return np.random.choice(3) # Return a random action

® The policy ux(x) corresponding to pi(x, k, info)

® A training function which is given zy, uy and z1 plus obtained reward plus
additional information

® In each exercise session, you will write at least one agent
® | ook at the Agent -class

® truncated=False ; info is 'extra information’ (see documentation)

42 DTU Compute Lecture 1 7 February, 2025

Ot W N

The train -function

The train-function computes an episode as follows:

)
o |
=

M

inventory_environment.py
def simplified_train(env: Env, agent: Agent) -> float:
s, _ = env.reset()
J =0 # Accumulated reward for this rollout
for k in range(1000):
a = agent.pi(s, k)

sp, r, terminated, truncated, metadata = env.step(a)

agent.train(s, a, sp, r, terminated)
s = sp
J +=r
if terminated or truncated:
break
return J

Above computes the sum-of-reward for one episode:

inventory_environment.py
env = InventoryEnvironment ()
agent = RandomAgent (env)

stats, _ = train(env,agent,num_episodes=1,verbose=False)

Perform one rollout.
print("Accumulated reward of first episode", stats[0]['Accumulated Reward'])

43 DTU Compute

Lecture 1

7 February, 2025

W N =

)
o |
=

- - >
Approximate value function =
Approximate

N-1
Jrx(x0) = E |gn(zn) + D g(@r, (), wi) (1)
k=0
As average over 1000 trajectories

inventory_environment.py

stats, _ = train(env, agent, num_episodes=1000,verbose=False) # do 1000 rollouts

avg_reward = np.mean([stat['Accumulated Reward'] for stat in stats])

print (" [RandomAgent class] Average cost of random policy J_pi_random(0)=", -avg_reward)

44 DTU Compute Lecture 1 7 February, 2025

=
—
=

Quiz 3: Bobs friend

M

Bob has xy = 20 kroner. He can either:

e Action v = 0: Put them in the bank at a 10% interest, thereby ending up with
22 kroner.

® Action u = 1: Lend them to a friend.

® With probability 1 he looses everything (z; = 0)
® With probability § his friend gives him 12 kroner (aka one beer) as a thank
you, and thus he will have z1 = 20 + 12 = 32 kroner total.

Bobs goal is to decide whether to put his money in the bank, or lend them
to his friend. Which one of the following statements are correct:

a. The state spaces are S = {1,2,...,32}.

b. The dynamics is fo(xqg, ug, wp) = 1.1z¢ + %(xo + 12uy).

c. The action space is Ay(zo) = {0,1}

d. It is not possible to determine an optimal policy since we don’t know

what Bobs friend will do.

45 DTU Compute Lecture 1 7 February, 2025

Exercises

Let's try it -- 1 will probably try to prepare solutions at
home and be willing to present them

Let's try it -- But | am not going to volunteer to present
anything.

The format is okay, but | don't want other students to
present solutions. It should just be the TA who present
the solution.

I prefer a format where we just work on the exercises
and raise our hand if we have questions: | will be in the
first room if this happens,

® |T015: Passive exercises; installation problems

® Aud.21 + IT019: Interactive exercises.

Try to prepare and present homework exercises.

1 Bobs financially challenged friend

0¥~ Bob has 2, = 20 kroner. He can either:

¢ Action u = 0: Put them in the bank at a 10% interest, thereby ending up with 22

kroner.

¢ Action u = 1: Lend them to a friend.

— With probability } he looses everything

- With probability 2 his friend gives him 12 kroner (aka one beer) as a thank
you, and thus he will have 20 + 12 = 32 kroner total.

46 DTU Compute

(19.67 %)

(34.43%)

(26.23 %)

(19.67 %)

Lecture 1

)
o |
=

M

7 February, 2025

exercises

[% Tue Herlau.
Sequential decision making.
(Freely available online), 2025.

47 DTU Compute

Lecture 1

(=]
=
=

M

7 February, 2025

	Course practicalities
	What is reinforcement learning and control
	Examples
	The basic problem
	Programming

