
02157
Functional
Program-

ming

Michael R. Hansen

Lambda
calculus
Background

Syntax

reductions

Lambda
terms as
programs

Church
numerals

Fixpoint
combinators

02157 Functional Programming
A brief introduction to Lambda calculus

Michael R. Hansen

1 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Lambda
calculus
Background

Syntax

reductions

Lambda
terms as
programs

Church
numerals

Fixpoint
combinators

Purpose

The theoretical underpinning of functional languages is λ-calculus.

The purpose is to hint on this underpinning and to introduce
concepts of functional languages.

• Informal introduction to λ-calculus
• computations of lambda-calculus and functional languages

Today you will be introduced to basic concepts of λ-calculus and you
will get a feeling for the theoretical power of these concepts by the
construction of an interpreter for a λ-calculus based language .

2 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Lambda
calculus
Background

Syntax

reductions

Lambda
terms as
programs

Church
numerals

Fixpoint
combinators

Lambda calculus: background

• Invented in the 1930’s by the logician Alonzo Church in logical
studies and in investigations of function definition and
application, and recursion.

• Comprise full computability.

• First uncomputability results were discovered using λ-calculus.

Some questions

• Does the mathematical expression x − y denote a function, say
f , of x or a function, say g, of y , or . . .?

• Does the notation h(z) mean a function h or h applied to z

3 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Lambda
calculus
Background

Syntax

reductions

Lambda
terms as
programs

Church
numerals

Fixpoint
combinators

Lambda calculus: informal ideas

• λx .e denotes the anonymous function of x which e is.

Examples of function definitions:

• Let f be λx .x − y
The expression x − y considered as a function f : Z → Z of x

• g = λy .x − y
The expression x − y considered as a function g : Z → Z of y

• h = λx .λy .x − y
The expression x − y considered as a higher-order function
h : Z → (Z → Z)

Examples of function applications:

• f (1) = 1 − y and g(1) = x − 1

• h(2) = λy .2 − y and h(2)(5) = 2 − 5 = −3

4 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Lambda
calculus
Background

Syntax

reductions

Lambda
terms as
programs

Church
numerals

Fixpoint
combinators

Lambda calculus: syntax

The set of λ-terms or just terms Λ is generated from a set V of
variables by the rules:

• if x ∈ V , then x ∈ Λ atom

• if x ∈ V and t ∈ Λ, then (λx .t) ∈ Λ abstraction

• if t1, t2 ∈ Λ, then (t1t2) ∈ Λ application

Notational conventions to avoid brackets:

• Applications associated to the left, i.e. t1t2t3 means ((t1t2)t3)

• Abstraction extends as far as possible to the right,
i.e. λx .PQ means (λx .(PQ))

• λx1x2 · · · xn.t means (λx1.(λx2.(· · · (λxn.t) · · ·)))

Terms could be enriched with constants and constructs for pairs, e.g.
λ(x , y).x − y where − is a constant.

5 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Lambda
calculus
Background

Syntax

reductions

Lambda
terms as
programs

Church
numerals

Fixpoint
combinators

Free and bound variables

A occurrence of a variable x is bound in t , if it occurs within the
scope of an abstraction λx .M in t ; otherwise it is free.

If x has at least one free occurrence in t , then it is called a free
variable of t .

Examples:

• x (λy .y x) v .
Both occurrences of y are bound. Both x ’s are free. v is free.

• (λx .y x)(x z). Two left-hand occurrences of x are bound, the
right-hand occurrence of x is free. x , y , z are free.

These concepts are also know from mathematics, logic and
programming languages. For example:

• Σ10
x=1x2

• ∀x .∃y .x + y > 0 ⇒ z + x > y

• int f(int x,int y) = { return x + y - z; }

where the occurrences of x and y are bound that those of z are free.
6 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Lambda
calculus
Background

Syntax

reductions

Lambda
terms as
programs

Church
numerals

Fixpoint
combinators

Substitution

Let t [e/x] denote the term obtained from t by substituting e for every
free occurrence of x .

In doing so, we rename bound variables to avoid clashes.

Examples:

• (u λx .y x)[v w/y] = u λx .v w x .

• (y λx .x y)[v w/y] = v wλx .x (v w).

• (λx .y)[x/y] = (λz.y)[x/y] = λz.x .
Rename x to avoid clashes.

Comment:

• (λx .y) denote the constant function whose value is y .

• Therefore, (λx .y)[x/y] should intuitively denote the constant
function with value x (as λz.x also does).

• The renaming is necessary as λx .x denotes the identity
function.

7 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Lambda
calculus
Background

Syntax

reductions

Lambda
terms as
programs

Church
numerals

Fixpoint
combinators

α- conversions

Renaming bound variables does not change the meaning:

• Σ10
x=1x2 is equal to Σ10

k=1k2

• ∀x .∃y .x + y > 0 ⇒ z + x > y is equivalent to
∀a.∃b.a + b > 0 ⇒ z + a > b

• int f(int x,int y) = { return x + y - z; }
is the same as
int f(int a,int b) = { return a + b - z; }

Renaming a bound variable in a term is called an α-conversion:

• Alpha: λx .t →α λy .t [y/x], when y is not free in t .
renaming of bound variables

Example: y(λx .xz)y →α y(λv .vz)y

8 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Lambda
calculus
Background

Syntax

reductions

Lambda
terms as
programs

Church
numerals

Fixpoint
combinators

β-reduction

The β-reduction rule formalizes the application of a function to an
argument.

Example: (λx .x + 2)3 reduces to 3+2.

• Beta: (λx .t) e →β t [e/x]
function application

9 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Lambda
calculus
Background

Syntax

reductions

Lambda
terms as
programs

Church
numerals

Fixpoint
combinators

Examples

• (λx .λy .x + y) a →β λy .a + y

• λx .λy .(λx .λy .x x y) y x →β λx .λy .(λv .y y v) x →β

λx .λy .y y x

• (λx .a) b →β a

• (λx .x) (λy .a) b →β (λy .a) b →β a

where free variables, e.g. +, a, b are considered as constants.

Reductions may give bigger terms. Let Ω = λx .x x x .

ΩΩ ≡ (λx .x x x) Ω →β ΩΩΩ ≡ (λx .x x x) ΩΩ →β ΩΩΩΩ ≡ . . .

Termination depends on reduction strategy:

• (λx .a) (ΩΩ) →∗

β (λx .a) (ΩΩΩ) →β
∗ . . .

• (λx .a) (ΩΩ) →β a

10 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Lambda
calculus
Background

Syntax

reductions

Lambda
terms as
programs

Church
numerals

Fixpoint
combinators

Lambda terms as programs

• A program p is a lambda term

• Computations are given by beta-reductions

In a ”real” functional programming language, the syntax is ”sugared”
lambda terms, and computations are based on a specific strategy for
applying beta-reduction.

In F# the reduction strategy is called eager. An application e1 e2 is
evaluated as follows:

• Evaluate e1 to an abstraction λx .e (written e1 λx .e).

• Evaluate e2 to a value v (written e2 v).

• Perform the beta-reduction (λx .e) v →β e[v/x].

Hence, the ”bigstep” evaluation is e1 e2 e[v/x]

This eager strategy is efficient when functions need their arguments.

In the textbook the notion environment is used instead of substitution:
e1 e2 (e, [x 7→ v]).

11 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Lambda
calculus
Background

Syntax

reductions

Lambda
terms as
programs

Church
numerals

Fixpoint
combinators

Church numerals. Natural number computations

Natural numbers are represented by, for example, Church numerals:

0 1 2 3 · · · n
λfx .x λf .λx .fx λf .λx .f (fx) λf .λx .f (f (fx)) . . . λf .λx .f nx

where f 0x = x , f i+1x = f i(fx)

• the main idea is to use a unary representation of numbers.
Rather inefficient – but it works.

Let n denote the Church numeral for the natural number n.

12 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Lambda
calculus
Background

Syntax

reductions

Lambda
terms as
programs

Church
numerals

Fixpoint
combinators

Successor and additions operations

• Successor: suc = λn.λf .λx .n f (f x)

• Addition: add = λm.λn.λf .λx .m f (n f x)

Reductions:

suc n = λf .λx .(λf .λx .f n x) f (f x)
= λf .λx .(λx .f n x) (f x)
= λf .λx .f n (f x) = λf .λx .f n+1 x = n + 1

add m n = λf .λx .(λf .λx .f m x) f (n f x)
= λf .λx .(λx .f m x) (n f x)
= λf .λx .f m ((λf .λx .f n x) f x)
= λf .λx .f m (f n x) = λf .λx .f m+n x = m + n

13 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Lambda
calculus
Background

Syntax

reductions

Lambda
terms as
programs

Church
numerals

Fixpoint
combinators

Recursion in Lambda Calculus

How to make recursive functions in Lambda calculus?

Answer: use a fixpoint combinator Y.

• An element x ∈ A is a fixpoint of a function f : A → A, if x = f (x)
• A fixpoint combinator is a higher-order function Y that computes

the fixpoint of another function F , i.e. Y F = F (Y F)

Example: Let F = λf .λn.if n = 0 then 1 else n ∗ f (n − 1).

The factorial function n! is a fixpoint for F , as

n! = λn.if n = 0 then 1 else n ∗ (n − 1)! = Fn!

Thus the factorial function fact is declared by Y F , and e.g.

fact 2 = Y F 2 = (λn.if n = 0 then 1 else n ∗ (Y F (n − 1)))2
= if 2 = 0 then 1 else 2 ∗ (Y F 1) = · · · = 2

14 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Lambda
calculus
Background

Syntax

reductions

Lambda
terms as
programs

Church
numerals

Fixpoint
combinators

Fixpoint combinators

There are many lambda terms Y satisfying: Y F = F (Y F).

The first is due to Curry:

Yc = λx .(λy .x (y y))(λy .x (y y))

The second is due to Turing:

Yt = (λx .λy .y (x x y)) (λx .λy .y (x x y))

An advantage of Yt over Yc is that Yt F = F (Yt F) can be established
by reductions only (an exercise), i.e. Yt is preferable for
computational use.

Notice: These operators cannot be represented by an F#
fun-expression. They contain self-applications (of the form t t) and
these are not well-typed in F#.

15 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012

02157
Functional
Program-

ming

Michael R. Hansen

Lambda
calculus
Background

Syntax

reductions

Lambda
terms as
programs

Church
numerals

Fixpoint
combinators

Summary

• Brief introduction to lambda calculus.

• Hint a the theoretical underpinning of functional languages. (F#
is actually more directly related to typed lambda calculus).

• Hint at the general computability capability of lambda calculus.

Have fun with the construction of a λ-calculus interpreter.

16 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012

	Lambda calculus
	Background
	Syntax
	reductions
	Lambda terms as programs
	Church numerals
	Fixpoint combinators

