
EXERCISE 9
Bellmans equations and exact planning

Tue Herlau
tuhe@dtu.dk

4 April, 2025

Objective: Today we will consider methods for solving a finite MDP assuming the under-
lying probability structure is known. The methods we will consider will closely mirror
DP as introduced in lecture 2, however since we are considered a discounted, infinite-
horizon setting there will be important differences. Even though the setting is typically
not realistic, the solution methods are worth taking note of as the methods we will en-
counter later can be seen as approximate solutions. (24 lines of code)
Exercise code: https://lab.compute.dtu.dk/02465material/02465students.git
Online documentation: 02465material.pages.compute.dtu.dk/02465public/exercises/ex09.html

Contents
1 Conceptual problems 2

2 Exam problem: Bellmans equations 2

3 Preliminaries: The Markov Decision Process 3

4 Relationships between Q, V and the MDP (mdp_warmup.py) 4

5 Iterative Policy Evaluation (policy_evaluation.py) 7

6 Policy Iteration (policy_iteration.py)/ 8

7 Value Iteration (value_iteration.py) 9
7.1 A value-iteration agent (value_iteration_agent.py) 10

8 Gambler’s problem (gambler.py)⋆ 11

1

https://lab.compute.dtu.dk/02465material/02465students.git
https://
https://

EXERCISE 9 4 April, 2025

s1 s2R = 1, p = 1
2

R = 0, p = 1
2

R = 0, p = 1
2

R = 2, p = 1
2

Figure 1: A simple MRP

1 Conceptual problems

☞
• Solve problem 3.14 from [SB18] (Hint: When you use [SB18, figure 3.2] as sug-

gested only the right-hand pane is important)

• Solve problem 4.1 from [SB18] (Hint: Remember to use [SB18, figure 4.1])

2 Exam problem: Bellmans equations

☞Consider a Markov Reward Process with two states s1 and s2 and a discount factor of
0 < γ < 1 shown in fig. 1 1. With equal probability 1

2
, the system will either stay in the

current state or transition to the other state. The MRP never terminates.

• When the system transition s1 to s2 (or s2 to s1) it will receive a reward of 0,

• If it transition from s1 to s1 it will receive a reward of 1,

• If it transition from s2 to s2 it will receive a reward of 2.

Since there are two states, the value function vπ takes two values v1, v2 ∈ R defined as:
v1 = vπ(s1) and v2 = vπ(s2).

(a.) Assume for a moment that v2 = 5
2
and γ = 2

3
. What is v1 ? (i.e. the value function

in s1, vπ(s1))

(b.) Ignore the previous question and consider the general form of the problem. As the
name suggest, when Bellmans expectation equations are applied to this problem we
obtain two equations. Write them as a linear system of the form b = Av where v =[
v1
v2

]
. State what A and b are as functions of γ.

Bonus question: Determine v1 by solving the equation in problem b.
1Recall a Markov Reward Process is a Markov decision process without actions, see [SB18, Example

6.2].

EXERCISE 9 4 April, 2025

3 Preliminaries: The Markov Decision Process
The methods we consider this week will assume we have access to a model of the envi-
ronment (the MDP) and they will then use this model for planning. A MDP consist of
four elements:

• An initial state2

• A function to determine if a state is terminal (and therefore that the environment
needs to stop)

• A function to compute the transition probability p(s′, r|s, a)

• A function to compute actions in a state A(s)

In python, these functions are defined by implementing the following class:

1 # mdp.py
2 class MDP:
3 def __init__(self, initial_state=None, verbose=False):
4 self.verbose=verbose
5 self.initial_state = initial_state # Starting state s_0 of the MDP.
6 def is_terminal(self, state) -> bool:
7 return False # Return true if the given state is terminal.
8
9 def Psr(self, state, action) -> dict:

10 raise NotImplementedError("Return state distribution as a dictionary (see class documentation)")
11
12 def A(self, state) -> list:
13 raise NotImplementedError("Return set/list of actions in given state A(s) = {a1, a2, ...}")

For instance, this code implements the 4x4 gridworld example from [SB18, Example
4.1], which we will use in some of the other exercises:

1 # small_gridworld.py
2 UP,RIGHT, DOWN, LEFT = 0, 1, 2, 3
3 class SmallGridworldMDP(MDP):
4 def __init__(self, rows=4, cols=4):
5 self.rows, self.cols = rows, cols # Number of rows, columns.
6 super().__init__(initial_state=(rows//2, cols//2)) # Initial state is in the middle of the

board.↪→

7
8 def A(self, state):
9 return [UP, DOWN, RIGHT, LEFT] # All four directions available.

10
11 def Psr(self, state, action):
12 row, col = state # state is in the format state = (row, col)
13 if action == UP: row -= 1
14 if action == DOWN: row += 1
15 if action == LEFT: col += 1
16 if action == RIGHT: col -= 1
17
18 col = min(self.cols-1, max(col, 0)) # Check boundary conditions.

2Or more generally a distribution over the initial states. This is not relevant for Todays exercises.

EXERCISE 9 4 April, 2025

19 row = min(self.rows-1, max(row, 0))
20 reward = -1 # Always get a reward of -1
21 next_state = (row, col)
22 # Note that P(next_state, reward | state, action) = 1 because environment is deterministic
23 return {(next_state, reward): 1}
24
25 def is_terminal(self, state):
26 row, col = state
27 return (row == 0 and col == 0) or (row == self.rows-1 and col == self.cols-1)

The states are defined as tuples of integers (state = (row, col)), and the transition
probabilities are 1 since the environment is deterministic.

4 Relationships betweenQ, V and theMDP (mdp_warmup.py)

The purpose of this exercise is to familiarize you with the MDP class (see discussion
above and the online documentation) and how to compute expectations using python
loops.

Expected reward

Implement a function which uses the MDP class to compute the expected reward in
a state s given that we take a specific action a. In other words, it should compute:

E[Rt+1|St = s, At = a] =
∑
s′,r

p(s′, r|s, a)r

Problem 1 Expected reward

EXERCISE 9 4 April, 2025

Info: To solve this problem you must work with the function mdp.Psr of the MDP
class. Here is an example of how to use it to print out all values of p(s′, r|s, a) in the
starting state of the frozen-lake environment:

1 >>> from irlc.gridworld.gridworld_environments import FrozenLake
2 >>> mdp = FrozenLake().mdp # Get the MDP of the frozen lake environment
3 >>> s = mdp.initial_state
4 >>> s # Initial state
5 (0, 3)
6 >>> a = 1 # Go east.
7 >>> for (s_, r), p in mdp.Psr(s, a).items():
8 ... print(f"Prob. of moving to state {s_=} and getting reward {r=} is p(s_, r | s, a)", p)
9 ...

10 Prob. of moving to state s_=(1, 3) and getting reward r=0 is p(s_, r | s, a) 0.33333333333333337
11 Prob. of moving to state s_=(0, 3) and getting reward r=0 is p(s_, r | s, a) 0.3333333333333333
12 Prob. of moving to state s_=(0, 2) and getting reward r=0 is p(s_, r | s, a) 0.3333333333333333

When done, the code:

1 # mdp_warmup.py
2 V = {}
3 for s in mdp.nonterminal_states:
4 V[s] = s[0] + 2*s[1]
5 print("Value function is", V)
6 # Compute the corresponding Q(s,a)-values in state s0:
7 q_ = value_function2q_function(mdp, s=s0, gamma=0.9, v=V)
8 print(f"Q-values in {s0=} is", q_)

Should produce this output:

1 Value function is {(0, 1): 2, (1, 2): 5, (2, 1): 4, (0, 0): 0, (3, 1): 5, (1, 1): 3, (0, 3): 6, (2,
0): 2, (3, 0): 3, (2, 3): 8, (0, 2): 4, (3, 3): 9, (2, 2): 6, (1, 0): 1, (3, 2): 7, (1, 3): 7}↪→

2 Q-values in s0=(0, 3) is {0: 5.9, 1: 5.300000000000001, 2: 5.3, 3: 5.000000000000001}

i

Value function to Q-function Next, find the slide "Fundamental properties of the value
function" from today. The two operations shown in the slide are used several times
throughout [SB18], and we will therefore implement them here.

EXERCISE 9 4 April, 2025

In the first problem we will focus on the update defined for any function V :

Q(s, a) = E[Rt+1 + γV (St+1)|s, a] =
∑
s′,r

p(s′, r|s, a)(r + γV (s′))

We will assume that s is known, and the function should therefore return a dictionary Q
of the form Q = {a0 : q0, a1: q1, ...} so that Q[a] contains Q(s, a).

Implement a function that transform the V function to the Q-function as described
above.

Problem 2 Value to action-value function

Info: When done, the following code:

1 # mdp_warmup.py
2 V = {}
3 for s in mdp.nonterminal_states:
4 V[s] = s[0] + 2*s[1]
5 print("Value function is", V)
6 # Compute the corresponding Q(s,a)-values in state s0:
7 q_ = value_function2q_function(mdp, s=s0, gamma=0.9, v=V)
8 print(f"Q-values in {s0=} is", q_)

Should produce this output:

1 Value function is {(0, 1): 2, (1, 2): 5, (2, 1): 4, (0, 0): 0, (3, 1): 5, (1, 1): 3, (0, 3): 6, (2,
0): 2, (3, 0): 3, (2, 3): 8, (0, 2): 4, (3, 3): 9, (2, 2): 6, (1, 0): 1, (3, 2): 7, (1, 3): 7}↪→

2 Q-values in s0=(0, 3) is {0: 5.9, 1: 5.300000000000001, 2: 5.3, 3: 5.000000000000001}

i

Q-function to value-function In our last example, we will convert aQ-function, repre-
sented as a dictionary so that Q[s,a] is the Q-value, to a value function. We assume that
the state s is known. To do this we need a policy which we also represent as a dictionary.
In other words, pi[a] is the probability π(a|s).

Implement a function that transform the Q function to the V -function defined as:

V (s) = Eπ[Q(s, a)] =
∑

a∈A(s)

π(a|s)Q(s, a).

Problem 3 Action-value to value

EXERCISE 9 4 April, 2025

Info: When done, the following code:

1 # mdp_warmup.py
2 Q = {}
3 for s in mdp.nonterminal_states:
4 for a in mdp.A(s):
5 Q[s,a] = s[0] + 2*s[1] - 10*a # The particular values are not important in this example
6 # Create a policy. In this case pi(a=3) = 0.4.
7 pi = {0: 0.2,
8 1: 0.2,
9 2: 0.2,

10 3: 0.4}
11 print(f"Value-function in {s0=} is", q_function2value_function(pi, Q, s=s0))

Should produce this output:

1 Value-function in s0=(0, 3) is -12.000000000000002

i

5 Iterative Policy Evaluation (policy_evaluation.py)

Given a policy π, the value function vπ is a fundamental quantity in reinforcement learn-
ing as it provides an evaluation of how the policy perform in each state.

The policy pi will be implemented so that pi[s][a] is the probability that the policy
selects a in state s (see the code for how the policy is initialized).

The script contains a policy which just selects actions from a uniform distribution.
Evaluate this policy, i.e. find vπ, from an environment where the full description of
the environment’s dynamics is available. To do that, implement the policy evaluation
algorithm described in [SB18, Section 4.1]. We will use the asynchronous version
which is described in the pseudo code.

Problem 4 Policy Evaluation

EXERCISE 9 4 April, 2025

Info: When you implement policy evaluation, note that the central update is equiv-
alent to the function value_function2q_function you implemented in the previous
problem. (see [SB18, Section 4.1] and the comments in the code). Recall that what
the function does is evaluate the Q-values for a given state using value-function val-
ues:

Q(s, a) = E[r + vπ(s
′)|s, a]

Once done, you can run the code and obtain a plot of the value function for a random
policy as follows:

0 1 2 3

0
1

2
3

0 -13.9999 -19.9999 -21.9999

-13.9999 -17.9999 -19.9999 -19.9999

-19.9999 -19.9999 -17.9999 -13.9999

-21.9999 -19.9999 -13.9999 0

Value function using random policy

i

6 Policy Iteration (policy_iteration.py) /
The policy improvement theorem tells us that if we know the action-value function qπ,
we find a policy which is at least as good as π by being greedy with respect to qπ:

π′(s) = argmax
a

qπ(s, a) = argmax
a

∑
s′,r

p
(
s′, r|s, a

) [
r + γvπ

(
s′
)]

Since we just saw how to compute the value function, we can combine these two ideas
into one to get an algorithm which produces an optimal policy. This technique is known
as policy iteration.

Implement policy iteration ([SB18, Section 4.3]) to find the optimal policy for the
small gridworld example. For policy evaluation, re-use the function from section 5.

Problem 5 Policy Iteration

EXERCISE 9 4 April, 2025

Info: Your code should produce the optimal policy and value function. For the value
function, I obtain the following result:

0 1 2 3

0
1

2
3

0 -1 -1.99 -2.9701

-1 -1.99 -2.9701 -1.99

-1.99 -2.9701 -1.99 -1

-2.9701 -1.99 -1 0

Value function using policy iteration to find optimal policy

i

The policy iteration algorithm on [SB18, p. 80] has a subtle bug in that it that
the termination condition in step 3 may never be triggered even if γ < 1 and step 2
converges. Why? There are two different modifications that can fix the issue. Discuss
what they are and which you would recommend.

Problem 6 Convergence behavior

7 Value Iteration (value_iteration.py)

Value iteration merge the policy improvement step with the policy evaluation step above
to create a single algorithm which usually converge faster; the result is very reminiscent
of the DP algorithm from Lecture 2 except for a change in notation. Implement value
iteration and use it once more to solve the small gridworld example.

Implement the value iteration algorithm from [SB18, Section 4.4] and use it to eval-
uate the small gridworld example.

Problem 7 Value iteration

EXERCISE 9 4 April, 2025

Info: It should be no surprise the result of the value function should agree with the
previous exercise. Specifically you should obtain:

0 1 2 3

0
1

2
3

0 -1 -1.99 -2.9701

-1 -1.99 -2.9701 -1.99

-1.99 -2.9701 -1.99 -1

-2.9701 -1.99 -1 0

Value function obtained using value iteration to find optimal policy

i

7.1 A value-iteration agent (value_iteration_agent.py)

In this problem, you will implement an Agent that takes action based on the policy
computed by value iteration. This agent will be useful to benchmark against since it
by definition takes actions according to the optimal policy. It will also offer some nice
visualization options similar to what was used during todays lecture.

The agent you implement will compute (and store) the policy computed the method
value_iteration you implemented in section 7, and then in the policy method you should
implement a policy π (agent.pi) which:

• With probability 1− ε takes the optimal action

• With probability ε takes a random action

When ε > 0 the agent will not behave optimally – this is a bit illogical right now,
but next week we will compare against methods which contains such a parameter and
therefore it is very convenient to implement for a more fair comparison.

Complete the code for the value-iteration agent and read the code to understand
what the example does. Note that the value-iteration should take random actions
with probability epsilon . This may seem strange, but it will offer a more fair com-
parison to e.g. Q-learning as we will see in the coming weeks.

Problem 8 Value iteration agent

EXERCISE 9 4 April, 2025

Info: Once done, you should get 100% integration with the agent/environment in-
terface and nicer visualizations such as:

Note that the visualization contains a reward of +1 at the corner locations. This may
seem at odds with the definition of the environment in [SB18], but recall that our
gridworld requires the agent to take one last action in the terminal (corner) states a,
and therefore it gets a terminal reward of +1 to cancel out the movement bonus of
-1 for this last (extra) move.

aIf you really want to get into the weeds, this is in turn a good idea to get better visualizations for
the demos. Don’t overthink it; visualizations always make things a bit messy

i

8 Gambler’s problem (gambler.py)⋆

Let’s re-do the Gamblers problem described in [SB18, Example 4.3]. Read the included
description and notice in particular that the number of available actions (how much to
bet) depends on the state (players total capital).

You should implement the Gambler problem as anMDP (seemain portions of the code
above), and then your code should take care of the rest. Note there are two terminal
states : bankruptcy (s = 0) and winning s = 100. The states will therefore be S =
(0, 1, . . . , 100). Likewise, you cannot gamble more money than you have, or gamble so
much that if you win you end up with more than s = 100 units of money (use this when
you implement the action sets).

EXERCISE 9 4 April, 2025

Implement the Gambler’s problem environment and re-use your policy iteration code.
You might need to make it a bit more robust if it uses env.nA , but these changes
should be minimal. When done, check you get the same result as in the lecture
notes.

Problem 9 Gambler’s problem

Info: Reward should only be given when transitioning to the state s = 100; in all
other cases it should be zero. When the gambler is in s = 100 or s = 0 he stays that
way; apparently the world is harsh and he has good impulse control.

Once done, the value function should look as follows:

0 20 40 60 80 100
Capital

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e
Es

tim
at

es

Final value function (expected return) vs State (Capital)

0 20 40 60 80 100
Capital

0

10

20

30

40

50

Fin
al

 p
ol

icy
 (s

ta
ke

)

Capital vs Final Policy

The policy might look as above and it might not – the problem is some actions can
have same value (i.e. q(s, a) = q(s, b)) and the above figure is obtained by breaking
ties by preferring the lowest gamble. I think, however, you can rely on the s = 50, s =
25, s = 75-spikes having the same height.

i

References
[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

The MIT Press, second edition, 2018. (Freely available online).

	Conceptual problems
	Exam problem: Bellmans equations
	Preliminaries: The Markov Decision Process
	Relationships between Q, V and the MDP (mdp_warmup.py)
	Iterative Policy Evaluation (policy_evaluation.py)
	Policy Iteration (policy_iteration.py) '057
	Value Iteration (value_iteration.py)
	A value-iteration agent (value_iteration_agent.py)

	Gambler's problem (gambler.py)

