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Purpose

The theoretical underpinning of functional languages is λ-calculus.

The purpose is to hint on this underpinning and to introduce
concepts of functional languages.

• Informal introduction to λ-calculus
• computations of lambda-calculus and functional languages

Today you will be introduced to basic concepts of λ-calculus and you
will get a feeling for the theoretical power of these concepts by the
construction of an interpreter for a λ-calculus based language .
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Lambda calculus: background

• Invented in the 1930’s by the logician Alonzo Church in logical
studies and in investigations of function definition and
application, and recursion.

• Comprise full computability.

• First uncomputability results were discovered using λ-calculus.

Some questions

• Does the mathematical expression x − y denote a function, say
f , of x or a function, say g, of y , or . . .?

• Does the notation h(z) mean a function h or h applied to z
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Lambda calculus: informal ideas

• λx .e denotes the anonymous function of x which e is.

Examples of function definitions:

• Let f be λx .x − y
The expression x − y considered as a function f : Z → Z of x

• g = λy .x − y
The expression x − y considered as a function g : Z → Z of y

• h = λx .λy .x − y
The expression x − y considered as a higher-order function
h : Z → (Z → Z)

Examples of function applications:

• f (1) = 1 − y and g(1) = x − 1

• h(2) = λy .2 − y and h(2)(5) = 2 − 5 = −3
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Lambda calculus: syntax

The set of λ-terms or just terms Λ is generated from a set V of
variables by the rules:

• if x ∈ V , then x ∈ Λ atom

• if x ∈ V and t ∈ Λ, then (λx .t) ∈ Λ abstraction

• if t1, t2 ∈ Λ, then (t1t2) ∈ Λ application

Notational conventions to avoid brackets:

• Applications associated to the left, i.e. t1t2t3 means ((t1t2)t3)

• Abstraction extends as far as possible to the right,
i.e. λx .PQ means (λx .(PQ))

• λx1x2 · · · xn.t means (λx1.(λx2.(· · · (λxn.t) · · · )))

Terms could be enriched with constants and constructs for pairs, e.g.
λ(x , y).x − y where − is a constant.
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Free and bound variables

A occurrence of a variable x is bound in t , if it occurs within the
scope of an abstraction λx .M in t ; otherwise it is free.

If x has at least one free occurrence in t , then it is called a free
variable of t .

Examples:

• x (λy .y x) v .
Both occurrences of y are bound. Both x ’s are free. v is free.

• (λx .y x)(x z). Two left-hand occurrences of x are bound, the
right-hand occurrence of x is free. x , y , z are free.

These concepts are also know from mathematics, logic and
programming languages. For example:

• Σ10
x=1x2

• ∀x .∃y .x + y > 0 ⇒ z + x > y

• int f(int x,int y) = { return x + y - z; }

where the occurrences of x and y are bound that those of z are free.
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Substitution

Let t [e/x] denote the term obtained from t by substituting e for every
free occurrence of x .

In doing so, we rename bound variables to avoid clashes.

Examples:

• (u λx .y x)[v w/y] = u λx .v w x .

• (y λx .x y)[v w/y] = v wλx .x (v w).

• (λx .y)[x/y] = (λz.y)[x/y] = λz.x .
Rename x to avoid clashes.

Comment:

• (λx .y) denote the constant function whose value is y .

• Therefore, (λx .y)[x/y] should intuitively denote the constant
function with value x (as λz.x also does).

• The renaming is necessary as λx .x denotes the identity
function.
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α- conversions

Renaming bound variables does not change the meaning:

• Σ10
x=1x2 is equal to Σ10

k=1k2

• ∀x .∃y .x + y > 0 ⇒ z + x > y is equivalent to
∀a.∃b.a + b > 0 ⇒ z + a > b

• int f(int x,int y) = { return x + y - z; }
is the same as
int f(int a,int b) = { return a + b - z; }

Renaming a bound variable in a term is called an α-conversion:

• Alpha: λx .t →α λy .t [y/x], when y is not free in t .
renaming of bound variables

Example: y(λx .xz)y →α y(λv .vz)y
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β-reduction

The β-reduction rule formalizes the application of a function to an
argument.

Example: (λx .x + 2)3 reduces to 3+2.

• Beta: (λx .t) e →β t [e/x]
function application
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Examples

• (λx .λy .x + y) a →β λy .a + y

• λx .λy .(λx .λy .x x y) y x →β λx .λy .(λv .y y v) x →β

λx .λy .y y x

• (λx .a) b →β a

• (λx .x) (λy .a) b →β (λy .a) b →β a

where free variables, e.g. +, a, b are considered as constants.

Reductions may give bigger terms. Let Ω = λx .x x x .

ΩΩ ≡ (λx .x x x) Ω →β ΩΩΩ ≡ (λx .x x x) ΩΩ →β ΩΩΩΩ ≡ . . .

Termination depends on reduction strategy:

• (λx .a) (ΩΩ) →∗

β (λx .a) (ΩΩΩ) →β
∗ . . .

• (λx .a) (ΩΩ) →β a
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Lambda terms as programs

• A program p is a lambda term

• Computations are given by beta-reductions

In a ”real” functional programming language, the syntax is ”sugared”
lambda terms, and computations are based on a specific strategy for
applying beta-reduction.

In F# the reduction strategy is called eager. An application e1 e2 is
evaluated as follows:

• Evaluate e1 to an abstraction λx .e (written e1  λx .e).

• Evaluate e2 to a value v (written e2  v ).

• Perform the beta-reduction (λx .e) v →β e[v/x].

Hence, the ”bigstep” evaluation is e1 e2  e[v/x]

This eager strategy is efficient when functions need their arguments.

In the textbook the notion environment is used instead of substitution:
e1 e2  (e, [x 7→ v ]).
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Church numerals. Natural number computations

Natural numbers are represented by, for example, Church numerals:

0 1 2 3 · · · n
λfx .x λf .λx .fx λf .λx .f (fx) λf .λx .f (f (fx)) . . . λf .λx .f nx

where f 0x = x , f i+1x = f i(fx)

• the main idea is to use a unary representation of numbers.
Rather inefficient – but it works.

Let n denote the Church numeral for the natural number n.
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Successor and additions operations

• Successor: suc = λn.λf .λx .n f (f x)

• Addition: add = λm.λn.λf .λx .m f (n f x)

Reductions:

suc n = λf .λx .(λf .λx .f n x) f (f x)
= λf .λx .(λx .f n x) (f x)
= λf .λx .f n (f x) = λf .λx .f n+1 x = n + 1

add m n = λf .λx .(λf .λx .f m x) f (n f x)
= λf .λx .(λx .f m x) (n f x)
= λf .λx .f m ((λf .λx .f n x) f x)
= λf .λx .f m (f n x) = λf .λx .f m+n x = m + n
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Recursion in Lambda Calculus

How to make recursive functions in Lambda calculus?

Answer: use a fixpoint combinator Y.

• An element x ∈ A is a fixpoint of a function f : A → A, if x = f (x)
• A fixpoint combinator is a higher-order function Y that computes

the fixpoint of another function F , i.e. Y F = F (Y F )

Example: Let F = λf .λn.if n = 0 then 1 else n ∗ f (n − 1).

The factorial function n! is a fixpoint for F , as

n! = λn.if n = 0 then 1 else n ∗ (n − 1)! = Fn!

Thus the factorial function fact is declared by Y F , and e.g.

fact 2 = Y F 2 = (λn.if n = 0 then 1 else n ∗ (Y F (n − 1)))2
= if 2 = 0 then 1 else 2 ∗ (Y F 1) = · · · = 2
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Fixpoint combinators

There are many lambda terms Y satisfying: Y F = F (Y F ).

The first is due to Curry:

Yc = λx .(λy .x (y y))(λy .x (y y))

The second is due to Turing:

Yt = (λx .λy .y (x x y)) (λx .λy .y (x x y))

An advantage of Yt over Yc is that Yt F = F (Yt F ) can be established
by reductions only (an exercise), i.e. Yt is preferable for
computational use.

Notice: These operators cannot be represented by an F#
fun-expression. They contain self-applications (of the form t t) and
these are not well-typed in F#.
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Summary

• Brief introduction to lambda calculus.

• Hint a the theoretical underpinning of functional languages. (F#
is actually more directly related to typed lambda calculus).

• Hint at the general computability capability of lambda calculus.

Have fun with the construction of a λ-calculus interpreter.
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