=
=
=

>
>
>

02157 Functional Programming
A brief introduction to Lambda calculus

Michael R. Hansen

b
. A
f(x+Ax):Z(l.ATx)f“’(x) 8

a

DTU Informatics
Department of Informatics and Mathematical Modelling

DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012



=]
=
=

Purpose

M

The theoretical underpinning of functional languages is A-calculus.

The purpose is to hint on this underpinning and to introduce
concepts of functional languages.

¢ Informal introduction to A-calculus
e computations of lambda-calculus and functional languages

Today you will be introduced to basic concepts of A-calculus and you

will get a feeling for the theoretical power of these concepts by the
construction of an interpreter for a A-calculus based language .

DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012



=]
=
=

Lambda calculus: background

M

¢ Invented in the 1930’s by the logician Alonzo Church in logical
studies and in investigations of function definition and
application, and recursion.

e Comprise full computability.
¢ First uncomputability results were discovered using A-calculus.
Some questions

e Does the mathematical expression x — y denote a function, say
f, of x or a function, say g, ofy, or ...?

¢ Does the notation h(z) mean a function h or h applied to z

3 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012



Lambda calculus: informal ideas

¢ )\x.e denotes the anonymous function of x which e is.
Examples of function definitions:

o Letf be \Ax.x —y
The expression x —y considered as a function f : Z — Z of x

*eg=AyXxX-—y
The expression x —y considered as a functiong : Z — Z of y

e h=JAXAyXx —y
The expression x —y considered as a higher-order function
h:Z—(Z—7Z)
Examples of function applications:
e f(l)=1-yandg(l)=x-1
e h(2)=Xy.2—yandh(2)(5)=2-5=-3

4 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus

=]
=
=

M

MRH 25/10/2012



Lambda calculus: syntax

The set of A\-terms or just terms A is generated from a set V of
variables by the rules:

e ifx €V,thenx € A atom
e ifx € Vandt € A, then (Ax.t) € A abstraction
o ifty,to € A, then (tatz) € A application

Notational conventions to avoid brackets:
e Applications associated to the left, i.e. t1tots means ((tit2)ts)

e Abstraction extends as far as possible to the right,
i.e. AX.PQ means (Ax.(PQ))

o AX1Xz - - - Xn.t means (Ax.(AXz.(- -+ (AXn.t) -++)))

Terms could be enriched with constants and constructs for pairs, e.g.
A(X,y).x —y where — is a constant.

5 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus

=]
=
=

M

MRH 25/10/2012



=]
=
=

Free and bound variables

M

A occurrence of a variable x is bound in t, if it occurs within the
scope of an abstraction Ax.M in t; otherwise it is free.

If X has at least one free occurrence in t, then it is called a free
variable of t.

Examples:
o X (Ay.yXx)v.
Both occurrences of y are bound. Both x's are free. v is free.

e (Ax.y x)(x z). Two left-hand occurrences of x are bound, the
right-hand occurrence of x is free. x,y, z are free.

These concepts are also know from mathematics, logic and
programming languages. For example:

o DX

e VXIyX+y>0=z+Xx>Yy

eint f(int x,int y) = {returnx +vy - z; }
where the occurrences of x and y are bound that those of z are free.

6 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012



=]
=
=

Substitution

M

Let t[e/x] denote the term obtained from t by substituting e for every
free occurrence of x.

In doing so, we rename bound variables to avoid clashes.

Examples:
o (UAX.Yy X)[VWwW/y] =ulx.vwX.
o (YAXXY)[VW/Y] =VWAX.X (VW).

o (Axy)x/y]l = (Az.y)[x/y] = Az.x.
Rename x to avoid clashes.

Comment:
¢ (Ax.y) denote the constant function whose value is y.

e Therefore, (Ax.y)[x/y] should intuitively denote the constant
function with value x (as Az.x also does).

e The renaming is necessary as Ax.x denotes the identity
function.

7 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012



=]
=
=

a- conversions

M

Renaming bound variables does not change the meaning:
e Y19 x2is equal to %, k?
e VX.dyx +y > 0=z +x >y is equivalent to
Va.db.a+b>0=z+a>b
eint f(int x,int y) ={returnx +vy - z; }
is the same as
int f(int a,int b) = {returna+b - z; }

Renaming a bound variable in a term is called an «-conversion:

e Alpha: \x.t —, Ay.t[y/x], wheny is not free int.
renaming of bound variables

Example: y(Ax.xz)y —o y(Av.vz)y

DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012



=]
=
=

SB-reduction

M

The g-reduction rule formalizes the application of a function to an
argument.

Example: (Ax.x + 2)3 reduces to 3+2.

e Beta: (Ax.t)e —5 t[e/X]
function application

9 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012



=]
=
=

Examples

M

o (AX.Ay.X+y)a —p Ay.a+y
¢ AXAY.(AXAY X XY)Y X =5 AXAY.(AV.Yy Y V)X —g
AX.AY.Y Y X

e (Xx.a)b —5 a
o (Axx)(Ay.a)b —5 (Ay.a)b —5 a

where free variables, e.g. +, a, b are considered as constants.

Reductions may give bigger terms. Let Q = AX.X X X.

QA= (MXXxXX)Q =200 =(Mxxxx)QQ—=520200=...
Termination depends on reduction strategy:

e (Mx.2)(2Q) =5 (MX.a)(QQQ) =5~ ...
e (Mx.2)(2Q) —5 a

10 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012



=]
=
=

Lambda terms as programs

M

e A program p is a lambda term
e Computations are given by beta-reductions

In a "real” functional programming language, the syntax is "sugared”
lambda terms, and computations are based on a specific strategy for
applying beta-reduction.

In F# the reduction strategy is called eager. An application e; e; is
evaluated as follows:

e Evaluate e; to an abstraction Ax.e (written e; ~ Ax.e).

e Evaluate e, to a value v (written e, ~ V).

e Perform the beta-reduction (Ax.e) v —3 e[v/x].
Hence, the "bigstep” evaluationis e; e, ~~ e[v/x]

This eager strategy is efficient when functions need their arguments.

In the textbook the notion environment is used instead of substitution:
ere; ~ (e,[Xx —V]).

11 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012



12

Church numerals. Natural number computations

Natural numbers are represented by, for example, Church numerals:

0 1 2 3 n
Axx M M) MAXE(F(fX)) Lo APX X

where fOx = x, f+ix = fi(fx)

e the main idea is to use a unary representation of numbers.
Rather inefficient — but it works.

Let n denote the Church numeral for the natural number n.

DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus

=]
=
=

M

MRH 25/10/2012



Successor and additions operations

e Successor: suc = An.Af.ax.nf (f x)
e Addition: add = Am.An.Af.Ax.mf (nf x)

Reductions:

suchn = A AX(AFAXF"X)f (fx)
= A f"x) (fx)

= MMf"(fx) = MAxf"x = nt1

addmn=AA.AFAXf"x)f (Rfx)
AP XA x) (nfx)
AT (AF AT X) f x)

DTU Informatics, Technical University of Denmark

MM (FTX) = MAxf™"x = min

A brief introduction to Lambda calculus

(=)
|
=

M

MRH 25/10/2012



Recursion in Lambda Calculus

How to make recursive functions in Lambda calculus?

Answer: use a fixpoint combinator Y.

e Anelementx € Ais a fixpoint of a functionf : A — A, if x = f(x)

¢ A fixpoint combinator is a higher-order function Y that computes
the fixpoint of another function F,i.e. Y F = F(Y F)

Example: Let F = Af.An.if n=0then 1 else nxf(n —1).

The factorial function n! is a fixpoint for F, as

= Anifn=0thenlelsenx(n—1)! = Fn!

Thus the factorial function fact is declared by Y F, and e.g.

fact2=Y F2 = ()\nlfn—OthenleIsen*(YF(n—l)))
= f2=0thenlelse2x(YF1)=-.-=2

14 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus

=]
=
=

M

MRH 25/10/2012



=]
=
=

Fixpoint combinators

M

There are many lambda terms Y satisfying: Y F = F(Y F).
The first is due to Curry:

Yo = A (Ay X (yy))(Ay X (y y))
The second is due to Turing:
Yi = (AXAYY (XXY)) (AXAYY (XXY))

An advantage of Y; over Y. is that Y{ F = F(Y; F) can be established
by reductions only (an exercise), i.e. Y is preferable for
computational use.

Notice: These operators cannot be represented by an F#

fun-expression. They contain self-applications (of the form t t) and
these are not well-typed in F#.

15 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012



=]
=
=

Summary

M

e Brief introduction to lambda calculus.

¢ Hint a the theoretical underpinning of functional languages. (F#
is actually more directly related to typed lambda calculus).

e Hint at the general computability capability of lambda calculus.

Have fun with the construction of a A-calculus interpreter.

16 DTU Informatics, Technical University of Denmark A brief introduction to Lambda calculus MRH 25/10/2012



	Lambda calculus
	Background
	Syntax
	reductions
	Lambda terms as programs
	Church numerals
	Fixpoint combinators


