Project suggestions

Sven Karlsson

svea@dtu.dk

Research area

Processor

Architecture

N

FenixOS

* Ambitious research operation system project

* Multiple projects posssible
— Applications
— Development environments
- GUI
— System libraries
— Kernel subsystems
* Especially interesting if you enjoy
retrocomputing

Desk File View Options

Execution modes

¢ FenixOS

- Clean applications

- 4000x ST, 40x fastest 060 accelerator

* Legacy

- Sandboxed TOS and hybrid applications with TOS emulation

- Optional 680x0 emulation

* TOS

- Sandboxed TOS applications with TOS emulation

- 680x0 emulation

* Hypervisor

- Actual TOS or MagiC running

- 680x0 emulation

¢ Emulation

- Full emulation for legacy demos and games

Application environment
Similar to Snap / Docker
Applications carry their environment

- Mapped to a TOS drive
— Think the U: system from MINT but expanded

Home directory and U: is retained from MIiNT
- Drives mapped under U: for a clean file system

Processes can be moved transparently
between machines

Stub

Satellite GEMDOS +
VDI + AES
STM32Cube + Stubs
Drivers +

OS layer Debug stub

API for Demos API for demos

FenixOS
- - -
E ‘

Tinuso : The worlds fastest
processor in its class

pc i-fetch decode reg-fetch execute 1 execute 2 mMemory mux write-back

register
file

[control logic / cache controller / network interface]

Designed for high-performance multi-core systems
Double the clock frequency / half the resources

Next version 16x faster.

Accelerator composer and design
space explorer

toolchain evaluate

aop | D = %ﬁw
e I

* Tool which automatically can compose custom
hardware based on application and configuration

* |terative feedback to designer - agile development

* Can quickly evaluate different strategies

Accelerator composer and design
pace explorer

, -

* Tool which automatically can compose custom hardware based
on application and configuration

* lIterative feedback to designer - agile development
* Can quickly evaluate different strategies

/ Automatic Optimization
ﬁ@@ms

Limitations Our Approach

* Not all code can be * Let the compiler do the
automatically optimized heavy lifting

* Alternative: vectorize * Modify code to allow
and parallelize by hand automatic optimization

— Help the programmer understand
why the compiler has not
optimized

Optimizing
Courtey ofFks wer ari Maciaeek Compiler

18

Approach

* Interactive compilation framework
— Code Commentary
— Automatic refactorings

Source Optimizing compiler Execut-
files able

19

