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ABSTRACT

Numerical optimization methods have been developed and applied successfully to

many deterministic variants of the so-called vehicle routing problem (VRP). Unfortunately,

existing numerical methodologies are not as effective for planning and design problems

when uncertainty is a significant issue. In view of this, this presentation will show how

approximation models for large-scale uncertain VRP's can complement conventional

optimization methods and allow for the exploration of a broader set of design and

operating strategies than is currently possible. The presentation will consider vehicle

routing problems where vehicles have a finite capacity and demand is uncertain, focusing

on strategies that coordinate the actions of all vehicles in the fleet in real time as

information becomes available.

When uncertainty exists, systems should be designed with degrees of flexibility that

allow for efficient control in real time. In the case of "single-period" vehicle routing

problems, we should determine two things: (i) the system configuration, including the fleet

size and composition and an initial set of vehicle routes, and (ii) a dynamic control plan

(algorithm) which specifies how vehicle routes are modified in real time as information

becomes available.  Uncertainty should be considered when designing both the system

configuration and its control algorithm. Furthermore, configuration decisions should be

made with both the flow of information and the control method in mind. For the capacitated



VRP with uncertain demand, the desirability and feasibility of specific designs will depend

on how and when lot size information becomes available and the degree of control that a

dispatcher can exert over en-route vehicles.

Researchers have attempted to obtain optimal designs minimizing expected

operating costs for problems in which customer lot size information becomes known only

after the arrival of a vehicle.  Unfortunately, all the solutions proposed to date are based

either on configurations that are unlikely to be feasible in practice, such as single-vehicle

fleets, or on feasible operating plans that are too restrictive to be appealing in practice.  A

possible alternative system design that may be more practical and efficient would allow

tour failures to be consolidated into secondary “sweeper” routes.  The approach here

would be to plan initial routes as if the vehicle capacity were smaller (q- < q) to ensure that

few primary tours would fail, and then to serve the overflow customers with a set of

secondary tours where vehicles are allowed to cooperate.  Unfortunately, although this

configuration is simple to describe, it is already too difficult to optimize exactly.  More

promising designs where vehicles would be allowed to cooperate during the primary tours

are even more difficult to treat exactly.

The presentation will show how a system in which vehicles are allowed to

cooperate during the primary phase can be designed and operated by minimizing and

approximate "logistic cost function" of key design parameters. The effectiveness of the

proposed strategies is compared against (a) current strategies in which there is little or no

coordination, and (b) against deterministic strategies for equivalent problems without

uncertainty.  It is shown that the introduction of coordination in proper ways lowers the

operation cost from the best levels that can be achieved without coordination (a) to levels

close to (b).
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Single-period vehicle routing

Decisions

– depot location, fleet composition, operating strategy

Possible system characteristics

– space-constraints:  vehicle size

– time-constraints:  time-windows, deadlines

– uncertainty
• demand-side (locations, lot sizes, service times)

• supply-side (travel times)

depot
single-period
demand

customers

vehicle fleet

vehicle tour



Deterministic vehicle routing problem

– NP-hard problem for minimum total distance (cost)
• solution:  set of vehicle tours

– Extensive literature:  bounds, asymptotic behavior,
heuristics, exact (IP) methods

Complications from demand uncertainty

– more difficult:  planned tours may fail!

Vehicle routing and uncertainty

depot

unserved
customers



Large-scale approximations

Exploit scale under uncertainty

– continuous approx. of discrete locations, demands

– large-number laws, central limit theorem

Deterministic vehicle routing problem

– A large-number approximation for total distance

– Daganzo and Newell (1984, 1986)

AkD fT
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depot

A
N  vehicle tours

customer density )(xδ



Space-constrained vehicle routing
with uncertain demand

VRPSC(UD)

Operating strategies

Strategy References

Single vehicle-tour

Dror et al (1989);
Bastian and  Rinooy
Kan (1992);
Bertsimas (1992)Uncoordinated

Multiple vehicle-tours;
sin gle-zone swee per tours

Gendreau, Laporte,
Seguin (1995,1996)

Static
coordination

Multiple vehicle-tours;
multiple-zone sweeper
tours

Daganzo and Erera
(1999)

Dynamic
coordination

Multiple vehicle-tours;
vehicle reassignments Today

Given:  Depot, fleet of vehicles with space capacities,
customer demands random variables with known
distributions, point-to-point travel costs

Find: Minimum expected cost operating strategy:
- all customer demand satisfied
- no vehicle exceeds capacity



Single vehicle-tour

Multiple vehicle-tours

VRPSC(UD): uncoordinated strategies

depot

depot



Importance of operating strategy

Single-period deterministic VRP

Single-period stochastic VRP

depot

Customers

depot

Customers

depot

Customers



VRPSC(UD): detailed models

Uncoordinated operations

Expected tour cost calculation tractable

– Example: Recursion in Bertsimas (1992)

– O(K2n2) per tour; K discrete demand levels
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Depot

Primary delivery
regions

Unserved
customers

a sweeper tour

VRPSC(UD): approximation model

Daganzo and Erera (1999)

– static coordination; multiple-zone sweep strategy

– consolidation of overflows

Modeling approach

– large-scale problem focus

– obtain approximate logistics cost function (LCF)

– optimization and testing



Proposed modeling approach

(1)  Formulation

(2)  Cost modeling

– approximate logistics cost function (LCF)

(3)  Optimization

(4)  Implementation w/ details and testing



2-vehicle capacity sharing 4-vehicle capacity sharing

depot

(a)

depot

(b)

Capacity-sharing strategies

Partially-planned

(1) Operate tours to predetermined customers

Local sharing strategies

(2) Non-full vehicles dynamically assigned
to unserved customers



depot

region 1 tours

dynamic allocation
for region 2

N-vehicle capacity-sharing strategy

Region 1:  Preplanned tours

Region 2:  Dynamically-assigned tours

1

2

vehicles with
remaining capacity



depot

L

w

r

R

2

1

L  (ring radial) metric1

Formulation

Idealized service region

Design decisions

– number of vehicles, N

– region 2 radius, r

– shape of region 1 zones (w, L)

– strategies for:

• Sweeping region 1 excess demand

• Allocating vehicles to region 2 customers

δ

demand density λ
dispersion γ

# vehicles
capacity

N

C



Formulation: operating strategy

(1) Line-haul travel to region 1 zone

(2) Local travel between region 1 customers

(3) Line-haul return to region 2 perimeter

(4) Reposition along region 2 perimeter

(4b) Serve set of unserved region 1 customers

(5) Serve pie-shaped region 2 zone enroute to depot

depot

wr
1

2

3

4

5

L

Region 2 overflow customers: depot-based sweeper tours



depot

2

3

1

5

2

Region 2 dynamic assignment

(1) Capacity proportional

(2) Minimal repositioning distance



Modeling

Total line-haul and region 1 local distance

Assumptions

• Equal-sized zones ⇒ A = π (R2 - r2)/N

• Near-optimal dimensions (Daganzo (1984))

Expected distance
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Modeling

Repositioning distance

Assumptions

• region 1 tour demand ~ Normal R.V.

• redistribute remaining capacity uniformly

Expected distance

depot

wr

L

22/1 )(32
)2(

)( ACN

A
rN

A

CA

λ
πγλπ

γλ
λ

−




 −Φ



X(N)

0 2πr

cum # of Items

X(N)
X(n)

C - D

Nn Nn

Cumulative excess capacity: diffusion process

– X(n) = (C - D)n

– X(n) ~ η( (C − λA)n, γλAn)

Target curve, given X(N)

– T(n) = (n/N) X(N)

Expected reposition distance per vehicle

– E[area between curves]/E[X(N)]

Modeling: repositioning distance

by CLT

T(n)



Modeling

Region 2 local distance

Assumptions

• width of vehicle pie zone proportional to capacity

• upper bound on remaining capacity variance used

Expected distance
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Modeling

Region 1 overflow service distance

– assignment distance:  included in repositioning

– lateral distance:  included in region 1 local distance

⇒ model expected radial distance

– G : expected number of vehicles with remaining
capacity needed to serve an overflow zone
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Expected Distance Analysis
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minimum r = 5.4
distance = 1980

Demand rate:  20 items/area
Index of Dispersion: 5.4
Vehicle Capacity: 75



Simulation

Inputs
R , δ , FD , r , N

Generate instance
- locations :: 2-D Poisson process
- demands :: F D

-1

Create re gion 1 tours
- modified “sweep” heuristic
- cluster-first, route-second

Operate re gion 1 tours
- full vehicles :: to depot
- non-full :: to perimeter

Assi gn region 1 overflows
- greedy “local-matching” method

Operate overflow tours

Create re gion 2 tours
- pie size ( ϑ) ~ vehicle capacity

Operate re gion 2 tours

Create sweep tours
- modified “sweep” heuristic

Operate sweep tours



Simulation Validation of Expected Cost Model
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Comparisons: an example

N-vehicle coordinated strategy (radius 5.4)

– predicted OC: 1980; simulated OC: 1953

– # vehicles:  92

– # customers missed on first tour: 1.3%

Uncoordinated single-zone strategy lower bound

– predicted OC:  2240

– # vehicles: 120

– # customers missed on first tour: 1.3%

Savings

~ 25% fewer vehicles, 7% less distance

Comparison with deterministic bound

– TSP-tour partitioning bound OC:  1704

– Cost of uncertainty
• N-vehicle strategy:  16%

• uncoordinated strategy:  31%



Expected Distance Analysis
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Conclusions

Assessment

– New coordinated strategies for VRPSC(UD)

– Large-scale approximations

– Preliminary proof-of-concept and validation

– Results
• strategies improve status quo

• large-scale approximation methods promising

Extensions

– Coordinated strategies for time-constrained vehicle
routing
• deadline problem

• application:  overnight package delivery collections

– Improved control


