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Automated planning: Classical planning tasks

Definition (Adopted from [Ghallab et al., 2004])

A classical planning task (over states S) is T = (s0,A, ◦, Sg ), where

• s0 ∈ S is an initial state.

• A is a finite set of available actions.

• ◦ is a state-transition operator: for s ∈ S , α ∈ A, either s ◦ α ∈ S or
s ◦ α is undefined (and in that case we say α is inapplicable in s).

• Sg ⊆ S is a set of goal states.

A solution to a classical planning task (s0,A, ◦, Sg ) is a sequence of
actions (a plan) π = α1, . . . , αn from A such that s ◦ α1 ◦ · · · ◦ αn ∈ Sg .
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State space of a task T :
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Classical planning task example (and a solution to it)

Link to movie (clickable):
http://www2.compute.dtu.dk/~tobo/SARegExAZ_croissants.mov
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Action schemas
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Action schema describing the Put(x , y) action for put object x on top
of object y :

Action : Put(x , y)
Precondition : On(x , z) ∧ · · ·
Effect : On(x , y) ∧ ¬On(x , z)

pre : On(x , z) ∧ · · ·

post :
On(x , y):=>
On(x , z):=⊥

[Ghallab et al., 2004, Baltag et al., 1998, van Ditmarsch and Kooi, 2008]
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Adding non-determinism and partial observability

On(A,B)∧
On(B,C )∧
On(C ,Table)

On(A,C )∧
On(C ,B)∧
On(B,Table)

belief state

◦

start state action: Put(A, table) resulting state

pre : On(A, y) ∧ · · ·

post :
On(A, table):=>
On(A, y):=⊥

pre : On(A, y) ∧ · · ·

post :
On(A, table):=>
On(A, y):=⊥
success

pre : On(A, y) ∧ · · ·
post :

failure

=
On(A, table)∧
On(B,C )∧
On(C ,Table)

On(A, table)∧
On(C ,B)∧
On(B,Table)

On(A,B)∧
On(B,C )∧
On(C ,Table)

On(A,C )∧
On(C ,B)∧
On(B,Table)
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Multiagent case: States as S5 Kripke models
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Epistemic states: Multi-pointed epistemic models of multi-agent S5. Nodes
are worlds, edges are indistinguishability relations.
Designated worlds: (those considered possible by planning agent).

Agent b: “Which letter does the middle block have?”
(Public Announcement Logic, PAL [Plaza, 1989])
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Implicit coordination
Suppose the agents have a joint goal (like stacking blocks in reverse
alphabetic order), and plan independently. We use notation i :α for
“agent i does α”.

An fully observant agent c might form this plan (where the blocks are
numbered 1–3 according to their initial stacking order):

b:Put(1, table), g :Put(2, 1), b:Put(3, 2).

However, it’s not a verifiable solution by b and g .

Perspective shift: The perspective shift of state s to agent i , denoted
s i , is achieved by closing under the indistinguishability relation of i . We
call s i the perspective of agent i on state s.

Redefined solution concept: A plan is i1:α1, . . . , in:αn such that

(· · · ((s i10 ◦ i1:α1)i2 ◦ i2:α2)i3 ◦ · · · ◦ in−1:αn−1)in ◦ in:αn ∈ Sg

Problem: Only assumes other agents to be rational in the future.
Solution: Introduce forward induction (work in progress).

[Engesser et al., 2017, Bolander et al., 2016]
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Link to movie (clickable):
http://www2.compute.dtu.dk/~tobo/MARegExAZ_02285_level_vert.mov
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Multi-agent pathfinding with destination uncertainty

Link to movie (clickable):
http://www2.compute.dtu.dk/~tobo/scenario2_double.mp4

[Nebel et al., 2019, Bolander et al., 2021]
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Introducing partially observable actions

pre : On(x , y) ∧ · · ·

post :
On(x , z):=>
On(x , y):=⊥

pre : On(x , y) ∧ · · ·
post :

r

This is an event model of dynamic epistemic logic (DEL)...
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Dynamic epistemic logic (DEL) via example:
The coordinated attack problem

Two generals (agents), a and b. They want to coordinate an attack, and
only win if they attack simultaneously.

d : “general a will attack at dawn”.

mi : the messenger is at general i (for i = a, b).

Initial epistemic state:

s0 = d ,ma

w1

ma
w2

b

Nodes are worlds, edges are indistinguishability edges (reflexive loops
not shown).
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Event models of DEL

Recall: d means “a attacks at dawn”; mi means messenger is at general
i .

Available epistemic actions (aka action models aka event models):

a:send =

pre : d ∧ma

post :
mb := >
ma := ⊥

e1

pre : >

post :
ma := ⊥
mb := ⊥

e2

a

And symmetrically an epistemic action b:send . We read i :α as “agent i
does α”.

Nodes are events, and each event has a precondition and a
postcondition (effect). The precondition is an epistemic formula and
the postcondition is a conjunction of literals.

[Baltag et al., 1998, van Ditmarsch and Kooi, 2008, Bolander et al., 2021]
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The product update in dynamic epistemic logic

s0 = d ,ma

w0
1

ma

w0
2

b
s0 |= Kad ∧ ¬Kbd

a:send =

pre : d ∧ma

post :
mb := >
ma := ⊥

pre : d ∧ma

post :
mb := >
ma := ⊥

e1

pre : >

post :
ma := ⊥
mb := ⊥

e2

a

s0 ⊗ a:send =

d

d
w1
3w1

2

b

d ,mb

d ,mb

w1
1

a

s0 ⊗ a:send |= Kad ∧ Kbd ∧ ¬KaKbd

[Baltag et al., 1998, van Ditmarsch and Kooi, 2008]
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Epistemic planning tasks
Definition. An epistemic planning task (or simply a planning task)
T = (s0,A, ϕg ) consists of an epistemic state s0 called the initial state;
a finite set of epistemic actions A; and a goal formula ϕg of the
epistemic language.

Definition. A (sequential) solution to a planning task T = (s0,A, ϕg ) is
a sequence of actions α1, α2, . . . , αn from A such that for all 1 ≤ i ≤ n,
αi is applicable in s0 ⊗ α1 ⊗ · · · ⊗ αi−1 and

s0 ⊗ α1 ⊗ α2 ⊗ · · · ⊗ αn |= ϕg .

Example. Let s0 be the initial state of the coordinated attack problem.
Let A = {a:send , b:send}. Then the following are planning tasks:

1. T = (s0,A,Cd), where C denotes common knowledge. It has no
solution.

2. T = (s0,A,E
nd), where E denotes “everybody knows” and n ≥ 1.

It has a solution of length n.

[Bolander et al., 2020]
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Link to movie (clickable):
http://www2.compute.dtu.dk/~tobo/komdigital_pepper_video.mov

KomDigital: R2DTU – A Pepper robot, 25 November 2020 [?]
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Agent
Sensors

Actuators
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Percepts

Actions

perception layer:
deep neural
networks
(subsymbolic)

cognition layer:
DEL + planning
(symbolic)
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Why not just make ChatGPT or GPT-4 do it all?

GPT-4 can do amazing things.

Example. My Input to GPT-4: “Provide tikz code for an illustration of
Kurt Gödel, the famous logician who proved the incompleteness
theorems.”
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Kurt Gödel
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Plan existence problem

Definition. T (m, n) is the class of epistemic planning tasks where all
actions have preconditions of modal depth ≤ m and postconditions of
modal depth ≤ n. We use n = −1 to denote the case without
postconditions.

pre : p ∧ q

post :
p:=⊥
r :=>

in T (0, 0)

pre : KbKgOn(C ,B)

post :

in T (2,−1)

pre : K1p

post : p:=K2q

in T (1, 1)

Definition. PlanEx-T (m, n) is the following decision problem: Given a
planning task T ∈ T (m, n), does T have a solution?

[Bolander et al., 2020]
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The border between decidability and undecidability

Theorem 1. PlanEx-T (m, n) ≤P PlanEx-T (m + k, n + l).
Theorem 2. PlanEx-T (m, n) ≤P PlanEx-T (0, 1).
Theorem 3. PlanEx-T (m, n) ≤P PlanEx-T (1, 0).

PlanEx-T (0,−1)PlanEx-T (0,−1)

PlanEx-T (1,−1)PlanEx-T (1,−1) PlanEx-T (0, 0)PlanEx-T (0, 0)

PlanEx-T (2,−1)PlanEx-T (2,−1) PlanEx-T (1, 0)PlanEx-T (1, 0) PlanEx-T (0, 1)PlanEx-T (0, 1)

PlanEx-T (3,−1)PlanEx-T (3,−1) PlanEx-T (2, 0)PlanEx-T (2, 0) PlanEx-T (1, 1)PlanEx-T (1, 1) PlanEx-T (0, 2)PlanEx-T (0, 2)

Th. 3
Th. 2

Th. 4

Th. 9

Th. 11.

OPEN PROBLEM!

: undecidable
: decidable
: reductions through Ths. 1–3

[Bolander and Andersen, 2011, Aucher and Bolander, 2013, Yu et al., 2013,
Charrier et al., 2016, Cong et al., 2018, Bolander et al., 2020]
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Decidability theorem
k-bisimilarity: Satisfying back and forth conditions of bisimilarity up to
depth k. Guarantees modal equivalence up to modal depth k .

Theorem 4. PlanEx-T (0, 0) is decidable.

Proof idea: k-bisimilarity is preserved when
doing product update with epistemic actions
having propositional pre- and
post-conditions [Yu et al., 2013]; intuitively
because the events of such actions cannot look
deeper into the model.

p

↔1

¬p
⊗

action from T (0, 0)

=

?

↔1

?

T (0, 0) examples

pre : p ∧ q

post :

public announcements
of propositional facts:

pre : p ∧ q

post :
p:=⊥
r :=>

STRIPS actions:
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Generalising the k-bisimilarity preservation result

Proposition 1. Suppose s and s ′ are k-bisimilar and α is an action of
T (m, n). Then s ⊗ α and s ′ ⊗ α are (k −max{m, n})-bisimilar.

p
q

↔2

p
¬q

⊗
action from T (1, 1)

=

?

↔1
?

[Bolander and Lequen, 2022]
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Depth-bounded epistemic planning (w. in progress)
Planning algorithm Search(T , k) with depth-bound k : breadth-first
search (BFS) through the state space, exploiting Proposition 1:
• Whenever we apply action α to state s, we afterward do the

k-bisimulation contraction, where k is the maximal bound
guaranteeing preservation of k-bisimilarity.
• We terminate any path satisfying k ≤ modal-depth(ϕg ).

Parameters of planning task T (we study parameterised complexity).
a: number of agents.
c: maximal modal depth of preconditions of actions.
o: modal depth of goal formula.
p: number of propositional variables.
u: maximal length of plan.

Soundness. If Search(T , k) returns π, then π is a solution to T .

Completeness. If T has a solution, it will be found by Search(T , k)
whenever k ≥ cu + o.

Complexity. Search(T , k) runs in time expcu+o+1
2 max{a, p}.
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