
EXERCISE 12
Eligibility traces

Tue Herlau
tuhe@dtu.dk

2 May, 2025

Objective: Todays exercise will take a closer look at both value function approxima-
tions and value-function based methods. We will look at eligibility traces, which can be
though of as a way to interpolate between shallow value-function based methods such
as TD(0) and Monte-Carlo methods, and can be applied to both estimation and control.
In addition, eligibility traces allows the so-called backwards view, in which we can over-
come the need to keep an annoying buffer of past observations as we had to in n-step
estimation last week. (28 lines of code)
Exercise code: https://lab.compute.dtu.dk/02465material/02465students.git
Online documentation: 02465material.pages.compute.dtu.dk/02465public/exercises/ex12.html

Contents
1 Conceptual question 2

2 Sarsa(λ) (sarsa_lambda_agent.py) 2
2.1 Sarsa(λ) in the gridworld environment (sarsa_lambda_open.py) 3

3 Linear approximators and multi-step methods 4
3.1 Semi-gradient Sarsa(λ) (semi_grad_sarsa_lambda.py) 4
3.2 Semigrad n-step Sarsa (semi_grad_nstep_sarsa.py)// 6

4 A closer look at the mountain car example (mountaincar.py)// 7

1

https://lab.compute.dtu.dk/02465material/02465students.git
https://
https://

EXERCISE 12 2 May, 2025

1 Conceptual question

☞Solve [SB18, Problem 12.1]: Just as the return can be written recursively in terms of the
first reward and itself one-step later [SB18, Equation 3.9], so can the return. Derive the
analogous recursive relationship from [SB18, Equation 12.2] and [SB18, Equation 12.1].

2 Sarsa(λ) (sarsa_lambda_agent.py)

The disadvantage of the n-step methods is they require us to keep track of the past state
history, they have a fairly complicated update history, and that we have to choose one
particular n. The eligibility trace based methods (λ-methods) does away with the n by
keeping an eligibility trace. In [SB18] the Sarsa method is introduced in the context of
value-function approximations, but we will first consider the case without value function
estimators as it is easier to implement and understand.

The eligibility trace is a fairly simple mechanism which just keeps track of previous
states visited by the learning method. The method we will implement is given here in
the first version of [SB18]: http://incompleteideas.net/book/first/ebook/node77.
html. Note there is a typo in the book: Whenever the episode terminates, the eligibility
trace has to be cleared, i.e. all elements set to zero.

The eligibility trace itself, e(s, a), is indexed the same way as the Q-values Q(s, a),
and we will therefore re-use the datastructure for ease.

Note that Sarsa(λ) share many similarities with Sarsa, and it is worth comparing to
that implementation for ideas. For instance, we can directly re-use the policy function.
As an additional note, the implementation referenced above has a slight defect, in that
the eligibility trace is not reset. We have included that step in the existing code.

Complete the implementation of the Sarsa(λ) agent and test it on the cliffwalking
environment.

For low learning rates, the Sarsa(λ) controller is superior to the regular Sarsa
method, however this result, at least on this environment, does not hold for larger
learning rates. Can you explain why?

Problem 1 Sarsa(λ)

http://incompleteideas.net/book/first/ebook/node77.html
http://incompleteideas.net/book/first/ebook/node77.html

EXERCISE 12 2 May, 2025

Info: My results, based on 10 runs, are as follows:

0 100 200 300 400 500
Episode

100

80

60

40

20

0
Ac

cu
m

ul
at

ed
 R

ew
ar

d

(2x)CliffWalking-v0_SarsaL
(2x)CliffWalking-v0_Sarsa

i

2.1 Sarsa(λ) in the gridworld environment (sarsa_lambda_open.py)

This is a bit of a strange exercise because it does not involve implementing any code.
Instead, run the script and note the first part instantiates a Sarsa(λ) agent in a (open)
gridworld environment with a single +1 reward in the bottom right corner (same ex-
ample as we have seen in the lectures). The first part evaluates the Sarsa(λ) agent for a
few episodes and save the result as a pdf file, while the second allows you to specify the
actions of the agent using the keyboard.

The way this works is (effectively) that we over-write the def pi -method with the
actions from the keyboard, and these same actions (along with states and rewards) are
then passed onto the train -function. This works okay-ish for a quick demo, but it is not
actually robust: It will sometimes lead to the wrong updates of the Q-values. You can
always let the agent play (or stop) by pressing p .

Run the keyboard player. Why does the keyboard player sometimes (but not always!)
lead to wrong Q-value updates? (wrong is in the sense that given the trajectory of
the agent, we would expect the Q-values to change differently). Can you make an
example with keyboard input where the Q-values are updated incorrectly? Is Q-
learning susceptible to the same problem?

Discuss what would potentially need to change to fix the issue.

Problem 2 Sarsa(λ) and the open gridworld

EXERCISE 12 2 May, 2025

Info: The problem has to do with where in the code the actions are actually gener-
ated. The output of the first part of the script will be highly variable, however one
run looks as follows:

i

3 Linear approximators and multi-step methods

We will now combine the n-step Sarsa and Sarsa(λ)methods with linear feature approx-
imators. This is an important step towards combining deep learning and value-function
based approximation, however we will postpone this work to next week because of the
increased complexity of introducing a deep learning framework.

Implementation-wise Sarsa(λ)with linear approximators is very reminiscent to Sarsa(λ)
(above) and the semi-gradient version of Sarsa we saw last week, i.e. it is recommended
to complete these exercises first.

3.1 Semi-gradient Sarsa(λ) (semi_grad_sarsa_lambda.py)

We will now generalize the Sarsa(λ) method to include linear feature approximators
(binary features). Note there are different (and very similar) variants in [SB18] of this
method, and we will particular consider the last algorithm in [SB18, Section 12.7], just
before section 12.8. See also todays lecture slides.

EXERCISE 12 2 May, 2025

Complete the implementation of the semi-gradient Sarsa(λ) agent and test it on the
mountain-car example. Produce plots where multiple runs are averaged and where
the individual plots are considered.

Problem 3 Semi-gradient Sarsa(λ)

Info: I obtain the following result:

0 50 100 150 200 250 300
Episode

100

150

200

250

300

350

400

450

500

Le
ng

th

(5x)mountaincar_sarsaL

Once more it is informative to consider the individual runs reproduced below:

0 50 100 150 200 250 300
Episode

100

150

200

250

300

350

400

450

500

Le
ng

th

(5x)mountaincar_sarsaL

we see a tendency that much of the performance is driven by outliers, and Sarsa-λ
appears slightly better than the alternative methods. However, we would need to
check multiple environments and settings of parameters to make sure this is a robust
effect.

i

EXERCISE 12 2 May, 2025

3.2 Semigrad n-step Sarsa (semi_grad_nstep_sarsa.py)//

For completeness, we will also combine the n-step Sarsa method from the past week with
linear value function approximations. This problem is not exam relevant.

If we carefully comparing the method we will implement, [SB18, Section 10.2], with
the version from last week ([SB18, Section 7.2]) will reveal the only meaningful changes
when we change from tabular to linear methods are when the value functions q̂w(s, a)
are computed and the weights are updated using the gradient ∇q̂w(s, a) = x(s, a), i.e.
as in the substitution from a tabular update rule:

Q(s, a)← Q(s, a) + α(G(n) −Q(s, a))

to a weight-based update rule:

w ← w + α(G(n) − q̂w(s, a))∇q̂w(s, a) (1)

In other words, we can simply think of this as the n-step algorithm but with these two
changes.

There are twoways to proceed: either copy-paste the code from last time (and include
these two changes), or combine the existing methods using inheritance and re-use the
existing code. As the later is the two-line solution, it is what we will pursue here.

Our solutionwill inherit from both the SarsaNAgent (to get the correct trainingmethod)
and LinearSemiGradSarsa (to get the q̂ data-structure) and the full constructor looks as
follows:

1 # semi_grad_nstep_sarsa.py
2 class LinearSemiGradSarsaN(SarsaNAgent, LinearSemiGradSarsa):
3 def __init__(self, env, gamma=0.99, alpha=0.5, epsilon=0.1, q_encoder=None, n=1):
4 """
5 Note you can access the super-classes as:
6 >> SarsaNAgent.pi(self, s) # Call the pi(s) as implemented in SarsaNAgent
7 Alternatively, just inherit from Agent and set up data structure as required.
8 """
9 SarsaNAgent.__init__(self, env, gamma, alpha=alpha, epsilon=epsilon, n=n)

10 LinearSemiGradSarsa.__init__(self, env, gamma, alpha=alpha, epsilon=epsilon,
q_encoder=q_encoder)↪→

From this, it is a matter of delegating the calls in SarsaNAgent which has to do
with either invoking the policy pi(s) or accessing/updating the self.Q[s][a] -values
to functions which we can overwrite and implement using the data structure defined
in LinearSemiGradSarsa . These methods are def _q(self, s, a) (which returns Q(s, a))
and def _upd_q(self, s, a, delta) (which performs the update to the weight-vector as
in eq. (1)). In other words, first re-factor the SarsaNAgent to only use these methods,
then implement our version of these methods which uses the linear feature approximator
in LinearSemiGradSarsaN .

EXERCISE 12 2 May, 2025

Complete the implementation of the semi-gradient n-step Sarsa agent from [SB18,
Section 10.2] and evaluate it on the Mountain-car task. I did not tune the learning
rate α, and other choices might produce superior results.

Problem 4 Semigrad n-step Sarsa

Info: I get the following results:

0 50 100 150 200 250 300
Episode

100

150

200

250

300

350

400

450

500

Le
ng

th

(10x)mountaincar_semigrad_q
(10x)mountaincar_Sarsa
(5x)mountaincar_sarsaL
(10x)mountaincar_SarsaN

However, note these results can probably be improved by tweaking α and seem to be
quite driven by poor runs.

i

4 A closer look at themountain car example (mountaincar.py)
//

It should now be possible to reproduce the results of MountainCar example. Plots to
reproduce four of the figures in chapter 10 can be found in mountaincar.py, but for this
problem we will focus on a simple comparison of our three methods which use linear
interpolation from [SB18, Figure 10.3]. Note the problem is entirely about calling our
methods with the correct parameters, however it might be helpful for the projects as it
contains code to visualize the value function etc.

Perform comparison of Q, Sarsa, n-step Sarsa, and Sarsa(λ) on the mountaincar
task.

Problem 5 Comparing methods on MountainCar

EXERCISE 12 2 May, 2025

Info: I obtain the following result:

0 100 200 300 400 500
Episode

100

200

300

400

500

St
ep

s p
er

 e
pi

so
de

MountainCar500 - Semigrad N-step Sarsa - Figure 10.3
(2x)mountaincar_10-2_LinSemiGradSarsaN1_0_0.0625_1_500
(2x)mountaincar_10-2_LinSemiGradSarsaN1_0_0.0375_8_500
(2x)mountaincar_10-2_LinearSarsaLambda_1_0_0.0375_0.9_500
(2x)mountaincar_10-2_LinearSemiGradQ1_0_0.0375_500

Note these results are sensitive to learning rates, etc. and you can likely improve
by using different settings; if the results can be severely overturned, please let me
know.

i

References
[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

The MIT Press, second edition, 2018. (Freely available online).

	Conceptual question
	Sarsa() (sarsa_lambda_agent.py)
	Sarsa() in the gridworld environment (sarsa_lambda_open.py)

	Linear approximators and multi-step methods
	Semi-gradient Sarsa() (semi_grad_sarsa_lambda.py)
	Semigrad n-step Sarsa (semi_grad_nstep_sarsa.py) '057'057

	A closer look at the mountain car example (mountaincar.py) '057'057

