
02465 Project: Part 2

Tue Herlau
tuhe@dtu.dk

June 18, 2025

Formalities
• The deadline for this report is Thursday 3rd April, 2025 before 23:59.

• Submission of reports happen on DTU learn

• You can work in groups of 1, 2 or 3 students (but not 4)

• Collaboration policy: It is not allowed to collaborate with other groups on this
project, except for discussing the text of the project with teachers and students
enrolled on the course this semester. It is not allowed to communicate (or make
available) solutions or parts of solutions to the project to other people. It is not
allowed to use solutions from previous years, or solutions found on the internet or
elsewhere.

• You can freely use code from the exercises when you solve the project, for instance
the dynamical programming algorithm.

• Your overall evaluation will be based on your written answers and your unitgrade
score. They will be weighted based on an assessment of the required work.

Preparing the hand-in:
Hand in these three files (please do not hand in a .zip file as this confuses DTU learn):

A .tex file with your written answers: Prepared this by modifying the template in
irlc/project2/Latex/02465project2_handin.tex . Simply write your answers where
it says YOUR SOLUTION HERE. I recommend keeping the layout as it is.

A .pdf file corresponding to this .tex file

A .token file containing your python-solutions: Generate this file by running the script
irlc/project2/project2_grade.py . It is very important you do not modify this file.

In order to hand in the assignment on DTU Learn you must be part of a group. You can
join a group on DTU learn from My Course → Groups.

1

EXERCISE April 3rd, 2025

Contribution table
DTUs exam rules require that each students contribution to the report is clearly specified.
Therefore, for each element in the report, specify which student was responsible for it in
the table in the template. A report must contain this documentation to be accepted.
The responsibility assignment must be individualized. This means:

• For reports made by 3 students: Each section must have a student who is 40% or
more responsible.

• For reports made by 2 students: Each section must have a student who is 60% or
more responsible.

This is an external requirement. Ask me if you have any questions.

Code hand-in:
• Please keep the structure of the irlc -folder. All of your code which is specific to

this report should be in the irlc/project2/ directory. Solutions which use code
outside the irlc folder cannot be verified and therefore cannot be evaluated.

• If you wish to use additional third-party libraries please discuss them with me first
to ensure you are on the right track.

• Breaking or tampering with the unitgrade framework, for instance by reporting a
false number of points or making your solution unverifiable, is potentially cheating.
Code which is obfuscated to the point of being unreadable cannot be evaluated.

• This is not a programming course: Strange, long, undocumented, or downright
disturbing solutions will be evaluated simply based on whether they work or not.

EXERCISE April 3rd, 2025

Figure 1: Master Yodas pendulum

1 Master Yodas pendulum (yoda.py)
Yodas pendulum hang on a string of length L, at an angle to vertical of θ and with mass
m. As part of Padawan training, Yoda will start the pendulum in position θ = 1, release
it, and the Padewans will then meditate on its movement when it is affected by the
force (see fig. 1). Using Newtons laws we can derive the equations of motions to be1

mL2d
2θ(t)

dt2
= u−mg sin(θ(t))L (1)

If we use that sin(θ) ≈ θ when θ is small we can write this as

θ̈ = − g

L
θ +

1

mL2
u (2)

This equation will be our starting point and can from now on you can consider
eq. (2) as the true equation of motion for θ.

In the absence of a cost-function, Yodas pendulum can be written as a linear system
of the form

ẋ = Ax+Bu (3)

Where x =

[
θ

θ̇

]
.

• Define A and B below in terms of g, L and m in the LaTeX document.

• Implement the function get_A_B(g, L, m) which return the two matricesA and
B as numpy ndarray

Problem 1 Formulate Yodas pendulum as a linear problem

1See https://www.acs.psu.edu/drussell/Demos/Pendulum/Pendulum.html

https://www.acs.psu.edu/drussell/Demos/Pendulum/Pendulum.html

EXERCISE April 3rd, 2025

Info:

• The function accepts a value of g, L and m as inputs.

• The two answers should be the same.

i

Answer:

A =
[
· · ·

]
(4)

B =
[
· · ·

]
(5)

YOUR SOLUTION HERE

A

1.1 Yodas pendulum and discretization
We will now investigate what happens with the pendulum, described in eq. (3), when no
external force is applied to it (B = u = 0) and different types of discretization schemes,
Euler and Exponential Integration (EI), are applied. The point of the exercise will be to
show mathematically that one discretization scheme is numerically stable and the other
is not.

Assume the system has been discretized using a time step of∆ to give statesx0,x1, . . . ,xN .

1. Prove that when Euler discretization or exponential discretization is used to
discretize the system the final state can be written as:

(Euler discretization): xN = ÃN
0 x0 (6)

(Exponential discretization): xN = AN
0 x0 (7)

2. Provide an (analytical) expression for the two matrices Ã0 and A0 (i.e., express
them in terms of known quantities such as L, g and ∆)

3. Implement the functions A_euler and A_ei to compute bothmatrices in python.

Problem 2 State at a later time

Info:

• As to the first part, start with N = 1 and N = 2 to get the general idea.

• As to the form of A0 and Ã0 use the lecture notes. For the exponential inte-
gration, you need to use the matrix exponential. Code which computes it is
imported and described at the top of the file.

i

EXERCISE April 3rd, 2025

Answer:
To solve the first part, we can write xN =

[
· · ·

]
As for the second part we get:

Ã0 =
[
· · ·

]
, A0 =

[
· · ·

]
(8)

YOUR SOLUTION HERE

A

According to the previous problem, we can in fact write

(Euler discretization): xN = M̃x0 (9)
(Exponential discretization): xN = Mx0 (10)

for two matrices M and M̃ . Implement the functions to compute both matrices in
python as M_euler and M_ei

Problem 3 State at a later time II

Info:

• The intention with this problem is that once you have an explicit numpy func-
tion to compute M and M̃ , then when you are later asked to compute e.g.
Eigenvalues analytically you can check your result by numerically computing
the Eigenvalues of M and M̃ . In my experience this can speed up derivations
a great deal because it will quickly catch mistakes.

• The imports at the top of the file contain the potentially useful numpy func-
tions.

i

In the next question, we will just focus on the Euler discretization matrices Ã0 and M̃
and the relationship between the four Eigenvalues of these two matrices. To do so, we
will use the following special case of the Eigendecomposition: Let A be a 2 × 2 matrix
with two linearly independent unit-length Eigenvectors satisfyingAv1 = λ1v1 andAv2 =

λ2v2. Assume we form the 2× 2 matrices Q =
[
v1 v2

]
and Σ =

[
λ1 0
0 λ2

]
. It then holds

that

A = QΣQ−1. (11)

The reverse is also true: If a Matrix has this representation, the Eigenvalues are the
diagonal of Σ.

EXERCISE April 3rd, 2025

Use the Eigendecomposition to show there exists a simple relationship between the
eigenvalues of Ã0 and the eigenvalues of M̃ involving N .

Problem 4 Eigenvalues and powers

Info:

• If stuck, always start with N = 1 and N = 2.

• Use that the Eigenvectors are orthonormal.

• Test your analytical answer numerically.

• The result turns out to be very simple.

i

Answer:
Assume λ1, λ2 are the eigenvalues ... then the Eigenvalues of M is ... similarly for M̃
... YOUR SOLUTION HERE

A

Derive an analytical expression of the Eigenvalues λ1 and λ2 of Ã0.

Problem 5 Analytical expression of Eigenvalues using Euler discretization

Info:

• Don’t be scared if the result looks complex.

• This is really just a Mat1 problem.

i

Answer:
... we get a characteristic polynomial of ... and therefore it follows from Mat1 that
the two Eigenvalues are ... YOUR SOLUTION HERE

A

Background: LetA be amatrix. Thematrix norm is defined as ∥A∥ = max∥x∥=1 ∥Ax∥.
It holds that if λ1, λ2 are the two Eigenvalues of A that

∥A∥ = max{|λ1|, |λ2|}. (12)

where |λ| is the absolute value and λ may be a complex number.

EXERCISE April 3rd, 2025

Use the Matrix norm, and the previous problem to derive a tight upper bound for
∥xN∥ assuming ∥x0∥ = 1 and the problem has been discretized using Euler integra-
tion. Implement the bound as the function xN_bound_euler(g, L, Delta, N) .

Problem 6 Bound using Euler discretization

Info:

• Upper-boundmeans you have to find a functionF such that ∥xN∥ ≤ F (g,∆, L,N)
for all x0 so that ∥x0∥ = 1. That the bound is tight means you cannot find a
function with smaller values.

• You should use the property of the Matrix norm listed above in conjunction
with your answers to the previous questions

• The solution can be written as a single line; start with the given expression and
try to use the things you have seen so far one at a time.

i

Answer:
Using Euler discretization we get the upper bound:

∥xN∥ ≤ · · ·

YOUR SOLUTION HERE

A

Repeat the same steps you did before to derive a tight upper-bound of ∥xN∥ assuming
∥x0∥ = 1 and that we are using exponential integration. Use the hints below. When
done, implement the function as xN_bound_ei(g, L, Delta, N) and check your result.
N.b. the tight upper bound must be simplified to a simple expression that does
not involve complex numbers. .

Problem 7 Matrix norm of Exponential discretization (harder)

Answer:
Using exponential discretization we get an upper bound of:

∥xN∥ ≤ · · ·

YOUR SOLUTION HERE

A

EXERCISE April 3rd, 2025

Info:

• Most of the problem is similar to the previous one. The part which is differ-
ent has to do with computing eigenvalues. Remember that you can compute
eigenvalues numerically to get ideas and check you are on the right track.

• If you follow the same steps as before, you will see that your solution way back
in eq. (7) means you will have a matrix of the form eA to deal with, where
A is some 2 × 2 matrix you can compute the Eigenvalues of. Compute these
eigenvalues first.

• Note you can always write A = QΣQ−1 using the Eigendecomposition; you
don’t need to know what Q is, but you can find Σ

• To use this to get the eigenvalues of eA use the definition of the Matrix expo-
nential and keep the following in mind:

• Taylor Swift has a series of top hits that caused exponential growth of her
career

• Everything will be reduced to powers of the form An; you have dealt with this
situation before. Be inspired by eq. (11) and re-write these.

• Use linear algebra to simplify things into an expression of the formQ(sum− of −matrices)Q−1.
Use the Taylor-series trick on the sum to simplify the sum of matrices to some-
thing neat. This will give you the eigenvalues.

• The end-result will be simple; in fact, it will be simpler than before, and with
a sufficient amount of hind-sight it might even seem kind of obvious.

i

What do the bounds on ∥xN∥ (using Euler discretization) and ∥xN∥ (using exponen-
tial discretization) tell you about the stability of Euler discretization and exponential
discretization?

Problem 8 Stability

Answer:
YOUR SOLUTION HERE

A

2 R2D2 and control (r2d2.py)
In this problem, we will consider control of r2d2, who can be seen as an example of
a primitive car model. R2D2 is characterized by an (x, y) location and the angle his

EXERCISE April 3rd, 2025

Figure 2: R2D2, as seen from above. The red arrow indicates the direction of motion.

direction of motion makes with the x-axis (this is also called the yaw) denoted by γ, see
fig. 2.

R2D2 can travel forward and spin around on a dime in place. In other words, the
available controls are the linear velocity v, in direction of the red arrow, as well as the
angular velocity ω, which controls how fast R2D2 spins around in place (i.e., the rate
at which the yaw γ changes). Taken together, we can describe R2D2 using state and
control vectors

x(t) =

x(t)y(t)
γ(t)

 , u(t) =

[
v(t)
ω(t)

]
,

and the equations of motion are:

ẋ(t) = f(x(t),u(t)) =

v(t) cos(γ(t))v(t) sin(γ(t))
ω(t)

 (13)

The starting position will always be x(0) = x0 = 0 =

00
0

. Your task is to help R2D2

carry out a couple of control-related tasks, all of which involve driving from the starting
position x0 to a target position x∗.

We apply Euler discretization to the system with time constant ∆ to get xk+1 =
fk(xk,uk). Give an explicit expression for fk below.

Problem 9 Discretization

EXERCISE April 3rd, 2025

Answer:

xk+1 = fk(xk,uk) =

· · ·· · ·
· · ·


YOUR SOLUTION HERE

A

Info:

• This is the same operation we have used to discretize all systems so far.

i

The next task is to linearize the system around a particular, fixed point x̄, ū. Give
an explicit expression for the linearized system which takes the form

xk+1 ≈ Axk +Buk + d

when the system is linearized around x̄ =

00
θ

 and ū =

[
1
0

]
.

Problem 10 Linearization

Answer:

xk+1 ≈

· · ·· · ·
· · ·

xk +

· · ·· · ·
· · ·

uk +
[...]

YOUR SOLUTION HERE

A

Info:

• Remember to take ∆ and ū into account.

• Linearization was discussed in lecture 7; use the general expression and com-
pute the derivatives of fk using what you have learned in Mat1.

i

EXERCISE April 3rd, 2025

Implementation: General comments You are free to use the framework or not. If
you choose to use the framework, I have included a bit of boiler-plate code to set up a
discrete model/environment and all you need is to complete the ControlModel . If you
use the code, take care you understand the role of x_target and Q0 ! You need to set
their values in the following exercises.

Implement the two functions to compute the Euler discretization from problem 9
(f_euler) and linearization matrices from problem 10 (linearize). The functions
should return numpy arrays.

Problem 11 Unitgrade self-check

Info:

• The recommendedway of doing this exercise is to specify R2D2 as a ControlModel ,
where you specify the dynamics as you have seen examples of in the exercises,
and from that define a DiscreteControlModel and finally a ControlEnvironment .
When you have done that, you can use function from the DiscreteControlModel
to solve the exercise very simply, and you will get a self-check you have imple-
mented the model correctly.

• Use unitgrade to make sure you get the result right. If you don’t, check which
matrices/entries in those matrices gives you problems

• We have actually worked with the linearization procedure during one of the
exercises.

• Once you are done with this method, you can check (by inserting specific values
and checking the result agrees) that your two previous expressions are 100%
right. This is something I always try to do when I have to calculate something
non-trivial.

i

Wewill now consider the problem of actually reaching the target location x∗ at a min-
imal effort. To do so, we construct the following quadratic cost-function which depends
on two parameters Q0 and x∗:∫ tF

0

(
1

2
Q0∥x(t)− x∗∥2 + 1

2
∥u(t)∥2

)
dt (14)

To simplify things, we will always consider a planning horizon of tF = 5 seconds.

2.1 Optimal planning
Our first approach will be based on optimal planning using direct collocation. In this
approach, we will handle the problem of reaching the destination as an equality con-
straint x(tF) = x∗, and therefore set Q0 = 0. The cost function is in other words simply

EXERCISE April 3rd, 2025

a quadratic cost function with R = I:∫ TF

0

1

2
∥u(t)∥2dt. (15)

Implement the method drive_to_direct(x_target, plot) . The function should plan

a path to the end-point x∗ =
[
2 2 π

2

]⊤
using direct collocation (see above). The

boolean variable plot controls if the method plot the resulting state trajectory or
not.

The method should return a N × 3 ndarray of the state-trajectory. When you
call the direct collocation method, first use a grid of size N = 10, then N = 20, and
finally N = 40. Below, insert a plot of both the states trajectory, i.e. time along the
x-axis and the coordinates of x along the y-axis, as well as a plot of R2D2s (x, y)
position.

Problem 12 Optimal planning

Answer:
A

Info:

• Easiest approach is to use the method we already implemented. I used the
DirectAgent . Look at the examples.

• The trace plot can (here and elsewhere) bemade using a call such as plot_trajectory(traj[0], env) ,
but you are free to write your own plot code.

• The code for the second plot is already included in the script.

i

EXERCISE April 3rd, 2025

2.2 Simple Linearization

Although direct methods should solve the problem optimally they are brittle. Our first
attempt at solving this problem will involve simple linearization using [Her25, algo-
rithm 23]. The dynamics is discretized as before, and the cost function is discretized in
the usual manner to be:

ck = ∆

(
1

2
Q0∥xk − x∗∥2 + 1

2
∥uk∥2

)
(16)

When we apply simple linearization, the system is linearized around x̄ = 0 and ū = 0.
Use this to derive an LQR controller for the linearized problem (by planning on a horizon
of N = 50 steps using the linearized dynamics and cost-matrices), and use this to plan
the future actions.

Implement the simple linaerization procedure as the function
drive_to_linearization(x_target, plot) . The plot -variable should control whether
we are doing plotting or not. The function should plan using the simple linarization
method to reach x_target and return the obtained states when that plan was carried
out in a simulation of the environment (i.e. using RK4 on a fine grid).

When done, test the method using first a simple problem consisting of driving
forward for two meters, and then the problem we are interested in, where R2D2
drive to (2, 2) and face north:

• x∗ =
[
2 0 0

]⊤
• x∗ =

[
2 2 π

2

]⊤
Insert figures below of the obtained state trajectories. The first case should work
perfectly, the second case will fail. Explain the result.

Problem 13 Control using simple linearization

EXERCISE April 3rd, 2025

Answer:

Intuitively, the second case fails because... YOUR SOLUTION HERE

A

Info:

• We solved a problem very similar to this in the exercises. You can re-use the
solution without writing a new agent.

• You can turn on rendering of R2D2 by using the supplied rendering function
in the utils.py file to see what happens.

i

2.3 Model-predictive control and Iterative linearization
Simple linearization fails to solve the problem, and full iterative LQR is difficult to im-
plement and may fail to converge. In this problem, we will see if we can get away with
something which is a lot simpler.

What we are going to do is, in each step, to apply the simple linearization procedure
we tested in problem 13 (but where we expand around the current state) and then
re-plan in the next step. Specifically, the method you should implement is defined in
algorithm 1:

Your task is to implement this method and check the outcome.

Apply iterative LQR to solve the problem by implementing the function
drive_to_iterative_linearization(x_target, plot) . Insert the plot of the trajectory
the script generates below, and comment on why you think it performs better.

Problem 14 MPC

EXERCISE April 3rd, 2025

Algorithm 1 MPC and iterative linearization
1: Initialize ū = 0.
2: for all planning steps k = 0, 1, 2, . . . , do
3: Assume the agent is in state xk

4: Linearize the dynamics around x̄ = xk and ū. Then apply LQR with a planning
horizon of N = 50 to get control matrices L0, l0, L1, l1, . . .

5: Compute and return the action uk = L0xk + l0
6: Set ū = uk

7: end for
8: ▷ Note that line 4 and 5 are exactly what the Linarization agent, which you

implemented in the exercises, does when called with (x̄, ū)!

Answer:

Iterative linearization solves the problem because... YOUR SOLUTION HERE

A

Info:

• I solved this by writing a new Agent . Since you are re-using the iterative lin-
earization approach, you can use this agent, but with the different choices of
linearization points x̄, ū.

i

References
[Her25] Tue Herlau. Sequential decision making. (Freely available online), 2025.

	Master Yodas pendulum (yoda.py)
	Yodas pendulum and discretization

	R2D2 and control (r2d2.py)
	Optimal planning
	Simple Linearization
	Model-predictive control and Iterative linearization

