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STUDIOS: Segmenting Tomograms Using
Different Interpretation of Simplicity

B In a nutshell

3D tomograms (volumetric images resulting from computed tomography) ac-
quired at synchrotron or laboratory facilities provide a view into the internal
structure of matter. The need for accurately segmenting tomograms has not yet
been met by the deep learning (DL) methods, even though DL has successfully
solved most segmentation problems in computer vision. Contrary to an obvi-
ous suggestion, I claim that successful DL methods for segmenting photographs
should not serve as inspiration for segmenting tomograms, as it will lead to large
and data-hungry models. Instead, I suggest developing models which exploit the
simplicity of tomograms.

The methods I intend to develop diverge from the current image segmenta-
tion paradigm, and cannot lean on the existing frameworks for DL. This makes
method development difficult and time-consuming. But, if successful, the new
methods will pave the way for future research in DL for tomograms.

C Research idea and context

DL methods achieve remarkable results on many segmentation problems in com-
puter vision. When it comes to segmenting large 3D tomograms, e.g., tomo-
grams captured at synchrotron facilities like ESRF or MAX-IV, the use of DL is
still modest. For example, in scientific highlights for 2021, ESRF mentions one
article [1] where DL is used for segmentation. They applied a freely available
U-Net-like convolutional network to segment and quantify the nano-structure of
nacre (mother of pearls). From a manually labeled subset of data they obtained
satisfactory (not great) results (Fig. 1), concluding their work demonstrates the
potential of DL. That DL struggles with this segmentation problem is frustrat-
ing, when considering that thresholding, the ultimately simplest segmentation
approach, yields a reasonable starting point for nacre segmentation.

In [1] they suggest using larger networks. More labeled data to train the
model is another suggestion heard when DL disappoints. This leads to high
memory and computational requirements making DL models slow and difficult
to use. I argue that the size of the network, and the amount of labeled data, are
not the only reasons behind the somehow disappointing behaviour of DL when
used on tomograms of materials with relatively simple structure.

Adding to frustration about the under-performance of DL, is the fact that
a tomogram as in [1] is itself a remarkable accomplishment of world-class X-
ray physicists using facilities that cost millions of euros to run. The very fact
that the sample was scanned at ESRF witnesses that yet unanswered questions
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Figure 1: Figure taken from [1] with data (A), thresholidng (B), manual labeling
(C), and segmentation result (D).

are potentially hidden in the data. So why do we still struggle to use DL
segmentation when analysing this precious data? Ironically, the uniqueness of
the tomograms is yet another factor contributing to the problem, since pre-
trained models have little use on unique data.

That DL is state-of-the-art for segmentation of photographs is indisputable
[2]. Here, methods with many convolutional layers, hourglass (encoder-decoder)
architecture, and skip connections (like U-Net) are popular choices. Such meth-
ods are available in open-source libraries provided by companies like Facebook
and Google. The ease of use of DL methods led to enormous research activ-
ity which increased the segmentation accuracy to levels that were unthinkable
before DL.

When developing methods for 3D segmentation, the logical choice is to start
with what works well (and is available) for 2D. The adaptation from 2D to 3D
is usually considered being a generalization. Therefore, methods are adapted
for example by using 3D convolutions, increasing the complexity. This makes
the models even more dependent on training data.

It is important to mention that 3D DL methods are developed mostly with
a focus on medical imaging. Here, images often depict organs, and rather large
standardized medical datasets are beginning to emerge. Also, medical images
differ tremendously from tomograms in MS. As a result, the tools available to
MS researchers today are, in a sense, twice removed from their original use case:
those are methods for medical images which are in turn adapted from methods
for photographs.

The question is: can segmentation of tomograms be achieved better if using
different DL methods than those already established for segmentation of pho-
tographs? I argue that this is possible if carefully exploiting the simplicity of 3D
tomograms. I am certain that we can develop DL methods targeted for tomo-
grams which would require significantly less training data and computation. If
efficiently implemented and made publicly available, such methods would have
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a tremendous impact on 3D imaging.

D Proposed method of solution or concept

Despite being 3D, tomograms are, in certain aspects, significantly simpler than
photographs. Photographs capture the appearance of objects which may change
dramatically depending on the viewing angle and lighting conditions. Pho-
tographs, being projections, exhibit perspective, and occlusions. In contrast,
voxel intensities of 3D tomograms encode the attenuation of X-rays in mat-
ter, which is directly linked to locally stable material properties. I denote this
property local stability. Furthermore, 3D tomograms are reconstructions of 3D
space, precisely capturing the shape (but not pose) of the imaged objects. I de-
note this property geometric consistency. Those two aspects are ignored when
methods for photographs are generalized to 3D tomograms. Instead, I propose
to develop DL segmentation methods that exploit the properties of tomograms.

My first hypothesis is that due to the local stability, small neighbourhoods
extracted around points in tomograms carry more information needed to encode
segmentation classes than in photographs. (In photographs, patches from a
window of the car and a window of the house may look very similar.) This means
that architectures suitable for segmenting tomograms should rely more on (not
necessarily deep) rotationally invariant convolutions and less on downscaling
and upscaling (which is used to encode long-range interactions).

My second hypothesis is that due to the geometric consistency of tomograms,
encoding topological and morphological constraints will reduce the dependency
on training data. This means that models for segmenting tomograms will benefit
from different methods for representing the segmentation than the customary
voxel grid. An alternative is a surface mesh or neural representation. Such
representations are starting to emerge for segmentation [4, 3] but are still focused
on medical data and still make use of large U-Net-like models.

E Major gains and obstacles

The main obstacle to this project lies in a substantial amount of code that
needs to be written. As mentioned, the current development in computer vision
is largely fueled by open-source DL frameworks from big commercial compa-
nies (PyTorch by Facebook and TensorFlow by Google). This makes it easy
for researchers to address the type of problems the provided frameworks are
developed for: problems involving photographs. And when addressing other
problems (like tomograms) it is still easier to use an existing framework.

As we aim to develop different models, we will need to supplement the
existing frameworks with a considerable amount of software developed in-house.
This is a relatively high effort-wise investment considering how easy it is to use
existing frameworks.

Once we produce an initial framework for DL segmentation of tomograms,
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and demonstrate its potential, it will be easier for other researchers to cross this
effort-wise threshold and contribute to the development of efficient methods for
segmenting tomograms. We plan to assess our models on parameters including:
size of the volumes processed, time used for training and inference, amount of
labelled data needed.

Ultimately, the goal is to develop an easy-to-use, easy-to-train, simple and
efficient DL segmentation framework and make it accessible to the research com-
munity. This will revolutionize the application of 3D imaging for quantitative
studies of micro-structure. The impact may resemble what happened in com-
puter vision with the use of DL methods becoming a standard, allowing us to
solve previously unsolvable problems.

F Appropriatness

In research, as in many other situations, it is advisable to stand on the shoulder
of giants. This research idea suggests the opposite: following the path which we
know is difficult. For a conventional program, this might be too controversial
and bold.

Also on a personal level, pursuing this research idea requires high commit-
ment. Any image analyst aiming at fast success, is career-wise much better off
by doing the opposite of what this project suggests. Following the flow (using
the provided frameworks, and solving problems measured by benchmarks) is not
only an easier way to good results, but also an easier path to highest-ranking
conferences (which is where image analysts want to publish).

G Probable objections

An objection is: “If making simpler models can solve the complex problems, why
has it not been done?” The answer is that the models I propose to develop are
only simpler in some aspects. In other aspects (geometric models, computational
efficiency, annotation, and visualization in 3D) the challenges are still large.
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