
Installation, python self-test and the fruit-project
(Complete before lecture 1)

Tue Herlau
tuhe@dtu.dk

31 January, 2025

Contents
1 Installing the toolbox 1

1.1 Exercise Format . 1

2 Example exercise (fruit_homework.py) 2

3 Unitgrading your first homework 5
3.1 Creating your hand-in .token -file . 5

1 Installing the toolbox
The first step is to install the course toolbox. You can find the instructions here:

• https://www2.compute.dtu.dk/courses/02465/exercises/ex00.html

1.1 Exercise Format
The programming exercises takes the form of writing missing code. An example is given
in irlc/ex00/fruit_homework.py :

1 def add(a, b):
2 """ This function should return the sum of a and b.
3 I.e. print(add(2,3)) should print '5'. """
4 # TODO: 1 lines missing.
5 raise NotImplementedError("Implement function body")

The code raises Exception to make it clear code is missing1. To solve the exercise, you
should remove the exception and insert a solution which makes the code work – in this
case return a + b will do the trick.

1Note: Some have pointed out that the ## n lines missing -part can be distracting since their
solution might be longer. The goal is not to solve the problem in n-lines – I just included the number
because I thought it could be helpful in some situations.

1

https://www2.compute.dtu.dk/courses/02465/exercises/ex00.html

Installation instructions 31 January, 2025

The scripts you edit will typically also call the code you write for easy verification.
For instance, near the bottom the script the add -function is tested as follows:

1 # fruit_homework.py
2 print("add(2,5) function should return 7, and it returned", add(2, 5))

As a rule, the exercises will require that you read the surrounding code, comments, etc.,
just like any realistic workflow2. The course website contains documentation about the
functions we will use for each week:
https://www2.compute.dtu.dk/courses/02465/exercises/index.html
When you are happy with your solution run the file to verify your solution:

1 irlc/ex00/fruit_homework.py

If you implemented the add function correctly it should produce the output:

1 add(2,5) function should return 7, and it returned 7

If you are not sure how to run a file in VS code please see the course website:
https://www2.compute.dtu.dk/courses/02465/exercises/ex00.html

2 Example exercise (fruit_homework.py)
This is an example of a simple homework/project problem. It will showcase some of
the features of python we will use, and allow you to get an idea if there are things you
need to brush up on. If you find the exercises generally hard to get started with look
at [Her25, chapter 1]; if you find the exercises that involve data structures such as lists
or dictionaries hard look at [Her25, chapter 2], and if you are not familiar with classes
or packages look at [Her25, chapter 3].

The name of the file you should edit is given in the section title, and it can be
found in the directory labeled by the the current week. In this case you should edit
02465students/irlc/ex00/fruit_homework.py .

Adding numbers

Complete the add -function in fruit_homework.py . Run the script and verify it gives
you the right output.

Problem 1 Warmup; a function to add numbers

2Tip: In VS Code, use ctrl+<click> on variables and names to go to code definition

https://www2.compute.dtu.dk/courses/02465/exercises/index.html
https://www2.compute.dtu.dk/courses/02465/exercises/ex00.html

Installation instructions 31 January, 2025

Info: Once you are done, you should get the following output:

1 add(2,5) function should return 7, and it returned 7

i

Misterfy

This function will take a list of animal names as input, and then return a new of
animal names where the names have been given the prefix "mr" . An example of
how the function is used:

1 # fruit_homework.py
2 animals = ["cat", "giraffe", "wolf"]
3 print("The nice animals are", misterfy(animals))

Complete the misterfy -function. Verify you get the right output.

Problem 2 Lists and strings

Info: Once you are done, you should get the following output:

1 The nice animals are ['mr cat', 'mr giraffe', 'mr wolf']

i

Mean of a die

A convenient way to represent a die is using a dictionary, where the key are the sides
xi ∈ {1, . . . , 6}, and the values is the probability pi = p(xi) (see [Her25, chapter 2]).
Your job is to build a function which takes such a dictionary as input, and computes the
mean value of the distribution the dictionary represent, i.e.

mean value =
6∑

i=1

xip(xi)

The way we use the function in python is as follows:

1 # fruit_homework.py
2 """
3 This problem represents the probabilities of a loaded die as a dictionary such

that↪→

Installation instructions 31 January, 2025

4 > p(roll=3) = p_dict[3] = 0.15.
5 """
6 p_die = {1: 0.20,
7 2: 0.10,
8 3: 0.15,
9 4: 0.05,

10 5: 0.10,
11 6: 0.40}
12 print("Mean roll of die, sum_{i=1}^6 i * p(i) =", mean_value(p_die))

Complete the mean_value -function. Verify you get the right output.
Problem 3 Mean of a die

Info: Once you are done, you should get the following output:

1 Mean roll of die, sum_{i=1}^6 i * p(i) = 3.95

If you are stuck, insert a breakpoint in the mean_value function (see video instruc-
tions for how) and work out a solution in the command line. You will need a for
loop over the dictionary.

i

A Fruitshop-class

In this exercise you will build a simple class which represents a fruit shop. The fruit
shop will have a name and a dictionary which represent the cost of each fruit. You job
is to implement the cost-function, which, given the name a of a fruit as a string, does a
look-up in the fruit-price dictionary and return the cost of the given fruit. You don’t need
to do any sort of error handling. The following code should work:

1 # fruit_homework.py
2 price1 = {"apple": 4, "pear": 8, 'orange': 10}
3 shop1 = BasicFruitShop("Alis Funky Fruits", price1)
4

5 price2 = {'banana': 9, "apple": 5, "pear": 7, 'orange': 11}
6 shop2 = BasicFruitShop("Hansen Fruit Emporium", price2)
7

8 fruit = "apple"
9 print("The cost of", fruit, "in", shop1.name, "is", shop1.cost(fruit))

10 print("The cost of", fruit, "in", shop2.name, "is", shop2.cost(fruit))

Installation instructions 31 January, 2025

Complete the cost -function in the BasicShop .
Problem 4 Basic fruit shop

Info: Once you are done, you should get the following output:

1 The cost of apple in Alis Funky Fruits is 4
2 The cost of apple in Hansen Fruit Emporium is 5

If you are stuck you should read [Her25, chapter 3] which discuss classes. I will
review classes in the second half of the first lecture. Nearly all problems in this course
will require modifying functions in classes.

i

3 Unitgrading your first homework
This course will use an automatic framework, unitgrade, for handing in project solutions.
Unitgrade is build on top of pythons unittest framework, which is the industry-standard
way of testing and verifying python code. This means it will work well with the VS Code
debugger which I recommend you use to your advantage!

It is up to you if you want to use unitgrade to debug the code, or only want to use
unitgrade to create a handin. To run the tests in VS Code, you can click on the flask-icon
in the left bar and select the test you wish to run as shown in this video:
https://www2.compute.dtu.dk/courses/02465/exercises/ex00.html

3.1 Creating your hand-in .token -file
To create your hand-in, you have to use the fruit_project_grade.py -file. This file will run
the same tests as mentioned in the previous section. You can run this file by right-clicing
on it in VS code and selecting Run , or by using the command

1 python -m irlc.project0.fruit_project_grade

Either way, you will notice the script produces a file called

1 02465students/irlc/project0/FruitReport_handin_40_of_40.token

This file contains the outcome of your tests as well as a copy of the code you have written
for verification. You should hand in this file on DTU Learn without modifications. The
file name contains the number of points you obtain from the local tests. After handin I
will use the token -file to run additional tests on your code, however, my experience is
that if your local tests work the code is correct – and thus you can generally trust the
score in the filename!

https://www2.compute.dtu.dk/courses/02465/exercises/ex00.html

Installation instructions 31 January, 2025

References
[Her25] Tue Herlau. Sequential decision making. (Freely available online), 2025.

	Installing the toolbox
	Exercise Format

	Example exercise (fruit_homework.py)
	Unitgrading your first homework
	Creating your hand-in .token-file

