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* helps us compress the data
» describe the network succinctly
» capture most relevant patterns

e helps us generalize,
from data we've seen to data we haven't seen:

.. from one part of network to another
I. from one network to others of same type
1. from small scale to large scale (coarse-grained structure)

\v. from past to future (dynamics)
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* imagine graph G is drawn from an ensemble or generative
model: a probability distribution P(G | ) with parameters 6

e ( can be continuous or discrete; represents structure of graph
* inference (MLE): given G, find @ that maximizes P(G | 6)

e inference (Bayes): compute or sample from posterior
distribution P(0 | G)

e if §is partly known, constrain inference and determine the rest
o ifGis partly known, infer # and use P(G | 0) to generate the rest

e |f model Is good fit (application dependent), we can generate
synthetic graphs structurally similar to G

e if part of G has low probability under model, flag as possible
anomaly
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generative models for complex networks

general form

P(G|0) =] P(Ai;16)

1<J

assumptions about “structure” go into P(A;; | 6)

consistency lim Pr (é + «9) =

n— oo
requires that edges be conditionally independent [shaiizi, Rinaldo 201 1]
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assortative modules

ZDv{pr}




hierarchical random graph

Pr(¢,j connected) = p,

= P(lowest

common ancestor of ,7)

model

Instance
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classes of generative models

e stochastic block models
k types of vertices, P(A;; | zi,%;) depends only on types of i, j
originally invented by sociologists [Holland, Laskey, Leinhardt 1983]

many, many flavors, including
mixed-membership SBM [Airoldi, Blei, Feinberg, Xing 2008]
hierarchical SBM [Clauset, Moore, Newman 2006,2008]
restricted hierarchical SBM [Leskovec, Chakrabarti, Kleinberg, Faloutsos 2005]
infinite relational model [Kemp, Tenenbaum, Griffiths, Yamada, Ueda 2006]
restricted SBM [Hofman, Wiggins 2008]
degree-corrected SBM [Karrer, Newman 201 1]
SBM + topic models [Ball, Karrer, Newman 201 1]
SBM + vertex covariates [Mariadassou, Robin,Vacher 2010]
SBM + edge weights [Aicher, Jacobs, Clauset 2013]
+ many others
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classes of generative models

e |atent space models
nodes live in a latent space, P(A;; | f(x;,x;)) depends only on vertex-vertex proximity

many, many flavors, including
logistic function on vertex features [Hoff, Raftery, Handcock 2002]
social status / ranking [Ball, Newman 2013]
nonparametric metadata relations [Kim, Hughes, Sudderth 2012]
multiple attribute graphs [Kim, Leskovec 2010]
nonparametric latent feature model [Miller, Griffiths, Jordan 2009]
infinite multiple memberships [Morup, Schmidt, Hansen 201 1]
ecological niche model [Williams, Anandanadesan, Purves 2010]
hyperbolic latent spaces [Boguna, Papadopoulos, Krioukov 2010]
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opportunities and challenges

e richly annotated data
edge weights, node attributes, time, etc.
= new classes of generative models

e oeneralize from n = 1 to ensemble

useful for modeling checking, simulating other processes, etc.

e many familiar techniques
frequentist and Bayesian frameworks
makes probabilistic statements about observations, models
predicting missing links &~ leave-k-out cross validation
approximate inference techniques (EM,VB, BP, etc.)
sampling techniques (MCMC, Gibbs, etc.)

* learn from partial or noisy data
extrapolation, interpolation, hidden data, missing data
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opportunities and challenges

e only two classes of models

stochastic block models
latent space models

e bootstrap / resampling for network data

critical missing piece
depends on what is independent in the data

* model comparison

naive AlC, BIC, marginalization, LRT can be wrong for networks
what is goal of modeling: realistic representation or accurate prediction?

* model assessment / checking?
how do we know a model has done well? what do we check?

e what is v-fold cross-validation for networks!?
Omit n°/v edges? Omit 7/v nodes? What?
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e weighted stochastic block models

» a parable about thresholding
» |learning from data (approximately)
» checking our models
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stochastic block models

functional groups, not just clumps
. 66 o o 9

* social “communities” (large, small, dense or empty)

* social: leaders and followers

* word adjacencies: adjectives and nouns

* economics: suppliers and customers
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classic stochastic block model

nodes have discrete attributes
each vertex ¢ has type t; € {1,...,k}
k x k matrix p of connection probabillities
ft; =randt;, = s,edge (i — j) exists with probability prs
p not necessarily symmetric, and we do not assume pPry > Drs
given some G, we want to simultaneously

label nodes (infer type assignment ¢ : V — {1,...,k})

learn the latent matrix p
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classic stochastic block model

model
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thresholding edge weights

* 4 groups
* edge weights ~ N(pi,0%) with py < po < pig < fig
» what threshold ¢ should we choose! t =1,2,3,4
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* 4 groups
* edge weights ~ N(pi,0%) with py < po < pig < fig
» set threshold ¢ <1, fit SBM

Thresholded > 1 Fit

Node
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* 4 groups
e edge weights ~ N (1;,0°) with p1 < p2 < pg < pg
» set threshold ¢ = 2, fit SBM

Thresholded > 2 Fit

Node
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* 4 groups
e edge weights ~ N (1;,0°) with p1 < p2 < pg < pg
» set threshold ¢ = 3, fit SBM

Thresholded > 3 Fit

Node
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* 4 groups
e edge weights ~ N (1;,0°) with p1 < p2 < pg < pg
» set threshold ¢ > 4, fit SBM

Thresholded > 4 Fit

Node

26



weighted stochastic block model

adding auxiliary information:
each edge has weight w(z, 7)
et w(i,j) ~ f(x]6)
= h(z) exp(T(z) - 1(6))

» covers all exponential-family type distributions:
bernoull, binomial (classic SBM), multinomial
poIsson, beta
exponential, power law, gamma

normal, log-normal, multivariate normal
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weighted stochastic block model

adding auxiliary information:
each edge has weight w(z, 7)
et w(i,j) ~ f(x]6)
= h(z) exp(T(z) - 1(6))

» examples of weighted graphs:
frequency of social interactions (calls, txt, proximity, etc.)
cell-tower traffic volume
other similarity measures
time-varying attributes

missing edges, active learning, etc.
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weighted stochastic block model

block structure R:kxk—{1,...,R}
weight distribution  f
block assignment 2
weighted graph G
ikelihood function: ~ P(G | 2,0, f) =] [ f(G

1<J

» oiven G'and choice of f,learn z and 6

technical difficulties
degeneracies in likelihood function

(variance can go to zero. oops)

ZJ))
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approximate learning

» edge generative model P(G | z,0, f)
» estimate model via variational Bayes
conjugate priors solve degeneracy problem

algorithms for dense and sparse graphs
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dense weighted SBM

approximate posterior distribution

(Z@‘qu HQ’LZZ Hq

» estimate ¢ by minimizing

Dxi(q||7™) =In P(G | 2,0, f) — G(q)

where G(q) =E,(L) + E, (10g 7;((: g)))

for (conjugate) prior m for exponential family distribution f

» taking derivative yields update equations for z, 6

» iterating equations yields local optima
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checking the model

synthetic network with known structure

® given synthetic graph with known structure
® runVB algorithm to convergence

® compare against choose threshold + SBM (and others)

compute Variation of Information (partition distance)

VI(Py, P5) € [0,1n N]

in this case VI(Py, P5) € [0,Ink* + 1.5] = [0, 3.1]
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checking the model

synthetic network with known structure

e variation of Newman'’s
four-groups test

VI Normal Example: N = 160, Var = 50
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in this case VI(Py, P») € [0,In k™ 4+ 1.5] = [0, 3.1]




learn better with more data

incregase network size N
S =g =

* bigger network, more
data

we keep the n.,./IN constant
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learn better with more data

incregase network size N
S =g =

* bigger network, more
data

* WSBM converges on
correct solution more
quickly

* thresholding + SBM
particularly bad

we keep the n.,./IN constant

Variation of Information: VI

100

150
Number of Nodes

——WBM

——SBM+Thresh

——Kmeans

Cluster(Max)
——Cluster(Avg)

200
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learning the number of groups

vary number of groups found k
e fix f=N

* too few / many blocks?
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learning the number of groups

vary number of groups found k
e fix f=N
* too few / many blocks?

* WSBM converges on
correct solution

* WSBM fails gracefully
when k > k™

* others do poorly

Variation of Information: VI

In fact, Bayesian marginalization will correctly choose k=k* in this case.

—-—WBM
——SBM+Thresh
——Kmeans
Cluster(Max) |
——Cluster(Avg)

2 4 6 8
Number of Groups: K
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learning despite noise

increase variance in edge weights o=
SBir@=r" =N

* bigger variance, less
signal
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learning despite noise

increase variance in edge weights o=

SBir@=r" =N

* bigger variance, less
signal

* WSBM fails more
gracefully than
alternatives, even for
very high variance

* thresholding + SBM
particularly bad

Variation of Information: VI
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comments

® single-scale structural inference

mixtures of assortative, disassortative groups

e inference is cheap (VB)

approximate inference works well

e thresholding edge weights is bad, bad, bad
one threshold (SBM) vs. many (WSBM)

e generalizations also for sparse graphs, degree-corrections, etc.
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generative models

e auxiliary information
node & edge attributes, temporal dynamics (beyond static binary graphs)

e scalability

fast algorithms for fitting models to big data (methods from physics, machine learning)

* model selection
which model is better? is this model bad? how many communities?

 model checking
have we learned correctly? check via generating synthetic networks

e partial or noisy data
extrapolation, interpolation, hidden data, missing data

e anomaly detection
low probability events under generative model
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