EXERCISE 2
Dynamical Programming

Tue Herlau
tuhe@dtu.dk

14 February, 2025

Objective: The goal of this exercise is to introduce the dynamical programming (DP)

algorithm in its most general form (backward-dp). To practically implement it, we need

to introduce a model-class to represent the various terms in the DP problem such as f;

and g,. (36 lines of code)

Exercise code: https://lab.compute.dtu.dk/02465material/02465students.git

Online documentation: | 02465material.pages.compute.dtu.dk/02465public/exercises/ex02.html

Contents

|1 Conceptual question: A windy walk on the line] 1

12 A deterministic variant of the inventory-control problem (deterministic_inventpry.py)

] 2
13 Implementing deterministic DP (dp.py) | 3
4 Implementing stochastic DP (inventory.py) | 4
|5 Exam question: Counting states| 5
6 The DP agent (dp_agent.py)| 6
7 Exam question: The flower-store (flower_store.py) XX 6

1 Conceptual question: A windy walk on the line

Consider a simple game where the agent can walk right and left on a line, but is some-
times blown one step by wind.

We formally define this as consisting of states S, =7Z = {...,—2,-1,0,1,2,...} and
in each state take an actions Ay (xx) = {—1, 1} (i.e., move right or left). When the agent

https://lab.compute.dtu.dk/02465material/02465students.git
https://
https://

EXERCISE 2 14 February, 2025

takes an action, what happens is that our simulation of the environment generates m
random numbers:

U1, ..o, € {0, 1}
(generated i.i.d. with probability 0.5). Suppose we let

wk:U1+U2+"'+Um
and the update rule is then simply
Tr1 = fr(@k, U, W) = Tp + up, + Wi

For instance, if m = 2 and we go right u; = 1, but the wind blow us as v; = 0 and v, = 1
the next state is:

Tprr =+ 14+ (0+1) =z, + 2.
(a@.) Assume that m = 1. Determine Py (wy|xy, u)
(b.) Assume that m = 2. Determine Py (wy|xy, uy)

(c.) Assume that m = 1, and that we select
Trr = fi(@r, up, wy,) = wy,.

Determine a suitable choice for the noise distribution Py (wj |z, us) so that this new
model is in fact equivalent to the one considered in the two first questions. (Hint: As the
notation indicate, you need to re-define what values wj, can take).

The last formulation, i.e. setting f.(zy, ux, wy) = w; and letting py, do all the work,
is in fact how we will end up addressing the Pacman problem in project 1.

2 A deterministic variant of the inventory-control prob-
lem (deterministic_inventory.py)

This section will consider a deterministic variant of the inventory-control problem which
we will use in the next exercise when we implement a simpler (deterministic) variant of
the DP algorithm (but don’t worry, we will get to the full version soon!).

The inventory-control problem you will consider here has the same dynamics and
cost-function, but we assume that the number of customers on day k is exactly w, = k+1.
In the language of probabilities it means wy, can take one value, k£ + 1, with probability
1:

Your task is to implement this variant of the inventory environment. To do that start
with the file deterministic_inventory.py . The model inherits from our general inventory
model given below; once all functions are filled out correctly, the model is complete and
can be used for dynamical programming later.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

EXERCISE 2 14 February, 2025

dp_model.py
class DPModel:

def

def

def

def

def

def

def

__init__(self, N):
self.N = N # Store the planning horizon.

f(self, x, u, w, k: int):
raise NotImplementedError("Return f_k(x,u,w)")

g(self, x, u, w, k: int) -> float:

raise NotImplementedError("Return g_k(x,u,w)")

gN(self, x) -> float:

raise NotImplementedError("Return g N(x)")

S(self, k: int):

raise NotImplementedError("Return state space as set S_k = {x_1, x_2, ...}")

A(self, x, k: int):
raise NotImplementedError("Return action space as set A(x_k) = {u_1, u_2,

N A

Pw(self, x, u, k: int):

Compute and return the random notse disturbances here.

As an example:

return {'w_dummy': 1/3, 42: 2/3} # P(w_k="w_dummy") = 1/3, P(u_k =42)=2/3.

ﬁ[Problem 1 Deterministic inventory controlj ~

Implement the (deterministic) model by making sure the pw(self, x, u, k) func-
tion is filled out correctly. It should return a dictionary, with one element, that rep-
resents the deterministic dynamics. You can find a complete implementation of the
inventory-control problem (with probabilities) near the end of today’s slides.

i]
| Info:

Use the tests to check your implementation.

3 Implementing deterministic DP (dp.py)

The main goal today is to implement the dynamical programming algorithm. We will
first implement a simpler version suitable for deterministic problems (and test it on the
deterministic inventory control problem from the previous exercise) and then later gen-
eralize it to the complete case.

EXERCISE 2 14 February, 2025

Since we consider a deterministic variant of the DP algorithm, this means that you
can ignore the noise terms w. Concretely, in the DP algorithm [Her25, algorithm (1] line
9-12 can be simplified to:

Qu = gr(Th, U, 0) + Jip1 (fr(zr, ug, 0))

ﬁ(Problem 2 Deterministic DP] N

Implement the DP algorithm as described in [Her25| algorithm[1]], using comments
in the exercise and in the pseudo code. I recommend that you first implement the
version described in [Her25} section [6.2.1]] where the above simplification is applied
to line 9-12.

Verify the first steps of the solution agrees with the expected output; if one of the
cost function terms Ji(z) differ, you have a mistake!

Info: Since the DP algorithm starts at & = N and proceeds backwards you should
focus on the first £ where the output differs from the expected output in [Her25, sec-
tion[6.2.1]]. Carefully follow the standard debugging recipe of using breakpoints/step-
ping the code to find the first time a quantity is updated wrongly, then figure out why
it is updated wrongly, and fix the problem. When done, you should obtain the fol-
lowing output:

1l J_o(0) = 6.0, J_0(1) = 5.0, J_0(2) =5.0
2| J_1(0) = 5.0, J_1(1) = 4.0, J_1(2) = 3.0
3| J_2(0) = 3.0, J_2(1) = 2.0, J_2(2) = 1.0
4/ J_3(0) = 0.0, J_3(1) = 0.0, J_3(2) = 0.0
5

Total cost when starting in state x_0 = 2: J[0][2]=5 (and should be 5)

Any differences means you have a bad implementation and the following exercises
will fail.

4 Implementing stochastic DP (inventory.py)

Once done, we can increase the complexity slightly by including the noise distribution
(obviously, you might have implemented this already, but now we will test it). Recall we
represent the noise distribution as a dictionary: {..., w:pw, ...} . The implementation
should be quite similar to the above, except it should include an extra loop to account
for the average over the noise parameters, see [Her25, algorithm [1]]. If you are having
problems debugging the code, consult [Her25, section for a detailed example of
the intermediate states of the algorithm.

EXERCISE 2 14 February, 2025

—(Problem 3 Stochastic DP) §

* First complete the function pw in inventory.py . The functions should return
the random noise disturbances and their probabilities as a dictionary (see the
online documentation).

* Next, ensure your DP algorithm implementation in dp.py includes the loop
over noise terms. When done, run the code and inspect the output to get a
sense of how it represents the optimal policy and value function.

Info: The code should produce the following output

1] Inventory control optimal policy/value functions

2 J_0(x_0=0) = 3.70, J_0(x_0=1) = 2.70, J_0(x_0=2) 2.82
3 J_1(x_1=0) = 2.50, J_1(x_1=1) = 1.50, J_1(x_1=2) 1.68
4 J_2(x_2=0) = 1.30, J_2(x_2=1) = 0.30, J_2(x_2=2) =1.10

s| pi_0(x_0=0) = 1, pi_0(x_0=1) = 0, pi_0(x_0=2) =0
6] pi_1(x_1=0) =1, pi_1(x_1=1) = 0, pi_1(x_1=2) =0
71 pi_2(x_2=0) =1, pi_2(x_2=1) = 0, pi_2(x_2=2) = 0

5 Exam question: Counting states

Suppose the Dynamical Programming algorithm is applied to a problem where the fol-
lowing is known:

* N=10
* The size of the action spaces are |Ay(x)| = 4
 The size of the states spaces are |Sy| = 1, |Sy| = 2 and otherwise |Si| = 10

* There are exactly two random noise disturbances, w = 0 and w = 1, available in
any state/action combination:

Py (w = 0]z,u) = Py (w = l|zg, ug) = %
How many times does the dynamical programming algorithm need to evaluate f; in
order to find the optimal policy?
a. 736
b. 744
c. 730

EXERCISE 2 14 February, 2025

d. 728

e. Don’t know.

6 The DP agent (dp_agent.py)

We are now ready to build the first serious agent, namely an agent which plan using the
DP algorithm. In other words, we need both an environment, and a DP model that corre-
sponds to that environment. The agent should then plan using the dp model to obtain an
optimal policy 7+ = {u}},', and then in step k use policy function p. Since the Inven-
tory control problem is the only one where we both have a model and an environment

it will provide a good testbed. Once done, the interaction will look as follows:

dp_agent.py

env = InventoryEnvironment (N=3)

inventory_model = InventoryDPModel (N=3)

agent = DynamicalProgrammingAgent (env, model=inventory_model)

stats, _ = train(env, agent, num_episodes=5000)

Problem 4 Dynamical Programming Agent}

Implement the missing functionality from the DP agent. Once done, verify the (sam-
ple estimate) of the optimal value function agrees with the (exact) DP result.

Info: You should expect the following output:

1| Estimated reward using trained policy and MC rollouts -3.6964
2| Reward as computed using DP -3.6999999999999997

Having to specify both an agent and an environment, when it is quite apparent we can
derive the environment from the agent, is obviously not ideal. Subsequent exercises will
fix this problem.

7 Exam question: The flower-store (flower_store.py) ¥¥

This problem focuses on a variant of the inventory control problem discussed in [[Her25,
section|5.1.2]]. This inventory problem represents a flower-store such that z;, denotes the

EXERCISE 2 14 February, 2025

number of flower bouquets in stock at planning round k. The original inventory control
model and the dynamical programming algorithm is included in the exam folder.

The following tasks can be solved by implementing suitable variants of the inventory
control problem, and then applying dynamical programming to determine the optimal
policy 1§ (zo) and cost-function J*(z,) in the starting state.

The flower store problem is equivalent to the inventory control problem on a horizon
of N with two changes{}

* gr(Tg, uk, wi) = cu+ |z, + up — wy|

* The distribution of the number of items customers buy wy, is:

pW(wk = O]xk,uk) = 01, pW(wk = 1|xk,uk) = 03, pW(wk = 2|xk,uk) = 06

(a.) Complete def a_get_policy(N: int, c: float, x0 : int) : This function is given a value
of N, c and a starting state x, and should return the action the optimal policy computes
in xg, i.e. ui(xp), as an int .

(b.) Complete def b_prob_one(N : int, x0 : int) : For every policy and starting state z,
there is a certain chance p(xy = 1|xy) we will end up with a single item (bouquet) on the
last day NV when following the policy. The clerk operating the store would very much like
to bring this last bouquet home with her, and so she is solely concerned with determining
the policy which maximize p(xy = 1|zy), i.e. the chance she can bring home a single
bouquet at the end of the planning period.

Determine what this chance is when we follow the policy which is solely concerned with
with maximizing the chance that zy = 1. The function should accept N and z, as input
argument, and return the value of p(xy = 1|xy) as a float .

Hint: Alter the cost-functions so that the optimal solution maximize this probability. The
Pacman-problem where the winning probability is computed may provide inspiration.

References

[Her25] Tue Herlau. Sequential decision making. (Freely available online), 2025.

1The expression |x| return the absolute value, i.e. |4 = | — 4| = 4

	Conceptual question: A windy walk on the line
	A deterministic variant of the inventory-control problem (deterministic_inventory.py)
	Implementing deterministic DP (dp.py)
	Implementing stochastic DP (inventory.py)
	Exam question: Counting states
	The DP agent (dp_agent.py)
	Exam question: The flower-store (flower_store.py) '057'057

