02565 Exam Instructions
Version 0.1

Tue Herlau
tuhe@dtu.dk

June 18, 2025

1 General information

Evaluation form: The evaluation is graded on the 7-step scale. The grade is determined
by an overall assessment of your project work and a written exam. The project work

will be weighted at approximately one fifth and the written exam at approximately
four fifths.

Project: Details about the project can be found through DTU Learn.

Questions: Please do not hesitate to contact me by email tuhe@dtu.dk or Discord if
you want clarification of any questions you may have about the exam (instructions,
hand-in format, etc.).

2 The written exam

Form: The four hour written exam consist of pen-and-pencil questions and program-
ming questions. The programming questions will require you to write code. There-

fore, please bring a computer that has been set up to run the exercise code before-
hand.

Previous exams: The exam from last year will be uploaded during the semester. I will
also upload two so-called midterms, but taken together these are slightly longer
than a single exam.

Hand-in and scoring: The hand-in and scoring procedure is described on the front page
of the previous years exam. Please read this carefully before the exam and care-
fully check that you can generate hand-ins according to this instruction on your
computer.

Aids: All normal aids are allowed for the exam (i.e., books, notes and computers), but
not open internet. This means your computer must be set up correctly before you
attend the exam.


tuhe@dtu.dk

Exam instructions June 18, 2025

When/where: The exam location may differ for students enrolled on the same course.
You can find the exam schedule here: https://www.dtu.dk/uddannelse/kursusbasen/
eksamensskema. You can check your exam enrollments on exam location and times
on https://eksamensplan.dtu.dk. Check your exam enrollments well before the
exam.

3 Syllabus

The course syllabus is the reading material from [Her25,/SB18]], the exercises, projects,
course toolbox, documentation and lecture slides. It is important you have the toolbox
installed and working on your computer.

4 Terminology

The conceptual questions will typically ask you to compute a number or a function. In
those problems, a correct answer is an answer which has been reasonably simplified, and
often this is emphasized in the problem text using words such as simple or closed-form
expression.

For instance, consider this physics problem:

* Suppose that water is drained from a barrel at a rate of f(t) = } where ¢ is the time.
Determine a simple expression for how much water is drained from time ¢ = 1 to
t="1T?

In this case the answer can be found as flT +dt, however, simply writing the integral itself

will not get full credit since it has not been evaluated - i.e., the expression is not simple

in the sense it cannot be readily implemented in a computer. The right answer (which
will get full credit) is log T (the value of the integral).

The reason is that the solution to many problems can often be stated in an abstract
way, for instance by re-stating the dynamical programming algorithm or a Bellman equa-
tion, and the purpose of the exam is to test if you can apply these equations to a concrete
situation. This is best done by computing a reduced (simplified) answer. To emphasize
this, I will often use words such as simple or closed form to indicate that you should in-
sert relevant constants into the expressions, evaluate integrals, and otherwise provide a
reasonably simplified expression.

What I don’t care that much about is symbol manipulation: Some will say that \/%

should be written as \/75, or that one should always remember that cos 7 is really \/%, or
even that % should be written as 4 + % (or visa-versa). Don’t worry about it.

Numerical value Some questions will ask you for numerical values. In these cases
you cannot give the answer using symbols (such as k* etc.), but should rather provide a
number, for instance 5.3. Sometimes I might ask you to write both a function f(z) and
also provide a numerical value such as f(2). The reason for this is not to double your
work, but rather to let you know that the function is really just a concrete function of x
(such as f(x) = 2 + 2?) that readily allows you to compute that e.g. f(2) = 6. By asking


https://www.dtu.dk/uddannelse/kursusbasen/eksamensskema
https://www.dtu.dk/uddannelse/kursusbasen/eksamensskema
https://eksamensplan.dtu.dk

Exam instructions June 18, 2025

this way I hope this can avoid certain problems such as forgetting to insert constants in
an expression and so on.

5 Tips for preparing for the exam

Although all subjects in the course are exam relevant and may be the subject of questions,
I think it is helpful to provide a list of subjects that perhaps deserve a second glance. Note
most of these subjects are already covered by the two midterms/previous years exam.

Understand in depth: Understand the notation and mathematics behind these sub-
jects to the degree you can apply them to simple examples step-by-step and intuitively
understand what they do and reason about them.

From the dynamical programming section:

* The DP problem formulation f;, gx, action and state spaces, etc.
e Tail-cost functions .J; , and optimality

* The DP algorithm; be able to reason about it and apply it to simple problems by
hand.

From the control section

* Linear-quadratic problems (discrete and continuous-time; both dynamics and cost,
i.e. Ay, By, etc. and Qy, Ry, etc.)

 Discretization of control problems (Euler and exponential; includes that you can
translate a system of differential equations to a control problem as in Midterm A,
q6)

* Discrete LQR control

* Linearization of control problems around a point 7, u

* PID control, hereunder application to simple problems such as car steering, pendulum-

balancing, or the harmonic oscillator. Understand the role of «*, K,,, K; and K,
and how they are used to control the action.

* Trapezoid collocation for direct control
From the RL section
* Bandits

— What a bandit problem is. For instance, the 10-armed test-bed in [|[SB18, Chap-
ter 2].
— The simple bandit algorithm

— The simple bandit for a non-stationary environment, i.e. using a learning rate
(0]

— The UCB-bandit algorithm



Exam instructions June 18, 2025

* MDPs

How the MDP is formulated mathematically (p(s', r|s, a) etc.)
The definitions of key quantities such as v, ¢,, v*, ¢* etc.

Reason about the behavior of quantities such as v, etc. for different problem
types, learning rates, etc.

Have a clear understanding of what the Bellman equations mean to the point
where you can translate simple problems into equations (c.f. the Jar-Jar prob-
lem in part 3 of the project)

MDPs without actions (such as the Sarlac example from project 3, what Sutton
call a Markov Reward Process)

Translate a general description of a simple MDP in terms of a diagrams/graphs
and/or transition probabilities into a mathematical form where you can reason
about them (c.f. example 6.2, example 6.4 or exercise 3.22)

* The basic Gridworld example (i.e., the black gridworld with pacman I live-demo in
many of the lectures). Understand what it shows and reason about how the differ-
ent values will change when we vary «, ¢, 7, etc. while using different algorithms
such as:

Sarsa
Q-learning

Dynamical programming algorithms (such as Value-iteration, policy-evaluation,
etc.)

MC-learning (first visit and every-visit)
Tabular TD-lambda.

Pay particular attention to the case where we are given a reward when we transi-
tion to the terminal state (and otherwise zero reward). The exam examples folder
contains several demos you can look at.

* Off and on-policy, terminating vs. non-terminating environments, etc.

* Epsilon-greedy exploration

* Key algorithms (what do they do, what happens if you run them long enough and
they converge, which quantities ¢,, ¢* can they compute):

TDO
Sarsa
Q-learning

Dynamical programming algorithms (such as Value-iteration, policy-evaluation,
etc.)

MC-learning (first visit and every-visit)
Tabular TD-lambda.



Exam instructions June 18, 2025

Understand well enough to program/work with in code From the DP section

* The DP algorithm and related subjects, for instance how we represent a policy as
a dictionary etc.

* Operations such as computing the expected value ) _p(z) f(z) when p(z) is repre-
sented as a dictionary etc.

* The DP model class, in particular implementing a problem using this class and then
use the functions/functionality the class provides for other tasks

* The DP algorithm (you worked on both subjects in project 1)
From the control section
* The PID algorithm

* Linearization around a point
* Simulate a control problem with RK4 using e.g. the toolbox
* LQR

* Simple bandit algorithms and non-stationary variants (e-greedy)
From the RL section

* Bellman-equation inspired algorithms such a Value-iteration, policy evaluation, etc.
* The simple RL algorithms such as TDO, Sarsa and Q-learning

* MDPs, in particular implementing a problem using the MDP problem class and then
use the functions/functionality the class provides for other tasks

* Implement a problem using the MDP class and apply tabular methods to it (value
iteration, policy iteration, policy evaluation)

Programming examples Refresh how these work so you can use them and potentially
implement your own variants:

* The Inventory DP model
* The Chessmatch DP model

The Pendulum control model

¢ The Harmonic oscillator control model

Simple MDP examples such as the Gambler, Gridworld (the basic variant included
in the week 9 exercises), etc.

References

[Her25] Tue Herlau. Sequential decision making. (Freely available online), 2025.

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. The MIT Press, second edition, 2018. (Freely available online).



	General information
	The written exam
	Syllabus
	Terminology
	Tips for preparing for the exam

