
RESEARCH POSTER PRESENTATION TEMPLATE © 2019

www.PosterPresentations.com

Make Business Processes great again…
… using Formal Methods (=^ ◡ ^=)

 Andrey Rivkin
section of Software System Engineering

Business Process
Formal Modeling and SMT-Based Parameterized Verification 167

Job posted
[InsJobCat]

App. received
[InsUser]

Stop Stopped

Evaluate
CV

[CheckQual]

qualif=
true

Evaluate
Application

[EvalApp]

qualif=
false

Stopped

Decide
Eligible

Candidates
[MarkE]

Select
Winner

[SelWinner]

Assign
Winner

Make
Offer

Fig. 1. The job hiring process. Elements in squared brackets attach the update speci-
fications in Examples 3 and 4 to corresponding tasks/events.

Definition 9. A DAB M is a pair ⟨D,P⟩ where D is a data schema, and P
is a root process block such that all conditions and update effects attached to P
and its descendant blocks are expressed over D. ▹

Example 5. The full hiring job process is shown in Fig. 1, using the update
effects described in Examples 3 and 4. Intuitively, the process works as follows.
A case is created when a job is posted, and enters into a looping subprocess
where it expects candidates to apply. Specifically, the case waits for an incom-
ing application, or for an external message signalling that the hiring has to be
stopped (e.g., because too much time has passed from the posting). Whenever an
application is received, the CV of the candidate is evaluated, with two possible
outcomes. The first outcome indicates that the candidate directly qualifies for
the position, hence no further applications should be considered. In this case, the
process continues by declaring the candidate as winner, and making an offer to
her. The second outcome of the CV evaluation is instead that the candidate does
not directly qualify. A more detailed evaluation is then carried out, assigning a
score to the application and storing the outcome into the process repository,
then waiting for additional applications to come. When the application man-
agement subprocess is stopped (which we model through an error so as to test
various types of blocks in the experiments reported in Sect. 3.3), the applications
present in the repository are all processed in parallel, declaring which candidates
are eligible and which not depending on their scores. Among the eligible ones, a
winner is then selected, making an offer to her. We implicitly assume here that
at least one applicant is eligible, but we can easily extend the DAB to account
also for the case where no application is eligible. ▹

As customary, each block has a lifecycle indicating its current state, and
how the state may evolve depending on the specific semantics of the block, and
the evolution of its inner blocks. In Sect. 2.2 we have already characterized the
lifecycle of tasks and catch events. For the other blocks, we continue to use
the standard states idle, enabled, active, and compl. We use the very same
rules of execution described in the BPMN standard to regulate the progression
of blocks through such states, taking advantage from the fact that, being the
process block-structured, only one instance of a block can be enabled/active at a

A simple job application process

What is missing?

Processes consist of control-flows organised amongst activities in order to reach company goals.
Activities and decision logic are arbitrarily complex, and can access and manipulate company’s databases.

General claim:
• Prototypes for modeling, simulation, monitoring,

verification an enactment
• Studying adoption in practice
• Benchmarks

Formal Methods
“Mathematical” approaches to software and system development which support the rigorous specification,
design and verification of complex systems.
Examples of interesting tasks:

• understand and rigorously specify the system (abstraction)

• be able to analyse the system executions

• guarantee that the original system design is respected, desired
correctness properties are met and the system can run correctly

• make system specifications executable

Modeling
Simulation / Monitoring

Verification

Enactment

Some success stories
Modeling Formalisation of data-aware processes —>

proper execution semantics for BPMN with CRUD
support

Simulation Simulation of Data Petri Nets with probabilistic
schedulers using Probabilistic Programming

Figure 4.10: Example of Data Task ready to be triggered.

This spinlock will check every 500 ms for access and then try to change the boolean to
true and execute.
Control flow
The final behavior to be implemented is conditional control flow. In the simulator, the
standard behavior of an exclusive gateway is that the first edge added to the gate is the
default flow, and the user can use a button on the gate to change the flow to other outgoing
edges. To implement conditional control flow, the custom ReplaceProvider module is
utilized, this module can change the id of an edge (this module is inspired by LINK). A
specific id is necessary to append overlays, otherwise there is no way to control which
element the overlay gets attached to, an extra sub id added, is all that is required. We
have a function listening on element changes, so when a new condition edge is created
an overlay is added see Figure 4.11.

Figure 4.11: Showcase of condition added to edge.

Conditions are expressed in a textarea and their evaluation should not be determined until
runtime, a dedicated module messageService is introduced, utilizing a singleton design
pattern. This module maintains a keyvalue list shared across all relevant modules. The

26 Extending BPMN.io towards the support of dataaware process modelling

• BPMN.io extension
• PDMML support (a

process-aware SQL
dialect)

• DB dynamic linking

' T
↵ ↵ |= ' ↵() '

'

+ + ↵

(_) ^ (¬ _ _)

↵() = ↵() = ↵() =

+ = ^ (= _ <)

↵() = ↵() = ↵() =

I Z Q
I (x , y) 6= (y , x) ^ () ! ((x , x)) = (y)

I

</>

mine post: p’>p r’<r∧
pre: p<m r>0∧

rest

…

…

post: r’>r

12 Martin Kuhn , Joscha Grüger , Christoph Matheja, and Andrey Rivkin

Second, weight(GC) determines the total probability of all guards that hold:

weight(GC) =

(
[B] · E, if GC = (B

E�! C)

weight(GC1) + weight(GC2) if GC = (GC1 [] GC2)

The subdistribution obtained from executing if GC fi on (s, `) is then given by
JGCK(s, `) normalized by weight(GC). If no guard in GC holds, i.e. guards(GC)
evaluates to 0, then the final subdistribution evaluates to 0 as well.

The semantics of the loop do GC od is defined as the limit of the distributions
produced by its finite unrollings: If no loop guard holds, we terminate with
probability one in the initial state (s, `) and thus return the Dirac distribution
�(s,`); otherwise, we return the distribution obtained from executing the loop
body followed by the remaining loop unrollings.15

5 From DPNs to PPL Programs

We now develop a PPL program Csim that simulates the runs of a DPN N for
a given scheduler and a set of goal states such that (1) every execution of Csim

corresponds to a run of N and vice versa, and (2) the probability distribution
of Csim equals the distribution of all of the net’s runs that do not visit a goal
state before all of their steps have been fired. We will discuss in Section 6 how
this distribution can be used for process mining tasks beyond simulation.

We present the construction of Csim step by step: we first discuss the setup
and how we encode net states. In Section 5.2, we construct Csim. Finally, Sec-
tion 5.3 addresses why the constructed probabilistic program is correct.

5.1 Setup and Conventions

We first consider all dependencies needed for constructing Csim. Throughout this
section, we fix a DPN N = hP, T, F, l, A, V,�, pre, posti, an initial state (M0,↵0),
a scheduler S of N , and a set of goal states G. For simplicity, we assume that
all data variables evaluate to rational numbers, i.e. � = Q, that G contains all
deadlocked net states, and that membership in G for non-deadlocked states can
be expressed as a Boolean formula isGoal over net states.16

Furthermore, we assume that P = {p1, . . . , p#P }, T = {t1, . . . , t#T }, and
V = {v1, v2, . . . , v#V } for some natural numbers #P,#T,#V 2 N.

We use the following program variables in our construction:
• For every place p 2 P , p stores how many tokens are currently in p.
• For every variable v 2 V , v stores the current value of v and v0 is an internal
program variable used for updating the value of v when firing a transition.

15 Technically, our semantics computes the least fixed point of the loop’s finite un-
rollings Cn, which is standard when defining program semantics, see e.g. [15].

16 Examples of G include (beside deadlocked states) the set of all states, where some
final marking has been reached or a variable is above some threshold.

+ scheduler

encode

probabilistic program simulation and inference

execution log
&

its probability

Specifically for YOU:
• Interactive modeling tool for DPN

simulation using Probabilistic
Programming engines (e.g.,
WebPPL)

• Simulator for data-aware BPMN
building on an available
prototype

http://BPMN.io

