

Project suggestions

Sven Karlsson

svea@dtu.dk

Research area

Compilers

Processor
Architecture

Operating
Systems

FenixOS

● Ambitious research operation system project
● Multiple projects posssible

– Applications
– Development environments
– GUI
– System libraries
– Kernel subsystems

● Especially interesting if you enjoy
retrocomputing

Execution modes
● FenixOS

– Clean applications

– 4000x ST, 40x fastest 060 accelerator

● Legacy

– Sandboxed TOS and hybrid applications with TOS emulation

– Optional 680x0 emulation

● TOS

– Sandboxed TOS applications with TOS emulation

– 680x0 emulation

● Hypervisor

– Actual TOS or MagiC running

– 680x0 emulation

● Emulation

– Full emulation for legacy demos and games

Application environment
● Similar to Snap / Docker
● Applications carry their environment

– Mapped to a TOS drive
– Think the U: system from MiNT but expanded

● Home directory and U: is retained from MiNT
– Drives mapped under U: for a clean file system

● Processes can be moved transparently
between machines

Odroid-C4 or
Odroid-N2 or

Rock PI X
Kartoco Atari

FenixOS

Full

Stub

GEMDOS +
VDI + AES

Stubs

Debug stub

API for demos

Satellite

STM32Cube +
Drivers +
OS layer

API for Demos

Tinuso : The worlds fastest
processor in its class

● Designed for high-performance multi-core systems

● Double the clock frequency / half the resources

● Next version 16x faster.

Accelerator composer and design
space explorer

● Tool which automatically can compose custom
hardware based on application and configuration

● Iterative feedback to designer → agile development

● Can quickly evaluate different strategies

Accelerator composer and design
space explorer

● Tool which automatically can compose custom hardware based
on application and configuration

● Iterative feedback to designer → agile development
● Can quickly evaluate different strategies

Automatic Optimization

Limitations
• Not all code can be

automatically optimized
• Alternative: vectorize

and parallelize by hand

Our Approach
• Let the compiler do the

heavy lifting
• Modify code to allow

automatic optimization
– Help the programmer understand

why the compiler has not
optimized

Courtesy of Flickr user Martin Maciaszek

18

Approach
• Interactive compilation framework

– Code Commentary
– Automatic refactorings

19

