
DTU Compute
Department of Applied Mathematics and Computer Science

Distributed Systems: Models and Design
Nicola Dragoni
Embedded Systems Engineering
DTU Compute

1. Architectural Models

2. Interaction Model

3. Design Challenges

4. Case Study: Design of a Client-Server System

DTU Compute
Department of Applied Mathematics and Computer Science

Architectural vs Fundamental Models

• Systems that are intended for use in real-world environments should be
designed to function correctly in the widest possible range of circumstances
and in the face of many possible difficulties and threats

• An architectural model is concerned with the placement if its components
and the relationships between them

‣ client-server systems

‣ peer-to-peer systems

2

• Fundamental models are concerned with a more abstract description of the
properties that are common in all of the architectural models

DTU Compute
Department of Applied Mathematics and Computer Science

• The architecture of a system is its structure in terms of separately specified
components and their interrelationships

• 4 fundamental building blocks (and 4 key questions):

‣ Communicating entities: what are the entities that are communicating in
the distributed system?

‣ Communication paradigms: how do these entities communicate, or,
more specifically, what communication paradigm is used?

‣ Roles and responsibilities: what (potentially changing) roles and
responsibilities do these entities have in the overall architecture?

‣ Placement: how are these entities mapped on to the physical distributed
infrastructure (i.e., what is their placement)?

Architectural Models

3

DTU Compute
Department of Applied Mathematics and Computer Science

[Architectural Models] Communicating Entities

• System perspective:

‣ communicating entities are processes

‣ distributed system: processes coupled with appropriate interprocess
communication paradigms

‣ two caveats:

- in some environment, such as sensor networks, the underlying
operating systems may not support process abstractions, and hence
the entities that communicate in such systems are nodes

- in most distributed environments, processes are supplemented by
threads, so, strictly speaking, it is threads that are endpoints of
communication

4

DTU Compute
Department of Applied Mathematics and Computer Science

Processes VS Machines

5

Client
1

Client
2

Client
3

Client
4

Client
5

Client
6

Client
7

Client
8

Client

Client
9

Service
1

Service
2

Service
3

Service
4

DTU Compute
Department of Applied Mathematics and Computer Science

[Architectural Models] Communicating Entities

• Programming perspective:

‣ more problem-oriented abstractions have been proposed, such as
distributed objects, components, Web services

‣ distributed objects:

- introduced to enable and encourage the use of object-oriented
approaches in distributed systems

- computation consists of a number of interacting objects representing
natural units of decomposition for the given problem domain

- objects are accessed via interfaces, with an associated interface
definition language providing a specification of the methods defined on
an object

6

DTU Compute
Department of Applied Mathematics and Computer Science

[Architectural Models] Communication Paradigms

• How do entities communicate in a distributed systems? (What communication
paradigm is used?)

• 3 types of communication paradigm:

‣ interprocess communication

low level support for communication between processes in the distributed
system, including message-passing primitives, socket programming,
multicast communication

‣ remote invocation

most common communication paradigm, based on a two-way exchange
between communicating entities and resulting in the calling of a remote
operation (procedure or method)

7

DTU Compute
Department of Applied Mathematics and Computer Science

[Architectural Models] Communication Paradigms

• How do entities communicate in a distributed systems? (What communication
paradigm is used?)

• 3 types of communication paradigm (cont.):

‣ indirect communication

communication is indirect, through a third entity, allowing a strong degree
of decoupling between senders and receivers, in particular:

- space uncoupling: senders do not need to know who they are sending

to

- time uncoupling: senders and receivers do not need to exist at the

same time

Key techniques include: group communication, publish subscribe systems,
message queues, tuple spaces, distributed shared memory (DSM)

8

DTU Compute
Department of Applied Mathematics and Computer Science

Communicating Entities and Communication Paradigms

9

DTU Compute
Department of Applied Mathematics and Computer Science

[Architectural Models] Roles & Responsibilities

• What (potentially changing) roles and responsibilities do these entities have in
the overall architecture?

• 2 architectural styles stemming from the role of individual processes

10

client-server peer-to-peer (P2P)

DTU Compute
Department of Applied Mathematics and Computer Science

• Processes divided into two (possibly overlapping) groups:

‣ Server: process implementing a specific service (file system service,
database service, ...)

‣ Client: process that requests a service from a server by sending it a
request ad subsequently waiting for the server’s reply

• Request-reply protocol

Client-Server Architectural Style

11

Client

Server

request reply

provide

service

wait for result

DTU Compute
Department of Applied Mathematics and Computer Science

• Requests are sent in messages from clients to a server

‣ When a client sends a request for an operation to be carried out, we say

that the client invokes an operation upon the server

Client-Server Interaction

12

• Replies are sent in messages
from the server to the clients

• Remote invocation: a complete
interaction between a client and
a server (from the point when
the client sends its request to
when it receives the server’s
response)

DTU Compute
Department of Applied Mathematics and Computer Science

Example: The Web as Client-Server Resource Sharing System

13

• The World Wide Web is an evolving and open system for publishing and
accessing resources and services across the Internet

• For instance, through Web browsers (clients) users can

‣ retrieve and view documents of many types

‣ listen to audio streams

‣ view video streams

‣ and in general interact with an unlimited set of services

DTU Compute
Department of Applied Mathematics and Computer Science

1. The HyperText Markup Language (HTML) is a language for specifying the
contents and layout of pages as they are displayed by Web browsers

2. Uniform Resource Locators (URLs) which identify documents and other
resources stored as part of the Web

3. A client-server system architecture, with standard rules for interaction (the
HyperText Transfer Protocol - HTTP) by which browsers and other clients
fetch documents and other resources from Web servers

[Web] Main Technological Components

14

DTU Compute
Department of Applied Mathematics and Computer Science

http://www2.imm.dtu.dk/~ndra/WebNic/Home.html

Web Browser and Web Server Example

15

Web server

www2.imm.dtu.dk

GET
HTTP URL

Home.html
(or error message “404 Not Found”)

1

3

public_html

ndra

WebNic

Home.html

2

DTU Compute
Department of Applied Mathematics and Computer Science

• A process can be both a client and a server, since servers sometimes
invoke operations on other servers

• The terms “client” and “server” apply only to the roles played in a single
request

• But in general they are distinct concepts:

‣ clients are active and server are passive (reactive)

‣ server run continuously, whereas clients last only as long as the
applications of which they form a part

On the Client and Server Role...

16

DTU Compute
Department of Applied Mathematics and Computer Science

On the Client-Server Role: Examples

• Example 1: a Web server is often a client of a local file server that manages
the files in which the web pages are stored

17

• Example 3: search engine

‣ Server: it responds to queries from browser
clients

‣ Client: it runs (in the background) programs
called web crawlers that act as clients of
other web servers

• Example 2: Web servers and most Internet services are clients of the DNS
service (which translates Internet Domain names to network addresses)

DTU Compute
Department of Applied Mathematics and Computer Science

Architectural Style: Peer-to-Peer (P2P)

• All the processes involved in a task or activity
play similar roles, interacting cooperatively as
peers without any distinction between client
and server processes or the computers that
they run on

18

• In practical terms, all peers run the same
program and offer the same set of interfaces
to each other

The aim of the P2P architecture is to exploit the resources (both data and
hardware) in a large number of participating computers for the fulfilment of a
given task or activity

DTU Compute
Department of Applied Mathematics and Computer Science

Distributed Application Based on a P2P Architecture

19

DTU Compute
Department of Applied Mathematics and Computer Science

[Architectural Models] Placement

• How are entities mapped on to the physical distributed infrastructure (i.e.,
what is their placement)?

• Physical distributed infrastructure usually consists of a potentially large
number of machines interconnected by a network of arbitrary complexity

• Placement is crucial in terms of determining the properties of the distributed
system, such as performance, reliability and security

• Placement need to take into account several aspects (machines, reliability,
communication, ...) and there are few universal guidelines to obtaining an
optimal solution!

20

DTU Compute
Department of Applied Mathematics and Computer Science

[Architectural Models] Placement Strategies

• Mapping of services to multiple servers

• Proxy server and caches

• Mobile code

21

DTU Compute
Department of Applied Mathematics and Computer Science

Placement Strategy: Service Provided by Multiple Servers

• Services may be implemented as several server processes in separate host
computers interacting as necessary to provide a service to client processes

22

• The servers may:

1)partition the set of objects on which
the service is based and distributed
them between themselves

(e.g. Web servers)

2)they may maintain replicated
copies of them on several hosts

(e.g. SUN Network Information
Service (NIS)).

DTU Compute
Department of Applied Mathematics and Computer Science

Placement Strategy: Proxy Servers and Caches

• A cache is a store of recently used data objects that is closer to one client or
a particular set of clients than the objects themselves

• Example 1: Web browsers maintain a cache of recently visited pages and
other web resources in the client’s local file system

23

Purpose:

1.To keep machines behind it
anonymous (mainly for security)

2.To speed up access to a
resource (via caching) provides a shared cache

of web resources for the
clients

• Example 2: Web proxy server

DTU Compute
Department of Applied Mathematics and Computer Science

A) Client request results in the downloading of applet code

B) Client interacts with the applet

Placement Strategy: Mobile Code

24

An advantage of running
the downloaded code
locally is that it can give

good interactive
response since it does

not suffer from the
delays or variability of
bandwidth associated

with network
communication

DTU Compute
Department of Applied Mathematics and Computer Science

Interaction Model

1. Architectural Models

2. Interaction Model

3. Design Challenges

4. Case Study: Design of a Client-Server System

DTU Compute
Department of Applied Mathematics and Computer Science

Some Assumptions on Interacting Processes

• The rate at which each process proceeds cannot in general be predicted

• The timing of the transmission of messages cannot in general be predicted

• Each process has its own state, consisting of the set of data that it can
access and update, including the variables in its program

• The state belonging to each process is completely private (that is, it cannot
be accessed or updated by any other processes)

26

DTU Compute
Department of Applied Mathematics and Computer Science

Processes and Communication Channels

• A process p performs a send by inserting the message m in its outgoing
message buffer

• The communication channel transports m to q’s incoming message buffer

• Process q performs a receive by taking m from its incoming message buffer
and delivering it

• Outgoing/incoming message buffers are typically provided by the operating
systems

27

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

Communication primitives

DTU Compute
Department of Applied Mathematics and Computer Science

Factors Affecting Interacting Processes

• Communication performance

28

• It is impossible to maintain a single
global notion of time

DTU Compute
Department of Applied Mathematics and Computer Science

Performance of Communication Channels: Latency

• Latency: the delay between the start of a message’s transmission from one
process and the beginning of its receipt by another

• The latency includes:

‣ The time taken for the first of a string of bits transmitted through the
network to reach its destination

‣ The delay in accessing the network, which increases significantly when the
network is heavily loaded

‣ The time taken by the operating system communication services at both
the sending and receiving processes, which varies according to the current
load of the operating systems

29

DTU Compute
Department of Applied Mathematics and Computer Science

Performance of Communication Channels: Bandwidth

• The bandwidth of a computer network is the total amount of information that
can be transmitted over it in a given time

30

• When a large number of communication channels are
using the same network, they have to share the
available bandwidth

• Usually expressed in bit/s or multiples of it (kbit/s,
Mbit/s, etc)

http://www.bandwidthplace.com/

http://www.bandwidthplace.com

DTU Compute
Department of Applied Mathematics and Computer Science

• No single global notion of correct time.

No Global Clock!!

31

DTU Compute
Department of Applied Mathematics and Computer Science

Computer Clocks and Timing Events

• Each computer in a distributed system has its own internal clock, which can
be used by local processes to obtain a value of the current time

• Therefore, two processes running on different computers can associate
timestamps with their events

• However, even if two processes read their clocks at the same time, their
local clocks may supply different time values

• This is because computer clocks drift from perfect time and, more
importantly, their drift rates differ from one another

• Clock drift rate: rate at which a computer clock deviates from a perfect
reference clock

32

DTU Compute
Department of Applied Mathematics and Computer Science

Variants of the Interaction Model

• In a distributed system it is hard to set time limits on the time taken for
process execution, message delivery or clock drift

• Two opposite extreme positions provide a pair of simple models:

‣ Synchronous distributed systems: strong assumption of time

‣ Asynchronous distributed systems: no assumptions about time

33

DTU Compute
Department of Applied Mathematics and Computer Science

Synchronous Distributed System

• A distributed system in which the following bounds are defined:

‣ the time to execute each step of a process has known lower and upper
bounds

‣ each message transmitted over a channel is received within a known
bounded time

‣ each process has a local clock whose drift rate from real time has a known
bound

34

DTU Compute
Department of Applied Mathematics and Computer Science

Asynchronous Distributed System

• A distributed system in which there are no bounds on:

‣ process execution speeds: each step may take an arbitrarily long time

‣ message transmission delays: a message may be received after an
arbitrarily long time

‣ clock drift rates: the drift rate of a clock is arbitrary

35

• This exactly models the Internet, in which there is no intrinsic bound on server
or network load and therefore on how long it takes, for example, to transfer a
file using ftp, or to receive an email message

• Any solution that is valid for an asynchronous distributed system is also valid
for a synchronous one. Why? What about the contrary?

DTU Compute
Department of Applied Mathematics and Computer Science

Design Challenges

1. Architectural Models

2. Interaction Model

3. Design Challenges

4. Case Study: Design of a Client-Server System

DTU Compute
Department of Applied Mathematics and Computer Science

Design Challenges for Distributed Systems

37

Heterogeneity

Openness

Security

Scalability

Failure Handling

Concurrency

Transparency

DTU Compute
Department of Applied Mathematics and Computer Science

Heterogeneity of Components

• Heterogeneity (i.e., variety and difference) applies to the following:

‣ networks

‣ computer hardware

‣ operating systems

‣ programming languages

‣ implementations by different developers

38

Heterogeneity can be addressed by means of:
• protocols (such as Internet protocols)
• middleware (software layer that provides a

programming abstraction)

DTU Compute
Department of Applied Mathematics and Computer Science

Openness

• The openness of a computer system is the characteristic that determines
whether the system can be extended and re-implemented in various ways

• In distributed systems it is determined primarily by the degree to which new
resource sharing services can be added and be made available for use by a
variety of client programs

39

• Open distributed systems may be extended

‣ at the hardware level by the addition of computers to the network

‣ at the software level by the introduction of new services and the re-
implementation of old ones

DTU Compute
Department of Applied Mathematics and Computer Science

Security

40

Protection against disclosure
to unauthorized individuals

Protection against alteration
or corruption

Protection against interference with
the means to access the resources

DTU Compute
Department of Applied Mathematics and Computer Science

Open Security Challenge: Denial of Service Attack

• A bad guy may wish to disrupt a service for some reason:

‣ he bombards the service with such a large number of
pointless requests that the serious users are unable to
use it

41

• On August 6, 2009, Twitter was shut down for hours due to a DoS attack:

DTU Compute
Department of Applied Mathematics and Computer Science

• A system is scalable if it will remain effective when there is a significant
increase in the number of resources and the number of users

Scalability

42

• The Internet provides an illustration of a distributed system in which the
number of computers and services has increased dramatically

DTU Compute
Department of Applied Mathematics and Computer Science

[Scalability] Example

43

Challenge: preventing software resources running out

Example: Internet IP addresses (computer addresses in the Internet)

• In the late 1970s, it was decided to use 32 bits, but the supply of available Internet

addresses is running out

• For this reason, a new version of the protocol with 128-bit Internet addresses is

being adopted and this will require modifications to many software components

• How to solve this problem? Not easy!

‣ It is difficult to predict the demand that will be put on a system years ahead

‣ Over-compensating for future growth may be worse than adapting to a
change when we are forced to (for instance, larger Internet addresses will
occupy extra space in messages and in computer storage)

DTU Compute
Department of Applied Mathematics and Computer Science

Failure Handling

44

• Computer systems sometimes fail

• When faults occur in hardware or software, programs may produce incorrect
results or they may stop before they have completed the intended
computation

• Failures in distributed systems are partial:

‣ any process, computer or network may fail independently of the others

‣ some components fail while others continue to function

• Therefore the handling of failures in distributed systems is particularly difficult

DTU Compute
Department of Applied Mathematics and Computer Science

Failure Model

• The failure model defines the ways in which failures may occur in order to
provide an understanding of the effects of failures

• Example of taxonomy of failures [Hadzilacos and Toueg, 1994]:

‣ Omission failures: a process or communication channel fails to perform
actions that it is supposed to do

‣ Arbitrary failures: any type of error may occur

‣ Timing failures: applicable in synchronous distributed systems

45

DTU Compute
Department of Applied Mathematics and Computer Science

[Failure Model] Omission Failures

46

Class of failure Affects Description

Crash Process Process halts prematurely and remain halted.

Omission Channel A msg inserted in an outgoing msg buffer never arrives at
the other end’s incoming message buffer.

Send-omission Process A process completes a send, but the message is not put
in its outgoing message buffer.

Receive-omission Process A message is put in a process’s incoming message
buffer, but that process does not receive it.

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

Communication primitives

DTU Compute
Department of Applied Mathematics and Computer Science

[Failure Model] Arbitrary Failures

47

Class of failure Affects Description

Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may send/
transmit arbitrary messages at arbitrary times, commit
omissions; a process may stop or take an incorrect step.

• The term arbitrary or Byzantine failure is used to describe the worst possible
failure semantics, in which any type of error may occur

• Arbitrary failure of a process: the process arbitrarily omits intended
processing steps or takes unintended processing steps

• Communication channel arbitrary failures: message contents may be
corrupted or non-existent messages may be delivered or real messages may
be delivered more than once

DTU Compute
Department of Applied Mathematics and Computer Science

[Failure Model] Timing Failures

48

Class of failure Affects Description

Clock Process Process’s local clock exceeds the bounds on its rate of
drift from real time.

Performance Process Process exceeds the bounds on the interval between two
steps.

Performance Channel A message’s transmission takes longer than the stated
bound.

• Timing failures are applicable in synchronous distributed systems, where time
limits are set on process execution time, message delivery time and clock
drift rate

• In an asynchronous distributed systems, an overloaded server may respond
too slowly, but we cannot say that it has a timing failure since no guarantee
has been offered

DTU Compute
Department of Applied Mathematics and Computer Science

Concurrency

49

• Both services and applications provide resources that can be shared by
different clients in a distributed system

• Each resource (servers, Web resources
objects in applications, ...) must be
designed to be safe in a concurrent
environment Dining Philosophers Problem

• There is therefore a possibility that several
clients will attempt to access a shared
resource at the same time

DTU Compute
Department of Applied Mathematics and Computer Science

Transparency

• Transparency: the concealment from the user and the application
programmer of the separation of components in a distributed system, so that
the system is perceived as a whole rather than a collection of independent
components

• Aim: to make certain aspects of distribution invisible to the application
programmer so that they need only be concerned with the design of their
particular application

• The ANSA Reference Manual and the International Organization for
Standardization’s Reference Model for Open Distributed Processing (RM-
ODP) identify 8 forms of transparency

50

DTU Compute
Department of Applied Mathematics and Computer Science

Transparencies

51

Access Transparency Enables local and remote resources to be accessed using identical operations

Location Transparency Enables resources to be accessed without knowledge of their physical or
network location (for example, which building or IP address)

Concurrency Transparency Enables several processes to operate concurrently using shared resources
without interference between them

Replication Transparency
Enables multiple instances of resources to be used to increase reliability and
performance without knowledge of the replicas by users or application
programmers

Failure Transparency Enables the concealment of faults, allowing users and application programs to
complete their tasks despite the failure of hardware or software components

Mobility Transparency Allows the movement of resources and clients within a system without
affecting the operation of users or programs

Performance
Transparency Allows the system to be reconfigured to improve performance as loads vary

Scaling Transparency Allows the system and applications to expand in scale without change to the
system structure or the application algorithms

Network transparency

DTU Compute
Department of Applied Mathematics and Computer Science

PROBLEM

Design of a Client-Server System for Banking

DTU Compute
Department of Applied Mathematics and Computer Science

Problem: Design of a Client-Server System

• Input: an informal description of an application (e.g., banking application)

53

Presentation

Application
processing

Data
management

concerned with user interface

concerned with the detailed application-specific
processing associated with the application

concerned with the persistent storage of the
application (typically a DBMS)

• Output: client-server implementation of the application

DTU Compute
Department of Applied Mathematics and Computer Science

Solution 1: Two-Tier Client-Server Architecture

• Application organized as a server and a set of clients

• Two kinds of machines: client machines and server machines

54

how to map
3 application layers

into a 2-tier architecture?

DTU Compute
Department of Applied Mathematics and Computer Science

Thin VS Thick Client Model

55

Application
processing

Presentation

Data
management

Thin
Client

Application
processing

Presentation Data
managementThick

Client

DTU Compute
Department of Applied Mathematics and Computer Science

Example of Thick Client: ATM Banking System

56

ATMATM

Customer Account Server

Transaction

manager

account
database

Presentation
Application
processing

Data management

Presentation
Application
processing

Presentation
Application
processing

Presentation
Application
processing

ATM client

DTU Compute
Department of Applied Mathematics and Computer Science

Examples of Thin Client: Internet Banking System

57

Customer Account Server

Account

service

provision

(Web server)

account
database

Presentation

Application
processing

Data management

Presentation

Presentation

Presentation
client (Web browser)

HTTP

DTU Compute
Department of Applied Mathematics and Computer Science

Alternative Two-Tier Client Server Organizations

58

Thin Client Thick ClientHybrid Client

terminals
Cloud computing

Web apps
mobile games mobile computing

word processor

DTU Compute
Department of Applied Mathematics and Computer Science

Internet Banking System... in Practice

59

Presentation

Presentation

Presentation

Presentation

Database server

account
databaseSQL

server

Data management

Web server

Account

service

provision

Application
processing

Tier 1

HTTP

SQL
query

Tier 2 Tier 3

DTU Compute
Department of Applied Mathematics and Computer Science

Thin or Thick? Thin

60

• Heavy processing load on both server and network

• Less client-perceived performance (in highly interactive graphical activities
such as CAD and image processing)

• Need to be always connected

• Devices significantly enhanced with a plethora of networked services

• Access to legacy systems

• System management and administration

‣ from admin perspective: system maintenance, security

‣ from user perspective: not hassle with administrative aspects or constant

upgrades

• More security

• Green IT (power saving --> cost saving) pros
cons

DTU Compute
Department of Applied Mathematics and Computer Science

Thin or Thick? Thick

61

• Better client-perceived performance (especially, in terms of image & video
processing)

• (Partly) available offline

• Distributed computing (no single point of failures)

• Devices are becoming ever faster and cheaper:

what is the point of off-loading computation on a server when the client is
amply capable of performing it without burdening the server or forcing the
user to deal with network latencies? pros

• System management and related costs

• Having more functionality on the client makes client-side software more
prone to errors and more dependent on the client’s underlying platform

cons

DTU Compute
Department of Applied Mathematics and Computer Science

Use of Client–Server Architectural Patterns

62

Two-tier client-server architecture with thin clients
• Legacy system applications that are used when separating application processing and data

management is impractical; clients may access these as services

• Computationally intensive applications such as compilers with little or no data management

• Data-intensive applications (browsing and querying) with non-intensive application

processing (example: browsing the Web)

Two-tier client-server architecture with fat clients
• Applications where application processing is provided by off-the-shelf software (e.g.,

Microsoft Excel) on the client

• Applications where computationally intensive processing of data (e.g., data visualization) is

required

• Mobile applications where internet connectivity cannot be guaranteed

• Some local processing using cached information from the database is therefore possible

Multi-tier client-server architecture
• Large-scale applications with hundreds or thousands of clients

• Applications where both the data and the application are volatile

• Applications where data from multiple sources are integrated

