
Verilog and VHDL

Martin Schoeberl

Technical University of Denmark
Embedded Systems Engineering

May 6, 2025

1 / 24



Overview

▶ Evaluation
▶ VHDL and Verilog
▶ Show the vending machine to a TA this week
▶ Report hand-in at DTU Learn (22 May)
▶ Interesting presentations in Latch-Up 2025

▶ Check the Chinese OSOC project

2 / 24

https://fossi-foundation.org/latch-up/2025


Evaluation

▶ In general, it looks like most enjoyed DE2 :-)
▶ Some wrote that the lab was too easy

▶ I make it harder every year, maybe not fast enough ;-)
▶ We can take a quick look
▶ You can give me additional feedback here in class

3 / 24



Verilog Introduction

▶ You learned Chisel
▶ Verilog is the industry standard
▶ Used by tools as an exchange format
▶ Old language with a lot of quirks
▶ You mainly need to be able to read it
▶ And a few lines to connect stuff
▶ For serious work: use Chisel

4 / 24



Verilog vs SystemVerilog

▶ Verilog is the old standard
▶ SystemVerilog is an extension
▶ Adding a lot of features

▶ 200+ keywords
▶ Mainly for verification (with UVM)

▶ E.g., object-oriented programming
▶ But open-source tools do not fully support SV
▶ We stick to plain Verilog

5 / 24



Verilog Syntax

▶ Very C-like
▶ e.g, has include file
▶ defines

▶ Module-based
▶ Ports
▶ Wires and regs
▶ Always blocks
▶ Initial blocks

▶ Only for simulation

6 / 24



Verilog (and VHDL) by Examples

▶ Will show you some examples
▶ First Chisel code, then Verilog (and VHDL)
▶ Again, we only need to be able to read some Verilog
▶ It is OK to use LLMs for generating Verilog or VHDL

▶ Only for simulation
▶ You just need to be able to fix errors ;-)
▶ See also the Verilog Cheat Sheet

7 / 24

https://marceluda.github.io/rp_dummy/EEOF2018/Verilog_Cheat_Sheet.pdf


A Simple Component in Chisel

import chisel3._

import chisel3.util._

class ChiselAdder extends Module {

val io = IO(new Bundle() {

val a, b = Input(UInt(8.W))

val sum = Output(UInt(8.W))

})

io.sum := io.a + io.b

}

▶ This is a too small component in practice

8 / 24



A Simple Component in Verilog

module adder(

input [7:0] a,

input [7:0] b,

output [7:0] sum

);

assign sum = a + b;

endmodule

9 / 24



A Simple Component in VHDL

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity adder is

port (

a, b : in unsigned(7 downto 0);

sum : out unsigned(7 downto 0)

);

end entity;

architecture rtl of adder is

begin

sum <= a + b;

end architecture;

10 / 24



Using the ChiselAdder Component in Chisel

val in1 = Wire(UInt(8.W))

val in2 = Wire(UInt(8.W))

val result = Wire(UInt(8.W))

val m = Module(new ChiselAdder)

m.io.a := in1

m.io.b := in2

result := m.io.sum

11 / 24



Using the adder Component in Verilog

wire [7:0] in1;

wire [7:0] in2;

wire [7:0] result;

adder m(.a(in1), .b(in2), .sum(result));

12 / 24



Using the adder Component in VHDL

signal in1, in2, result : unsigned(7 downto 0);

component adder

port (

a, b : in unsigned(7 downto 0);

sum : out unsigned(7 downto 0)

);

end component;

begin

m: adder

port map (

a => in1,

b => in2,

sum => result

);

13 / 24



A Register with Reset and Enable in Chisel

val reg = RegEnable(data, 0.U(8.W), enable)

14 / 24



A Register with Reset and Enable in Verilog

reg [7:0] reg_data;

always @(posedge clk) begin

if (reset)

reg_data <= 8’b0;

else if (enable)

reg_data <= data;

end

15 / 24



A Register with Reset and Enable in VHDL

signal reg : std_logic_vector(7 downto 0);

begin

process (clock)

begin

if rising_edge(clock) then

if reset = ’1’ then

reg <= (others => ’0’);

elsif enable = ’1’ then

reg <= data;

end if;

end if;

end process;

16 / 24



A switch Statement in Chisel

io.out := 0.U

switch(io.sel) {

is("b00".U) { io.out := io.in(0) }

is("b01".U) { io.out := io.in(1) }

is("b10".U) { io.out := io.in(2) }

is("b11".U) { io.out := io.in(3) }

}

17 / 24



A case Statement in Verilog

module comb(

input [1:0] sel,

input [3:0] in,

output reg out

);

always @(*) begin

case (sel)

2’b00: out = in[0];

2’b01: out = in[1];

2’b10: out = in[2];

2’b11: out = in[3];

default: out = 1’b0;

endcase

end

endmodule

18 / 24



A case Statement in VHDL

process (sel, input)

begin

case sel is

when "00" => output <= input(0);

when "01" => output <= input(1);

when "10" => output <= input(2);

when "11" => output <= input(3);

when others => output <= ’0’;

end case;

end process;

19 / 24



An “if...else if...else” Statement in Chisel

when (io.c1) {

io.out := io.in1

} .elsewhen (io.c2) {

io.out := io.in2

} .otherwise {

io.out := io.in3

}

20 / 24



An “if...else if...else” Statement in Verilog

always @(*) begin

if (c1)

out = in1;

else if (c2)

out = in2;

else

out = in3;

end

21 / 24



An “if...else if...else” Statement in VHDL

process(c1, c2, in1, in2, in3)

begin

if c1 = ’1’ then

output <= in1;

elsif c2 = ’1’ then

output <= in2;

else

output <= in3;

end if;

end process;

22 / 24



Advanced Features in Chisel

▶ Object-oriented Code for Hardware
▶ Functional Programming for Generators
▶ Bundles with Directions

23 / 24



Summary

▶ Hardware can be described in any HDL
▶ The abstraction is different
▶ SystemVerilog is not well supported
▶ VHDL becomes a niche language
▶ You might need to read (and write) some Verilog code
▶ Should be able to pick it up in the job
▶ The digital design remains independent of the language

24 / 24


