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• what is structure?

• generative models for complex networks

     general form
     types models
     opportunities and challenges

• weighted stochastic block models

     a parable about thresholding
     checking our models
     learning from data (approximately)
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     makes a network different from a random graph
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• makes data different from noise
     makes a network different from a random graph

• helps us compress the data
     describe the network succinctly
     capture most relevant patterns

• helps us generalize,                                                      
from data we’ve seen to data we haven’t seen:

i. from one part of network to another
ii. from one network to others of same type
iii. from small scale to large scale (coarse-grained structure)
iv. from past to future (dynamics)

what is structure?
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• imagine graph     is drawn from an ensemble or generative 
model: a probability distribution              with parameters

•    can be continuous or discrete; represents structure of graph

statistical inference
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• inference (Bayes): compute or sample from posterior   
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statistical inference

• imagine graph     is drawn from an ensemble or generative 
model: a probability distribution              with parameters

•    can be continuous or discrete; represents structure of graph
• inference (MLE): given    , find    that maximizes 
• inference (Bayes): compute or sample from posterior   

distribution

• if    is partly known, constrain inference and determine the rest
• if    is partly known, infer    and use              to generate the rest
• if model is good fit (application dependent), we can generate 

synthetic graphs structurally similar to 
• if part of     has low probability under model, flag as possible 

anomaly
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assumptions about “structure” go into

consistency

     requires that edges be conditionally independent [Shalizi, Rinaldo 2011]

generative models for complex networks

general form

P (G | ✓) =
Y

i<j

P (Aij | ✓)

P (Aij | ✓)

lim
n!1

Pr
⇣
✓̂ 6= ✓

⌘
= 0
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hierarchical random graph

model

instance

Pr(i, j connected) = pr

i

j

i j

= p(lowest common ancestor of i,j)
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L(D, {pr}) =
∏

r

p
Er

r (1 − pr)
LrRr−Er

Er

Rr

Lr
= number nodes in left subtree

= number nodes in right subtree

= number edges with     as lowest 
    common ancestor

Lr Rr

Er

→

pr
→

r
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classes of generative models

• stochastic block models
k types of vertices,                        depends only on types of i, j
originally invented by sociologists [Holland, Laskey, Leinhardt 1983]

many, many flavors, including
mixed-membership SBM [Airoldi, Blei, Feinberg, Xing 2008] 

hierarchical SBM [Clauset, Moore, Newman 2006,2008]

restricted hierarchical SBM [Leskovec, Chakrabarti, Kleinberg, Faloutsos 2005]

infinite relational model [Kemp, Tenenbaum, Griffiths, Yamada, Ueda 2006]

restricted SBM [Hofman, Wiggins 2008]

degree-corrected SBM [Karrer, Newman 2011]

SBM + topic models [Ball, Karrer, Newman 2011]

SBM + vertex covariates [Mariadassou, Robin, Vacher 2010]

SBM + edge weights [Aicher, Jacobs, Clauset 2013]

+ many others

P (Aij | zi, zj)
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classes of generative models

• latent space models
nodes live in a latent space,                             depends only on vertex-vertex proximity

many, many flavors, including
logistic function on vertex features [Hoff, Raftery, Handcock 2002]

social status / ranking [Ball, Newman 2013]

nonparametric metadata relations [Kim, Hughes, Sudderth 2012]

multiple attribute graphs [Kim, Leskovec 2010]

nonparametric latent feature model [Miller, Griffiths, Jordan 2009]

infinite multiple memberships [Morup, Schmidt, Hansen 2011]

ecological niche model [Williams, Anandanadesan, Purves 2010]

hyperbolic latent spaces [Boguna, Papadopoulos, Krioukov 2010]

P (Aij | f(xi, xj))

1094 Journal of the American Statistical Association, December 2002

Figure 1. Maximum Likelihood Estimates (a) and Bayesian Marginal

Posterior Distributions (b) for Monk Positions. The direction of a relation

is indicated by an arrow.

distances between nodes, but quite slowly in Å, as shown in
Figure 2(b). Output from the chain was saved every 2,000
scans, and positions of the different monks are plotted for each
saved scan in Figure 1(b) (the plotting color for each monk
is based on their mean angle from the positive x-axis and
their mean distance from the origin). The categorization of the
monks given at the beginning of this section is validated by the
distance model étting, as there is little between-group overlap
in the posterior distribution of monk positions. Additionally,
this model is able to quantify the extent to which some actors
(such as monk 15) lie between other groups of actors.

The extent to which model ét can be improved by increas-
ing the dimension of the latent space was examined by étting
the distance model in <3, that is, z

i

2 <3 for i

D 11 : : : 1 n. The
maximum likelihood for this model is ƒ34004 in 50 param-
eters, a substantial improvement over the ét in <2 at a cost
of 16 additional parameters. It is interesting to note that the
ét cannot be improved by going into higher dimensions. This
can be seen as follows. For a given dataset Y , the best-étting
symmetric model (p

i1 j

D
p

j1 i

) has the property that p

i1 j

D 1
for y

i1 j

D
y

j1 i

D 1, p

i1 j

D 0 for y

i1 j

D
y

j1 i

D 0, and p

i1 j

D 1=2
for y

i1 j

6D
y

j1 i

. The log-likelihood of such a ét is thus ƒ
a log4,

where a is the number of asymmetric dyads. For the monk
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Figure 2. MCMC Diagnostics for the Monk Analysis. (a) Log-

likelihood; (b) alpha.

dataset, the number of asymmetric dyads is 26, and so the
maximum possible log-likelihood under a symmetric model is
ƒ26 log4 D ƒ36004, which is achieved by the distance model
in <3. More precisely, there exists a set of positions O

z

i

2 <3

and a rate parameter O
Å such that lim

c

!ˆ logP4Y

—
c

O
Å1 c

b
Z5

D
ƒ26 log4.

4.2 Florentine Families

Padgett and Ansell (1993) compiled data on marriage
and business relations between 16 historically prominent
Florentine families, using a history of this period given by
Kent (1978). We analyze data on the marriage relations tak-
ing place during the 15th century. The actors in the population
are families, and a tie is present between two families if there
is at least one marriage between them. This is an undirected
relation, as the respective families of the husband and wife in
each marriage were not recorded. One of the 16 families had
no marriage ties to the others, and was consequently dropped
from the analysis. If included, this family would have inénite
distance from the others in a maximum likelihood estimation
and a large but énite distance in a Bayesian analysis, as deter-
mined by the prior.

Modeling d

i1 j

D —
z

i

ƒ
z

j

—
1 z
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1 z

j

2 <2 and using the param-
eterization ‡

i1 j

D
Å41 ƒ

d

i1 j

5 as described in Section 2, the
likelihood of (Å1Z5 can be made arbitrarily close to 1 as
Å

! ˆ for éxed Z

D b
Z; that is, the data are d2 representable.

Such a representing b
Z is plotted in Figure 3(a). Family 9 is

the Medicis, whose average distance to others is greater only
than that of families 13, the Ridolés and 16, the Tornabuonis.
Another d2 representation is given in Figure 3(b). This conég-
uration is similar in structure to the érst, except that the seg-
ments 9-1 and 9-14-10 have been rotated. This is somewhat
of an artifact of our choice of dimension: When modeled in
three dimensions, 1 and 14 are ét as being relatively equidis-
tant from 6.

One drawback of the MLEs presented earlier is that they
overét the data in a sense, as the étted probabilities of ties are
all either 0 or 1 (or nearly so, for very large Å). Alternatively,
a prior for Å can be formulated to keep predictive probabilities
more in line with our beliefs; for example, that the probabil-
ity of a tie rarely goes below some small, but not inénitesi-
mal value. Using the MCMC procedure outlined in Section 3,
the marriage data were analyzed using an exponential prior
with mean 2 for Å and diffuse independent normal priors for
the components of Z (mean 0, standard deviation 100). The
MCMC algorithm was run for 5 Ä 106 scans, with the output
saved every 5,000 scans. This chain mixes faster than that of
the monk example, as can be seen in the diagnostic plots of
Figure 4 and in plots of pairwise distances between nodes (not
shown). Marginal conédence regions are represented by plot-
ting samples of positions from the Markov chain, shown in
Figure 3(c). Note that the conédence regions include both the
conégurations given in Figure 3(a) and (b). Actors 14 and 10
(in red and purple) are above or below actor 1 (in green) for
any particular sample; the observed overlap of these actors in
the égure is due to the bimodality of the posterior and that the
plot gives the marginal posterior distributions of each actor.
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opportunities and challenges

• richly annotated data
edge weights, node attributes, time, etc.
= new classes of generative models

• generalize from           to ensemble
useful for modeling checking, simulating other processes, etc.

• many familiar techniques
frequentist and Bayesian frameworks
makes probabilistic statements about observations, models
predicting missing links      leave-k-out cross validation
approximate inference techniques (EM, VB, BP, etc.)
sampling techniques (MCMC, Gibbs, etc.)

• learn from partial or noisy data
extrapolation, interpolation, hidden data, missing data

n = 1

⇡
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opportunities and challenges

• only two classes of models
stochastic block models
latent space models

• bootstrap / resampling for network data
critical missing piece
depends on what is independent in the data

• model comparison
naive AIC, BIC, marginalization, LRT can be wrong for networks
what is goal of modeling: realistic representation or accurate prediction?

• model assessment / checking?
how do we know a model has done well? what do we check?

• what is v-fold cross-validation for networks?
 Omit          edges? Omit         nodes? What?n2/v n/v

17
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functional groups, not just clumps

• social “communities” (large, small, dense or empty)

• social: leaders and followers

• word adjacencies: adjectives and nouns

• economics: suppliers and customers

stochastic block models

19



nodes have discrete attributes
each vertex   has type   
         matrix    of connection probabilities
if          and          , edge            exists with probability
   not necessarily symmetric, and we do not assume
given some    , we want to simultaneously

label nodes (infer type assignment                            )
learn the latent matrix 

ti � {1, . . . , k}i

k ⇥ k p

ti = r tj = s (i ! j) prs

p prr > prs

G

t : V � {1, . . . , k}
p

classic stochastic block model
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1
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3

4

5

6

assortative m
odules

classic stochastic block model

model

instance

P (G | t, �) =
Y

(i,j)2E

pti,tj
Y

(i,j) 62E

(1� pti,tj )

likelihood
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• 4 groups
• edge weights                    with
• what threshold    should we choose?

µ1 < µ2 < µ3 < µ4⇠ N(µi,�
2)

t

thresholding edge weights

t = 1, 2, 3, 4
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• 4 groups
• edge weights                    with
• set threshold          , fit SBM

µ1 < µ2 < µ3 < µ4⇠ N(µi,�
2)

t  1
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• 4 groups
• edge weights                    with
• set threshold          , fit SBM

µ1 < µ2 < µ3 < µ4⇠ N(µi,�
2)

t = 2
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• 4 groups
• edge weights                    with
• set threshold          , fit SBM

µ1 < µ2 < µ3 < µ4⇠ N(µi,�
2)

t = 3
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t � 4

• 4 groups
• edge weights                    with
• set threshold          , fit SBM

µ1 < µ2 < µ3 < µ4⇠ N(µi,�
2)
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each edge has weight 
let 

covers all exponential-family type distributions:
bernoulli, binomial (classic SBM), multinomial
poisson, beta
exponential, power law, gamma
normal, log-normal, multivariate normal

adding auxiliary information:

w(i, j)

w(i, j) � f(x|⇥)
= h(x) exp(T (x) · �(⇥))

weighted stochastic block model
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each edge has weight 
let 

examples of weighted graphs:
frequency of social interactions (calls, txt, proximity, etc.)
cell-tower traffic volume
other similarity measures
time-varying attributes
missing edges, active learning, etc.

adding auxiliary information:

w(i, j)

w(i, j) � f(x|⇥)
= h(x) exp(T (x) · �(⇥))

weighted stochastic block model

28



given    and choice of    , learn    and 

block structure
weight distribution

block assignment
weighted graph

likelihood function:

degeneracies in likelihood function
(variance can go to zero. oops)

technical difficulties:

weighted stochastic block model

R : k � k ⇥ {1, . . . , R}

P (G | z, ✓, f) =
Y

i<j

f
�
Gi,j | ✓R(zi,zj)

�

f

z

G

f zG ✓
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approximate learning

edge generative model

estimate model via variational Bayes

conjugate priors solve degeneracy problem

algorithms for dense and sparse graphs

P (G | z, ✓, f)
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approximate posterior distribution

estimate    by minimizing

where

for (conjugate) prior     for exponential family distribution

taking derivative yields update equations for

iterating equations yields local optima

dense weighted SBM

⇡⇤(z, ✓ |G) ⇡ q(z, ✓) =
Y

i

qi(zi)
Y

r

q(✓r)

DKL(q||⇡⇤) = lnP (G | z, ✓, f)� G(q)

G(q) = Eq(L) + Eq

✓
log

⇡(z, ✓)

q(z, ✓)

◆

q

⇡ f

z, ✓
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checking the model

synthetic network with known structure

• given synthetic graph with known structure

• run VB algorithm to convergence

• compare against choose threshold + SBM (and others)

compute Variation of Information (partition distance)

VI(P1, P2) 2 [0, lnN ]

VI(P1, P2) 2 [0, ln k⇤ + 1.5] = [0, 3.1]in this case
32



checking the model

synthetic network with known structure

• variation of Newman’s 
four-groups test

•            latent groups

• Normal edge weights:
f = N (µr,�

2
r)

nr = [48, 16, 32, 48, 16]
k⇤ = 5

VI(P1, P2) 2 [0, ln k⇤ + 1.5] = [0, 3.1]in this case
33



learn better with more data

increase network size

• fix           ,
• bigger network, more 

data

N

k = k⇤

we keep the           constantnr/N

f = N
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data
• WSBM converges on 
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• thresholding + SBM 
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learning the number of groups

vary number of groups found

• fix 
• too few / many blocks?

k

f = N
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• fix 
• too few / many blocks?
• WSBM converges on 

correct solution
• WSBM fails gracefully 

when 
• others do poorly

k > k⇤

f = N

In fact, Bayesian marginalization will correctly choose k=k* in this case.
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learning despite noise

increase variance in edge weights

• fix           ,
• bigger variance, less 

signal

�2
r

k = k⇤ f = N
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• single-scale structural inference

mixtures of assortative, disassortative groups

• inference is cheap (VB)

approximate inference works well

• thresholding edge weights is bad, bad, bad

one threshold (SBM) vs. many (WSBM)

• generalizations also for sparse graphs, degree-corrections, etc.

comments
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• auxiliary information
node & edge attributes, temporal dynamics (beyond static binary graphs)

• scalability
fast algorithms for fitting models to big data (methods from physics, machine learning)

• model selection
which model is better? is this model bad? how many communities?

• model checking
have we learned correctly? check via generating synthetic networks

• partial or noisy data
extrapolation, interpolation, hidden data, missing data

• anomaly detection
low probability events under generative model

generative models
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