
EXERCISE 10
Monte-carlo methods and TD learning

Tue Herlau
tuhe@dtu.dk

11 April, 2025

Objective: Although the dynamic programming tools to solve a known MDP by evaluat-
ing the policy and optimizing it, many real world problems come with (partly) unknown
dynamics. Today we’ll therefore learn how to use model-free prediction to estimate the
value function of an unknownMDP using Monte Carlo methods and Temporal-Difference
Learning. (48 lines of code)
Exercise code: https://lab.compute.dtu.dk/02465material/02465students.git
Online documentation: 02465material.pages.compute.dtu.dk/02465public/exercises/ex10.html

Contents
1 Conceptual question: First and every visit 1

1.1 The single-state example . 2

2 Monte-Carlo evaluation (mc_evaluate.py) 3
2.1 Examining first and every-visit/ . 5

3 Exam question: Monte-Carlo control 6
3.1 Monte Carlo Control (mc_agent.py) . 6

4 Incremental updates using α// 7

5 Temporal Difference 8
5.1 Implement TD(0) (td0_evaluate.py) 8

6 Exam question: Batched TD(0) (question_td0.py) 9

1 Conceptual question: First and every visit

☞ First visit and every visit Monte-Carlo will both estimate the value-function accurately
given enough episodes, however, this is by no means obvious since it is easy to construct
examples where every-visit is clearly biased. I found this confusing, since I felt I must

1

https://lab.compute.dtu.dk/02465material/02465students.git
https://
https://

EXERCISE 10 11 April, 2025

have misunderstood what every and first-visit Monte Carlo did, and I found it helpful
to work through an example that shows they indeed agree. Asides that, there are a few
other reasons to stick through the calculation:

• First and every-visit Monte Carlo are not the most fun methods to implement due
to bookkeeping, so therefore working with them theoretically is perhaps better.

• Our subsequent methods will resemble every-visit in that they perform an update
every time a state is visited so therefore this is a fairly important result.

• It provides good practice in the terminology in [SB18]
• The derivationwhich uses the geometric series resemble other arguments in [SB18].

1.1 The single-state example

s1 s2R = 1, p R = 1, 1− p

Figure 1: A simple MRP with one non-terminal state s1 and one terminal state. With
probability p the process stay in s1 and with probability 1− p it jumps to s2, and in each
jump it gets a reward of Rt = 1.

Consider the MRP shown in fig. 1.
• There is a single normal state s1 and one terminal state s2

• In each step, the agent obtains a reward of Rt+1 = 1

• With probability p, the agent stay in s1, and with probability 1−p the environment
terminates

This means that for an episode of length T = 3, the states and rewards are:

S0 = s1, S1 = s1, S2 = s1, S3 = s2, and R1 = R2 = R3 = 1.

Note that we visited s1 exactly T times. We are interested in estimating the value-function
using first and every visit Monte-Carlo, and in both cases the value function is estimated
as an average of the returns (see [SB18, Algorithm 5.1]). We write this average as:

V first(s1) = Average(Returns(s1)) =
Sfirst(s1)
Nfirst(s1)

(1)

Where Nfirst(s1) are the number of returns in the average and Sfirst(s1) is the sum of the
returns. Similarly we define the estimate for every visit as:

V every(s1) =
Severy(s1)
N every(s1)

Thus, when we analyze the methods, all we need to keep track of is how S and N are
updated.

EXERCISE 10 11 April, 2025

When solving the following problems, the only tool you need is the famous Geometric
series1:

1 + a+ a2 + a3 + · · ·+ an =
n∑

k=0

ak =
1− an+1

1− a

(a.) For a single episode of length T , show that the accumulated reward using first-visit
Monte Carlo is (see Todays lecture)

Sfirst(s1) =
1− γT

1− γ
, Nfirst(s1) = 1

(b.) For a single episode of length T , using the every-visit estimator, show that the esti-
mated return is

Severy(s1) =
1

1− γ

[
T − γ

1− γT

1− γ

]
, N every(s1) = T

Hint: How many times do we visit s1?
(c.) How can we see that every-visit is biased when m = 1?
(d.) Suppose we record m episodes of length T1, T2, . . . , Tm. What are the values of
Sfirst(s1) and Nfirst(s1) in this case?
(e.) Suppose we record m episodes of length T1, T2, . . . , Tm. What are the values of
Severy(s1) and N every(s1) in this case?

(f.) challenge We want to show that Sfirst(s1)
Nfirst(s1)

≈ Severy(s1)
Nevery(s1)

when m is large. To do that we
need a few more details about the problem. You can assume (and possibly, derive?) that

p(T) = (1− p)pT−1, T = 1, 2, . . . ,

Assume (or show!) that E[T] = 1
1−p

. Use this to argue why m
Nevery(s1)

≈ 1 − p when m is
large.

(g.) Assume (or show!) that E[γT] = γ 1−p
1−γp

. Use this to argue that Sfirst(s1)
Nfirst(s1)

= Severy(s1)
Nevery(s1)

when m → ∞.

2 Monte-Carlo evaluation (mc_evaluate.py)
The first task we will consider is how to evaluate a policy π using the MC method, i.e. es-
timate the value function vπ(s) using a fixed policy. The only difference from the learning
setting is that the agent does not try to change the policy π.

To implement our agents, I have adopted the Agent class to allow us to fix the policy. If
this argument is not set, the agent will take random actions. Our basic policy-evaluation
agent looks like this:

1https://en.wikipedia.org/wiki/Geometric_series.

https://en.wikipedia.org/wiki/Geometric_series

EXERCISE 10 11 April, 2025

1 # rl_agent.py
2 class ValueAgent(TabularAgent):
3 def __init__(self, env, gamma=0.95, policy=None, v_init_fun=None):
4 self.env = env
5 self.policy = policy # policy to evaluate
6 """ self.v holds the value estimates.
7 Initially v[s] = 0 unless v_init_fun is given in which case v[s] =

v_init_fun(s). """↪→

8 self.v = defaultdict2(float if v_init_fun is None else v_init_fun)
9

10 def pi(self, s, k, info=None):
11 return TabularAgent.pi(self, s, k, info) if self.policy is None else

self.policy(s)↪→

The only interesting thing is that it defines a dictionary self.v (with default value
0) which should be used to store the value function vπ.

The easiest way to implement the Monte-Carlo policy evaluation method [SB18, Sec-
tion 5.1] is to keep track of the sum of returns and number of times a state has been
visited similar to eq. (1). We do this using two dictionaries:

1 # mc_evaluate.py
2

3 class MCEvaluationAgent(ValueAgent):
4 def __init__(self, env, policy=None, gamma=1, alpha=None, first_visit=True,

v_init_fun=None):↪→

5 self.episode = []
6 self.first_visit = first_visit
7 self.alpha = alpha
8 if self.alpha is None:
9 self.returns_sum_S = defaultdict(float)

10 self.returns_count_N = defaultdict(float)

The parameter alpha is for the gradual implementation and for now you can assume
alpha=None .
The list self.episode is for collecting an episode as episode = [(s0, a0, r1), (s1, a1, r2), ...] .

Implement the Monte-Carlo policy evaluation method [SB18, Section 5.1]. first con-
centrating on the first-visit setting, i.e. the code given in [SB18, Section 5.1]. To
simplify the method, use the helper method which computes the returns in each
state called get_MC_returns .

When this works, extend the code to compute every-visit MC. If you have imple-
mented the method correctly, this can be accomplished by only changing the code
in def get_MC_return_S .

Problem 1 Monte-Carlo policy evaluation

EXERCISE 10 11 April, 2025

Info: Once completed, the code should be able to evaluate the random policy. This
is not very exciting as we have already seen the result once:

MC evaluation of SmallGridworld-v0 using first-visit

MC evaluation of SmallGridworld-v0 using every-visit

i

2.1 Examining first and every-visit /

The code in the previous problem will outputs the mean of the value vπ(s0) estimated
from m = 200 episodes:

1 Estimated value functions v_pi(s0) for first visit -20.82
2 Estimated value functions v_pi(s0) for every visit -15.708812260536398

As an experiment, we repeat the above experiment to estimate the mean of the value
function, however we use just m = 1 episode per run, for each run compute the mean
as above and then repeat this repeats times. For repeats=5000 we get the following:

1 First visit: Mean of value functions E[v_pi(s0)] after 5000 repeats -18.61
2 Every visit: Mean of value functions E[v_pi(s0)] after 5000 repeats

-13.42527340069027↪→

• Why does every-visit over-estimate the mean in this case?
Problem 2

EXERCISE 10 11 April, 2025

Figure 2: Monte-Carlo applied to a gridworld environment.

3 Exam question: Monte-Carlo control
We consider the familiar gridworld environment discussed in [Her25, section 4.2.4]
shown in fig. 2. The agent only recieves a reward of +1 on completion and otherwise no
reward. We train a first-visit Monte-Carlo agent on the gridworld for one episode and
fig. 2 shows the resulting Q-values. What value of the discount factor γ was used?
a. γ = 0.5

b. γ = 0.4

c. γ = 0.6

d. γ = 0.3

e. Don’t know.

3.1 Monte Carlo Control (mc_agent.py)
Next, we will build a controller using the same idea as policy evaluation. As hinted, the
code you build for computing returns can be re-used; the specific version we will imple-
ment is the first-visit MC controller using ε-soft policies to get exploration as described
in [SB18, Section 5.4].

As ε degrades the policy, it is important to set it quite low and we choose ε = 0.05 in
our experiments. However, too low and the agent will not do any exploration. Similar
to the evaluation-agent, we will compute the mean as:

Q(s, a) =
S(s, a)

N(s, a)

EXERCISE 10 11 April, 2025

1 # mc_agent.py
2 class MCAgent(TabularAgent):
3 def __init__(self, env, gamma=1.0, epsilon=0.05, alpha=None, first_visit=True):
4 if alpha is None:
5 self.returns_sum_S = defaultdict(float)
6 self.returns_count_N = defaultdict(float)
7 self.alpha = alpha
8 self.first_visit = first_visit
9 self.episode = []

10 super().__init__(env, gamma, epsilon)

You can also assume that alpha=None . With these assumptions, the implementation
is very nearly equal to the evaluation-agent.

Implement the MC on-policy Agent and test it to see if you can find the optimal (or
near-optimal, since we are doing ε-greedy exploration) policy in the gridworld. Note
that the method is quite variable in my experience. Why do you think we make the
environment time-limited? And is this theoretically well justified given what you
know about the environment?

Problem 3

Info: The value function of the estimated policy should look something like the fol-
lowing (you can compare to the previous weeks exercises). Meanwhile, the right-
hand pane shows a plot of the estimated returns over time. Note there is a large
deviation initially as the (bad) policy becomes stuck and can only be saved through
random moves.

0 2500 5000 7500 10000 12500 15000 17500 20000
Episode

10

8

6

4

2

0

Ac
cu

m
ul

at
ed

 R
ew

ar
d

Smallgrid MC agent value function
(4x)mcagent_smallgridMC on-policy control of SmallGridworld-v0 using first-visit

i

4 Incremental updates using α //

EXERCISE 10 11 April, 2025

Update the MC Evaluation and MC Control agent to perform incremental updates as
described in [SB18, Equation 6.1].

Problem 4

5 Temporal Difference

Monte-Carlo methods, in particular first-visit Monte-Carlo methods, estimate the value
function in a given state s by considering the full future history of what happened from
s onwards. The disadvantage of this approach is it requires us to actually get to the end-
state before we can compute the return of st, and there will generally be a compounding
effect of randomness in our estimate of vπ(st). TD learning solves this by only considering
a single-step lookahead and by assuming vπ(st+1) provides a good-enough estimate of
the return following the next state st+1. This makes TD learning both extremely easy to
implement, and also in a sense the opposite extreme relative to MC methods.

5.1 Implement TD(0) (td0_evaluate.py)

Next, we will implement the temporal difference learning method. The actual code that
needs to be written will be very little, but note that the datastructure self.v[s] is a
dictionary which defaults to zero in this case.

Complete the code for the TD(0) evaluation agent and, once more, use it to compute
the value function for the gridworld environment using a random policy. As a test
you understand what goes on: Where, exactly, is the policy specified and how is it
random?

Once you have plotted the value function, compare to the MC result. Note the
value function should be symmetric. What conclusions would you draw about the
relative benefits of the two methods?

Problem 5

EXERCISE 10 11 April, 2025

Info: The estimated returns should look as follows
TD0 evaluation of SmallGridworld-v0

i

6 Exam question: Batched TD(0) (question_td0.py)
In this problem, we will consider the TD(0) method described in [SB18, Section 6.1]. In
particular, we will consider how TD(0) change the value function as a result of a single
episode as discussed in [SB18, Example 6.1].

To this end, recall that the TD(0) algorithm, as defined in the beginning of [SB18,
Section 6.1], is comprised of:

• Initializing the value function v to v(s) = 0

• For each episode:
– loop over the time steps t of the episode and perform an update of v involving
the current state st, reward rt+1, discount factor γ and learning rate α

We are concernedwith the last bullet point. In other words, for a given episode comprised
of a list of states (s0, s1, . . . , sT) and list of rewards (r1, r2, . . . , rT), we can compute the
full update of the value function v resulting from these observations. This is the view we
will take in this exercise.

We will as usual represent the value function as a dictionary, where the keys s are
states s, and the values v[s] is the value-function v(s). It will be pre-initialized to zero
in the test code. The states will be integers and the rewards floating point numbers.
(a.) Complete def a_compute_deltas(v: dict, states: list, rewards: list, gamma: float) :
Given a value function v as a dictionary, lists of states and rewards corresponding to an
episode, and the discount factor γ, the function should return a list comprised of the
values:

(δ0, δ1, . . . , δT−1)

EXERCISE 10 11 April, 2025

where δt is the TD error defined in [SB18, Equation 6.5].
(b.) Complete def b_perform_td0(v: dict, states: list, rewards: list, gamma: float, alpha: float) :
Given inputs of the previously described format, as well as a learning rate α, the func-
tion should compute the TD(0) update to v resulting from a single episode and return
the updated value function v (as a dictionary).
(c.) Complete def c_perform_td0_batched(v: dict, states: list, rewards: list, gamma: float, alpha: float) :
We will now consider the batched view of TD(0) as described in [SB18, Section 6.3]. In
the batched version, all changes to v that arise during an episode (i.e., the factors αδt
in [SB18]) are computed as usual using the same value function v, but the changes are
only applied to v at the end of the episode all at once. The function should compute the
batched update and return the updated version of v in the usual format.

References
[Her25] Tue Herlau. Sequential decision making. (Freely available online), 2025.
[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-

tion. The MIT Press, second edition, 2018. (Freely available online).

	Conceptual question: First and every visit
	The single-state example

	Monte-Carlo evaluation (mc_evaluate.py)
	Examining first and every-visit '057

	Exam question: Monte-Carlo control
	Monte Carlo Control (mc_agent.py)

	Incremental updates using '057'057
	Temporal Difference
	Implement TD(0) (td0_evaluate.py)

	Exam question: Batched TD(0) (question_td0.py)

