
EXERCISE 3
DP reformulations and introduction to Control

Tue Herlau
tuhe@dtu.dk

21 February, 2025

Objective: The goal of this exercise is to introduce the control model that will be used
in the remainder of the course. You will see how you can specify the dynamics, cost and
constraints, and how the control model allows you to simulate the effect of a policy. We
will also continue working with the dynamical programming algorithm. (29 lines of
code)
Exercise code: https://lab.compute.dtu.dk/02465material/02465students.git
Online documentation: 02465material.pages.compute.dtu.dk/02465public/exercises/ex03.html

Contents
1 Pen-and-paper control 1

2 Kuramoto osscilator (kuramoto.py) 2
2.1 The Kuramoto toy problem . 2

3 Implementing as a model 2

4 Pen-and-paper dynamical programming 4

5 Exam Question: Exact evaluation (inventory_evaluation.py) 5

6 A 2d toy control problem (toy_2d_control.py) 6

1 Pen-and-paper control

☞ During the lecture, I probably said we were not going to solve differential questions
during this course. Well guess what that turned out to not be completely true :-).

In this problem, we will consider a system with a 1-dimensional state x(t) and one-
dimensional control signal u(t). Assume that in our standard notation

ẋ(t) = f(x(t), u(t))

where f(x, u) = e−xu.

1

https://lab.compute.dtu.dk/02465material/02465students.git
https://
https://

EXERCISE 3 21 February, 2025

(a.) Assume the initial condition x(0) = 1 and that we apply a control signal u(t) = 2t.
Determine x(t) for t > 0. What is x(1)? 1

(b.) Continuing the problem, suppose the cost function is:

cost =
∫ tF

0

ex(t)dt

Determine the total cost as a function of tF when the control signal in the previous
problem is applied.

2 Kuramoto osscilator (kuramoto.py)

☞The code in this section of the course will follow the same pattern as was the case
of the dynamical programming algorithm, i.e., each model is defined in a single class
(ControlModel), which is then used for subsequent tasks. I recommend looking at the
online documentation (linked at the top of the document) which contains examples of
all functions.

2.1 The Kuramoto toy problem
Assume that x(t) ∈ R and u(t) ∈ R are one-dimensional. The so-called Kuramoto oscil-
lator is defined by the following differential equation: 2

dx(t)

dt
= u(t) + cos(x(t))

If we write this in our standard notation it looks as follows:

ẋ = f(x, u) = u+ cos(x). (1)

We will assume that the cost function is just:

{cost} =
1

2

∫ tF

0

u(t)2dt

and that the system is subject to the constraint that −2 ≤ u(t) ≤ 2. The next sections
will show how to implement and discretize this model.

3 Implementing as a model
The model keeps track of the actual differential equation (i.e. f), constraints, cost func-
tion, and allows us to simulate it exactly using RK4. Excluding the parts you have to
implement, the code for the model looks as follows:

1Hint: This is a problem of plugging in what you know in the first equation. You will end up with a
differential equation. Although you can ask Maple to solve it, I recommend giving it a try yourself first.

2This problem is an instance of a (simplified) Kuramoto oscillator https://en.wikipedia.org/wiki/
Kuramoto_model, but that is not important. I have chosen it because it is a very simple, non-linear model.

https://en.wikipedia.org/wiki/Kuramoto_model
https://en.wikipedia.org/wiki/Kuramoto_model

EXERCISE 3 21 February, 2025

1 # kuramoto.py
2 class KuramotoModel(ControlModel):
3 def u_bound(self) -> Box:
4 return Box(-2, 2, shape=(1,))
5

6 def x0_bound(self) -> Box:
7 return Box(0, 0, shape=(1,))
8

9 def get_cost(self) -> SymbolicQRCost:
10 return SymbolicQRCost(Q=np.zeros((1, 1)), R=np.ones((1,1)))
11

12

13 def sym_f(self, x: list, u: list, t=None):
14 # define the symbolic expression
15 return symbolic_f_list

The code sets up the boundary conditions on x and u and a cost function (see the
online documentation).

The cost function is handled similar to the dynamics (as a symbolic expression). You
can specify the matrices and vectors in the constructor of the SymbolicQRCost – more on
this next week.

To specify the dynamics, you have to complete the def sym_f function. Insert a break-
point and check what u and x is. We use the conventions that vectors are list, that is,
x and u are in this case singleton lists, and you have to return a singleton list with a
symbolic expression eq. (1).

Implement the symbolic expression in the Kuromoto model. Then complete the func-
tion def f(x,u) which computes the dynamics using the symbolic model. This func-
tion should create a KuramotoModel object and then call the def f(x,u) -function de-
fined in the model to compute the answer.

Problem 1 Implement the continuous-time version of the Kuramoto model

Info: Use the previous problem to see how symbolic expressions are specified in
sympy. Check the output below.

1 Value of f(x,u) in x=2, u=0.3 [-0.11614684]
2 Value of f(x,u) in x=0, u=1 [2.]

i

The next parts of the code will try to simulate the function def f you just imple-
mented using a the highly-accurate RK4 simulation and while applying a constant action

EXERCISE 3 21 February, 2025

u(t) = u0. Your job is to implement RK4 and compare to the version already implemented
in the framework; when you are done, your result should obviously agree:

Implement RK4 as described in [Her25, algorithm 18]. Note that in your version,
def f(x,u) does not depend on t and that u(t) is a constant, which simplifies RK4.
The function should return lists of all simulated states and times xk and tk. Note how
the model, defined in continuous_time_model.py , contains a working implementation
you can glance at if you are stuck.

Problem 2 RK4 simulation

Info: When done a plot of action and state sequences looks as follows:

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

2

4

6

8

10

12

14

16

RK4 state sequence x(t) (using model.simulate)
RK4 state sequence x(t) (using your code)

i

4 Pen-and-paper dynamical programming
Consider a dynamical programming problem where it is known that:

fk(xk, uk, wk) = 2e(xk+wk−uk)
2

gk(xk, uk, wk) = (xk + wk − uk)
2

gN(xN) = log xN

We also assume that wk ∼ N (0, 1) (i.e. a normal distribution with unit variance).

(a.) We wish to apply the DP algorithm to this problem, and we consider the first step
where k = N − 1. Why is the expression:

Q(x, u) = Ew

[
gN−1(x, u, w) + JN(fN−1(x, u, w))

]
of particular relevancy? Make sure you understand how it arises from the DP algorithm.
(b.) Evaluate the expectation and determine a closed-form expression for Q(x, u) (Hint:
Don’t use maple. The integral is not supposed to be scary).

EXERCISE 3 21 February, 2025

(c.) Determine the optimal policy µN−1(xN−1) (i.e., only for time k = N − 1) various

(d.) Determine the optimal cost function JN−1(xN−1)

(e.) Assume that we used a noise distribution with standard deviation σ, i.e. that

wk ∼ N (0, σ2).

How does this choice change µN−1?. How would this affect JN−1(xN−1)?.

(f.) The change to µN−1 is particularly interesting and perhaps somewhat paradoxical –
discuss what it means in practical terms in the limit where σ is very large (Hint: We will
see something very similar when we discuss LQR in a few weeks).

When you solve these problems I recommend that you avoid maple: If you end up with an
expression maple would genuinely help you with, you are probably doing it wrong!

5 ExamQuestion: Exact evaluation (inventory_evaluation.py)
This problem exclusively focuses on the inventory control problem discussed in [Her25,
section 5.1.2]. The inventory control model and the dynamical programming algorithm
is included in the exam folder.

The dynamical programming algorithm determines the optimal cost-to-go function
J∗
k for a dynamical programming problem as a list of dictionaries. We are interested in

building a variant of the DP algorithm which computes the expected tail cost of a policy
Jπ,k(xk), also represented as a list of dictionaries.

• The problem itself will be represented as a DPModel instance

• The policy π = (µ0, µ1, . . . , µN−1) is represented in the usual way as a list of length
N−1. Each element of this list corresponds to a µk and is represented as a dictionary
which maps states to actions

(a.) Complete def a_expected_items_next_day(x : int, u : int) : This function is given
the starting state x0 and the first action u0, and computes the expected value of the
next state x1:

E
[
x1|x0, u0

]
.

I.e., the function computes the expected amount of goods in the warehouse on day 1
given information about how much was in the warehouse on day 0 and how much we
ordered u0. Hint: Recall that x1 = f0(x0, u0, w0) where w0 is the random noise disturbance
at time step k = 0.

(b.) Complete def b_evaluate_policy(pi : list, x0 : int) : This function is given a pol-
icy π in the beforementioned format and a starting state x0 and compute the expected
tail cost Jπ,0(x0) when starting in state x0 at time k = 0 and subsequently taking actions
according to π. Hint: You may find [Her25, section 6.3.1] to be of help.

EXERCISE 3 21 February, 2025

6 A 2d toy control problem (toy_2d_control.py)
Consider a control problem where a control signal u(t) ∈ R is applied to a variable
w(t) ∈ R. The variable measures an angle, and it satisfies the following differential
equation:

ẅ = cos (u+ w) (2)

We introduce a state x(t) =

[
w(t)
ẇ(t)

]
which allows us to re-write the system in the usual

way as a first-order differential equation:

ẋ(t) = f(x(t), u(t)) (3)

(a.) Determine the function f above:

f(x,u) = . . .

(b.) Suppose our goal is to bring the system to an angle w = π
2
(where it should remain),

corresponding to the goal state x∗ =

[
π
2

0

]
.

If we succeed at bringing the system to this target state x∗ at time t′, how much control
u(t′) do we subsequently need to apply to keep the system at w(t) = π

2
?

(c.) Consider the system written as eq. (3). Suppose we initialize the system in state
x∗ and apply a constant control signal u(t) = u0 for T seconds. Complete the function
toy_simulation(u0, T) which should return the angle the system will be in, w(T), after
T seconds of RK4 simulation.
Hint: You must have solved problem (a). Similar to the Kuramoto-example, implement a
ControlModel and use the model.simulate -function. When done, you will get the state x(T)
as a numpy ndarray . The first coordinate will be w(T).

Info: When done, your program should produce this output:

1 Starting in x0=[pi/2, 0], after T=5 seconds the system is an an angle
wT=np.float64(1.265264700821797) (should be 1.265)↪→

i

References
[Her25] Tue Herlau. Sequential decision making. (Freely available online), 2025.

	Pen-and-paper control
	Kuramoto osscilator (kuramoto.py)
	The Kuramoto toy problem

	Implementing as a model
	Pen-and-paper dynamical programming
	Exam Question: Exact evaluation (inventory_evaluation.py)
	A 2d toy control problem (toy_2d_control.py)

