
Logical Theories for Agent Introspection

Ph.D. thesis

by

Thomas Bolander, M.Sc.

Informatics and Mathematical Modelling
Technical University of Denmark

15 September, 2003

This dissertation have been submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy (Ph.D.) at the department of Informat-
ics and Mathematical Modelling (IMM), Technical University of Denmark.

The work has been completed at IMM on a Ph.D. scholarship from the Tech-
nical University of Denmark. The work was supervised by Professor Jørgen
Fischer Nilsson, IMM, and Reader Helge Elbrønd Jensen, Department of
Mathematics, Technical University of Denmark.

Lyngby, 15 September, 2003

Thomas Bolander

Abstract

Thomas Bolander: Logical Theories for Introspective Agents

Artificial intelligence systems (agents) generally have models of the en-
vironments they inhabit which they use for representing facts, for reasoning
about these facts and for planning actions. Much intelligent behaviour seems
to involve an ability to model not only one’s external environment but also
oneself and one’s own reasoning. We would therefore wish to be able to
construct artificial intelligence systems having such abilities. We call these
abilities introspective. In the attempt to construct agents with introspective
abilities, a number of theoretical problems is encountered. In particular, prob-
lems related to self-reference make it difficult to avoid the possibility of such
agents performing self-contradictory reasoning. It is the aim of this thesis to
demonstrate how we can construct agents with introspective abilities, while
at the same time circumventing the problems imposed by self-reference.

In the standard approach taken in artificial intelligence, the model that an
agent has of its environment is represented as a set of beliefs. These beliefs are
expressed as logical formulas within a formal, logical theory. When the logical
theory is expressive enough to allow introspective reasoning, the presence of
self-reference causes the theory to be prone to inconsistency. The challenge
therefore becomes to construct logical theories supporting introspective rea-
soning while at the same time ensuring that consistency is retained. In the
thesis, we meet this challenge by devising several such logical theories which
we prove to be consistent. These theories are all based on first-order predicate
logic.

To prove our consistency results, we develop a general mathematical
framework, suitable for proving a large number of consistency results con-
cerning logical theories involving various kinds of reflection. The principal
idea of the framework is to relate self-reference and other problems involved
in introspection to properties of certain kinds of graphs. These are graphs
representing the semantical dependencies among the logical sentences. The
framework is mainly inspired by developments within semantics for logic pro-
gramming within computational logic and formal theories of truth within
philosophical logic.

The thesis provides a number of examples showing how the developed
theories can be used as reasoning frameworks for agents with introspective
abilities.

Resumé

Thomas Bolander: Logiske teorier for introspektive agenter

Intelligente systemer (agenter) er generelt udstyret med en model af de
omgivelser de befinder sig i. De bruger denne model til at repræsentere egen-
skaber ved omgivelserne, til at ræssonere omkring disse egenskaber og til at
planlægge handlinger. En overvejende del af det vi sædvanligvis opfatter som
intelligent handlemåde synes at involvere en evne til ikke kun at modellere ens
ydre omgivelser, men ogs̊a at modellere sig selv og ens egen ræssonering. Vi
ønsker derfor at være i stand til at konstruere intelligente systemer som har
s̊adanne evner. Disse evner kaldes introspektive. I forsøget p̊a at konstruere
agenter med introspektive evner støder man p̊a en del problemer af teoretisk
natur. I særdeleshed støder man p̊a problemer relateret til selvreference, som
gør det vanskeligt at sikre sig mod at s̊adanne agenter kan foretage selvmodsi-
gende ræssonementer. Målet med denne afhandling er at vise hvordan vi kan
konstruere agenter med introspektive evner p̊a en s̊adan måde at problemerne
omkring selvreference omg̊as.

Den model en agent har af sine omgivelser lader man sædvanligvis repræ-
sentere ved en mængde af sætninger, der udtrykker de forestillinger som agen-
ten har om verden. Disse sætninger formuleres indenfor en formel, logisk teori.
Hvis denne logiske teori har tilstrækkelig udtrykskraft til at at tillade intro-
spektiv ræssonering, vil tilstedeværelsen af selvreference i de fleste tilfælde
for̊arsage at teorien bliver inkonsistent. Udfordringen kommer derfor til at
best̊a i at finde måder at konstruere logiske teorier p̊a som understøtter intro-
spektiv ræssonering, men hvor konsistens samtidig er sikret. I afhandlingen
imødekommer vi denne udfordring ved at konstruere flere s̊adanne logiske
teorier, som vi beviser at være konsistente. Disse teorier er alle baseret p̊a
første-ordens prædikatlogik.

I forbindelse med vores konsistensresultater udvikler vi et generelt mate-
matisk værktøj, som kan benyttes til at bevise konsistensen af en lang række
logiske teorier involverende forskellige former for refleksion. Den bærende idé i
dette værktøj er at relatere selvreference—og andre af problemerne involveret
i introspektion—til egenskaber ved bestemte typer af grafer. Dette er grafer
som repræsenterer de semantiske afhængigheder imellem sætningerne i de
p̊agældende teorier. Værktøjet er inspireret af tilsvarende værktøjer udviklet
i forbindelse med semantikker for logik-programmer indenfor datalogisk logik
og formelle teorier for sandhed indenfor filosofisk logik.

Afhandlingen giver et antal eksempler p̊a hvordan de udviklede teorier
kan anvendes som fundament for agenter med introspektive evner.

Preliminaries

We assume the reader to be familiar with first-order predicate logic. In
addition, acquaintance with the basics of modal logic and logic programming
is preferable. Experience in artificial intelligence is not required, but will be
helpful. Furthermore, familiarity with basic fixed point methods such as the
ones taught in introductory courses on programming language semantics or
formal theories of truth will be an advantage. Some mathematical maturity
will be expected, in particular in the later chapters. The difficulty level will
be gradually increasing through the course of the thesis. The earlier chapters
are very thorough in explaining details and discussing underlying intuition.
In the later chapters, the reader is to a larger extend required to be able to
grasp these things on his or her own.

Whenever a definition, lemma or theorem in the thesis is not entirely
original, we will, in stating it, include a reference to the work from which it
is adapted. If a definition, lemma or theorem does not contain a citation, it
means that it is due to the author of this thesis. Most chapters conclude with
a “Chapter Notes” section containing further bibliographic comments.

Key words and phrases: Artificial intelligence, mathematical logic, AI
logics, knowledge representation, propositional attitudes, syntactical treat-
ments of knowledge, multi-agent systems, introspection, self-reflection, self-
reference, paradoxes, consistency, theories of truth, non-wellfoundedness, de-
pendency graphs, logic programming, programming language semantics, fixed
points, graph theory.

5

Acknowledgments

First of all, I would like to thank the following persons for showing interest
in my work and for giving me many valuable comments: Roy Dyckhoff, Helge
Elbrønd Jensen, João Alexandre Leite, Jørgen Fischer Nilsson, Dag Normann,
Nikolaj Oldager, Stig Andur Pedersen and Graham Priest. All of these have
invested considerable amounts of time and effort in reading my work and in
guiding me in the right directions. I am very grateful to Jørgen Villadsen who,
in the first few months of my Ph.D. studies, brought my attention to a number
of important articles on which this entire thesis is based. Furthermore, I wish
to thank Roy Cook, Mai Gehrke, Klaus Frovin Jørgensen, Donald Perlis and
Ken Satoh for reading parts of my work, as well as for their helpful comments
and encouragement.

Finally, I would like to thank my wife Audra. Even if I bought her the
biggest flower bouquet in the world, it would still be very small compared to
the support she gave me—and the understanding she showed me—through
the writing of this thesis.

The thesis is dedicated to this sentence.

6

Contents

Preliminaries 5
Acknowledgments 6

Chapter 1. Introduction 13
1.1. Logic Based Artificial Intelligence 13
1.1.1. Knowledge Bases 15
1.2. Introducing Introspection 17
1.3. Formal Introspection 19
1.3.1. An Example 19
1.3.2. The Syntactic Status of K 21
1.4. The Problem with Introspection 22
1.4.1. The Knower Paradox 22
1.4.2. Formalising the Knower Paradox 24
1.5. Avoiding the Problems of Introspection 26
1.5.1. Modelling Oneself 26
1.5.2. Dependency Graphs 27
1.6. Summing Up 29
1.7. Short Overview of the Thesis 29

Chapter 2. Setting the Stage 31
2.1. Knowledge Bases as Logical Theories 31
2.2. Explicit Versus Implicit Knowledge 33
2.3. External Versus Internal View 33
2.4. Operator Versus Predicate Approach 34
2.4.1. Logical Omniscience 35
2.4.2. Introducing New Modalities 37
2.4.3. Expressive Power 38
2.4.4. Concluding Remarks 42
2.5. Aspects not Covered in the Thesis 42

Chapter 3. First-Order Predicate Logic for Knowledge and Belief 45
3.1. First-order Predicate Logic 45
3.2. First-order Agent Languages and Theories 49

9

10 CONTENTS

3.3. Coding of Sentences 50
3.4. Predicates for Knowledge and Belief 52
3.5. Representability 53
3.5.1. Definitions and Theorems 53
3.5.2. Examples 54
3.6. Consistency and Models 58
3.7. Reflection Principles 59
3.7.1. An Example 59
3.7.2. Definition of Reflection Principles 61
3.7.3. Interpretation of the Reflection Principles 62
3.8. Chapter Notes 64

Chapter 4. Problems of Introspection and Self-Reference 67
4.1. The Diagonalisation Lemma 69
4.2. The Inconsistency Results 72
4.2.1. Tarski’s Theorem 73
4.2.2. Montague’s Theorem 74
4.2.3. Thomason’s Theorem 75
4.2.4. Inconsistency of Perfect Introspection 76
4.2.5. Concluding Remarks 77
4.3. Regaining Consistency 78
4.3.1. The Rivières-Levesque Theorem 79
4.3.2. The Morreau-Kraus Theorem 80
4.4. Strengthening the Consistency Results 83
4.5. Chapter Notes 84

Chapter 5. The Graph Approach to Avoiding Inconsistency 87
5.1. Sentence Nets 87
5.2. Dependency Graphs 90
5.3. From Agent Languages to Dependency Graphs 94
5.3.1. The Dependency Graph G � 94
5.3.2. Basic Properties of G � 98
5.4. From Sentence Nets to Consistent Reflection Principles 104
5.5. Relations to Logic Programming 106
5.6. Chapter Notes 108

Chapter 6. Consistency Results for Agent Theories 111
6.1. First Strengthened Consistency Result 111
6.1.1. The Result 111
6.1.2. Discussion 115
6.2. Second Strengthened Consistency Result 116
6.2.1. The Result 119

CONTENTS 11

6.2.2. Applying the Result 125
6.3. Chapter Notes 129

Conclusion 131

Appendix. Bibliography 133

Appendix. Index 139

CHAPTER 1

Introduction

In this chapter we will give an informal introduction to the work presented
in the thesis. We will be introducing the research area to which the present
work belongs, and explain how the work contributes to the research within
this area. We try to motivate the research area as a whole as well as our
work within it. The chapter concludes with an overview of the structure of
the thesis. Being an introduction chapter, it is aimed at a broader audience
than the other chapters of the thesis.

1.1. Logic Based Artificial Intelligence

The present work falls within the research area Artificial Intelligence (AI).
The main goal of artificial intelligence research is to build software and hard-
ware systems that in some way can be conceived as behaving “intelligently”.
Such systems are called agents (note, however, that many authors use the
term ’agent’ in a much narrower sense). An agent can for instance be a robot
placed in a real world environment to carry out certain tasks such as deliv-
ering local mail, making coffee, tidy up rooms, or even playing football (see
Figure 1.1). It can also for instance be a piece of software “surfing” on the
Internet to gather information on the behalf of a user. There is not a strict
criterion setting artificial intelligence systems apart from other kinds of com-
puter systems. However, one characterising property of artificial intelligence
systems is that they always attempt to imitate or simulate certain aspects of
human cognition. This could for instance be the aspect that humans are able
to learn from experience and thereby improve performance.

This thesis belongs to the subfields of artificial intelligence known as Logic-
Based Artificial Intelligence and Knowledge Representation. In these fields,
one tries to build computer systems that imitate conscious-level reasoning and
problem solving of humans. In this kind of reasoning, humans use sentences
to express the things they know and sequences of sentences to express pieces
of reasoning. Consider for instance the following simple piece of reasoning:

There is a sign in front of me saying that vehicles higher than 2
meters can not pass through the tunnel. My truck is 3 meters
high. 3 meters is more than 2 meters, so my truck will not be

13

14 1. INTRODUCTION

Figure 1.1. Agents in Action (RoboCup 2002).

able to pass through the tunnel. I should therefore look for an
alternative route.

In this line of thoughts, the person (or computer?) driving the truck considers
his knowledge about the world (that vehicles higher than 2 meters can not
pass; that his truck is 3 meters high) and uses this as a basis for reasoning
about which actions to take (to find an alternative route). The reasoning
takes place in natural language, as most conscious-level reasoning performed
by humans seems to do. In logic-based artificial intelligence, one seeks to
imitate such language-based reasoning. For this to work, we are required to
be able to equip our agents (artificial intelligence systems) with a language
they can use for representing facts about the world and for reasoning about
these facts. To be accessible for computations, this needs to be a formal
language of some sort. Traditionally, one picks a logical language such as a
language of propositional logic, a modal language or a language of predicate
logic.

A first-order predicate logic formalisation of the facts used in the reasoning
above could look like this:

∀x (height (x) > 2→ ¬pass-through-tunnel (x))

height (truck) = 3

∀x > 0∀y > 0 (x+ y > x)

(1.1)

1.1. LOGIC BASED ARTIFICIAL INTELLIGENCE 15

Being strings of symbols over a fixed, finite alphabet, such logical sentences
can readily be represented in a computer. But what about the reasoning that
led the driver to the conclusion of not being able to pass through the tunnel?
We want our artificial intelligence system to be able to derive this conclusion
itself from the facts given by the logical sentences (1.1). For a computer to
do this, the derivation must be purely symbolic. We actually already have
a tool for such symbolic derivations: the proof theory underlying the logical
language in which the sentences have been formulated. What this means is
that the artificial intelligence system could derive the necessary conclusions
from the represented facts by carrying out a formal proof using these facts
as axioms (by means of some kind of theorem prover, for instance). Assume
we take the sentences (1.1) to be axioms of a logical theory. Then, in that
theory, we can carry out the following formal proof:

1. height (truck) = 3 axiom
2. ∀x > 0∀y > 0 (x+ y > x) axiom
3. 2 + 1 > 2 instance of 2
4. 3 = 2 + 1 theorem of arithmetic
5. 3 > 2 using 3, 4
6. height (truck) > 2 using 1, 5
7. ∀x (height (x) > 2→ ¬pass-through-tunnel (x)) axiom
8. height(truck) > 2→ ¬pass-through-tunnel (truck) instance of 7
9. ¬pass-through-tunnel (truck) modus ponens on 6, 8

The formal proof leads to the same conclusion as the informal reasoning car-
ried out above: the truck can not pass through the tunnel. The principal idea
in logic-based artificial intelligence is thus the following: to simulate human
conscious-level reasoning and problem solving by

• letting the artificial intelligence system represent facts internally as
logical sentences, and
• using formal derivations from these sentences as the reasoning mecha-

nism of the system.

1.1.1. Knowledge Bases. The set of facts represented as sentences in-
ternally in an agent is usually known as its knowledge base. The knowl-
edge base contains sentences expressing those propositions (ideas, judgements)
about the world that the agent takes to be true. We can think of these sen-
tences as expressing the facts known to the agent or propositions believed by
the agent. Consider the simple Blocks World presented in Figure 1.2. We can
imagine introducing an artificial intelligence agent (a robot) into this world,
given the task of moving the blocks to obtain some predefined goal configu-
ration (e.g. building a tower consisting of all blocks piled in a specific order).

16 1. INTRODUCTION

Figure 1.2. A Blocks World

Before the agent starts moving the blocks, it should make a plan for how to
reach the given goal. This planning requires the agent to have knowledge
about the current position of the blocks—knowledge that can be represented
as sentences in the agent’s knowledge base. The knowledge base could for
instance contain the following sentences

On (black,floor)

On (dotted, black)

On (white,floor) .

(1.2)

The first of these sentences represents the fact that the black block is on
the floor, the second that the dotted block is on the black block, etc. We
will choose a slightly different way of representing these pieces of knowledge,
however. To obtain a higher degree of generality, we would like to be able
to represent in the agent’s knowledge base not only representations of facts
known to the agent but also for instance beliefs and intentions held by the
agent (this might make the term ’knowledge base’ a bit inappropriate, but
we keep it for historical reasons). We therefore have to be able to distinguish
between whether On (black,floor) expresses a fact known to the agent or for
instance simply expresses a state of affairs intended by the agent. To indicate
that the sentences (1.2) express knowledge, we instead write

KOn (black,floor)

KOn (dotted, black)

KOn (white,floor) ,

where K . . . stands for “it is known that . . . ”. When we want to express
belief rather than knowledge, we write B . . . to mean that “it is believed that
. . . ”.

The situation is presented in Figure 1.3, where the thought balloon is used
to represent the knowledge base of the agent. Notice the simple relationship
existing between the objects in the knowledge base and the objects in the
agent’s environment: the objects in the knowledge base are sentences, each
of which expresses the relative position of exactly two of the objects in the

1.2. INTRODUCING INTROSPECTION 17

PSfrag replacements

KOn (black,floor)

KOn (dotted, black)

KOn (white,floor)

Figure 1.3. An Agent in the Blocks World

environment. The knowledge base of the agent is a model of the agent’s
environment, since the objects in the knowledge base represent (or model)
properties of the objects in this environment. It is the agent’s ability to model
its own environment that makes it able to reason about this environment and
to predict the consequences of performing various actions. It is thus its ability
to model its own environment that makes it able to plan its actions. This
is also the case with humans: when we reason about which actions to take
in a given situation (for instance when planning our next move in a game of
chess), we try to predict the consequences of each possible action by using
our knowledge about the world, that is, our model of the world, and then
pick the action with the most preferred consequences. We can think of our
brains as containing a “map” of the world—the world as we conceive it—and
the knowledge base of an agent is playing a similar role to the agent as this
“map” does to us.

1.2. Introducing Introspection

We have now introduced the basic idea underlying the field of logic-based
artificial intelligence, and explained that it is based on trying to imitate cer-
tain aspects of human cognition. This thesis concerns the possibility of im-
plementing yet another aspect of human cognition in artificial intelligence
systems: introspection. It is the aim of the thesis to contribute to the theo-
retical foundations of constructing agents with the ability to introspect. But

18 1. INTRODUCTION

what is introspection? The Oxford English Dictionary defines it as “exami-
nation or observation of one’s own thoughts, feelings or mental state”. The
MIT Encyclopedia of Cognitive Science defines it as “the process by which
people come to be attentively conscious of mental states they are currently
in”. Correspondingly, to have introspection in an artificial intelligence system
means that the system is able to reflect on its own knowledge (or ignorance),
its own reasoning, actions, and planning. The father of artificial intelligence,
John McCarthy, puts it this way: “We say that a machine introspects when it
comes to have beliefs about its own mental state” [McCarthy, 1979]. There are
various degrees to which one can have introspection. Some simple examples
of introspective beliefs are the following:

• I do not know how to get from here to Skørping.
• I believe that some of my beliefs are false.
• I have no knowledge about a striped block.
• I believe that Alice believes that I have the ace of hearts.
• I believe that I have insufficient knowledge about this problem to be

able to solve it.
• I believe that Alice knows more about the problem than I do.
• Every time I start believing something, it always turns out to be false.
• I do not believe this very sentence.

The reason that one wants to equip artificial intelligence agents with the
ability to introspect is that “much intelligent behaviour seems to involve an
ability to model one’s environment including oneself and one’s reasoning”
[Perlis and Subrahmanian, 1994]. We know that self-reflection plays a central
role in human cognition—it is one of the primary abilities setting us apart
from animals—and we would therefore expect this ability to play an equally
important role in artificial intelligence. We use introspection whenever we
reason about the way we carry out certain tasks, and whenever we reason
about how to improve our routines for carrying out these tasks. Thus, in-
trospection is fundamental for our ability to consciously improve ourselves.
Introspection is also needed when we want to reason about the things that
we do not know, but that we might need to acquire knowledge of to carry
out certain tasks (an example of this in an AI context will be given in the
following section). Furthermore, whenever two or more persons co-operate in
reaching a goal (or are opponents competing to reach opposite goals), they
will reason about each others statements, beliefs, actions, and plans, and thus
they will indirectly be reasoning about themselves (through each other). This
is particularly evident in game-playing situations: If Alice and Bob are play-
ers in a two-person game, then Alice will—in producing her strategy—try to
predict the strategy of Bob, and his strategy will, in turn, involve trying to

1.3. FORMAL INTROSPECTION 19

predict the strategy of Alice. Thus both Alice and Bob will indirectly intro-
spect through each other. This makes introspection particularly important
in connection with multi-agent systems: systems consisting of several inde-
pendently functioning agents acting, communicating and co-operating in a
common environment. An example of a multi-agent system is the football
playing environment presented in Figure 1.1, p. 14.

The arguments we have now given all show introspection to be an impor-
tant cognitive ability. Indeed, as McCarthy puts it, “consciousness of self, i.e.
introspection, is essential for human level intelligence and not a mere epiphe-
nomenon” [McCarthy, 1996]. These are some of the main reasons we have
for wanting to build artificial intelligence systems with introspective abilities.
Further arguments for the necessity of introspection in artificial intelligence
can be found in, among others, Perlis [1985; 1988], Perlis and Subrahmanian
[1994], Konolige [1988], Fasli [2003], Kerber [1998] and Grant et al. [2000].
In this thesis we will show how to equip artificial intelligence agents with a
language expressive enough to allow a high degree of introspection. We will
then give some examples of how these increased powers can be used by the
agents to improve their performance.

1.3. Formal Introspection

1.3.1. An Example. Let us give a simple example of a situation in
which an artificial intelligence agent will need a basic form of introspection to
carry out the reasoning we expect it to do. We consider again the situation
presented in Figure 1.3. Now assume that we add a fourth block to the world,
but keep everything else the same, hereby obtaining the situation presented in
Figure 1.4. Suppose a ’human user’ asks the agent (robot) to put the striped
block on top of the dotted one. The problem is that the agent’s knowledge
base is left unchanged, so the agent does not know anything about the striped
block. The right thing for the agent to do in this case would be to ask the
user about the position of the striped block, but in order to do this the agent
must register the fact that it does not know where the new block is. This
requires introspection, since the agent must introspectively look into its own
knowledge base and from this arrive at the conclusion that no information
about a striped block is present in the base. To express such reasoning, the
agent needs a new set of sentences. The point is that in order for the agent
to say “I do not know the position of the striped block” we have to allow
the agent to refer to its own beliefs as objects in its world. In order for the
agent to express facts concerning its own knowledge, we have to iterate on
the occurrences of K. To express that the agent knows that it does not know

20 1. INTRODUCTION

PSfrag replacements

KOn (black,floor)

KOn (dotted, black)

KOn (white,floor)

KOn (black,floor)

KOn (dotted, black)

KOn (white,floor)

Figure 1.4. Adding a New Block to the Blocks World

that the striped block is on the white block, we can write

K¬KOn (striped,white) .

This sentence expresses an agent’s introspective awareness of the fact that it
does not know the striped block to be on the white block. It corresponds to
the agent saying: “I do not know that the striped block is on the white block”
(assuming, for now, that everything said by the agent is known to the agent).
Using iterated occurrences of K the agent can also express things such as:

• “I do not know whether the striped block is on the floor or not”:

K (¬KOn (striped,floor) ∧ ¬K¬On (striped,floor)) .

• “I do not have any knowledge about the position of the striped block”:

K∀x
(
¬KOn (x, striped) ∧ ¬K¬On (x, striped)∧

¬KOn (striped, x) ∧ ¬K¬On (striped, x)
)
. (1.3)

The sentences above are both cases of meta-knowledge: knowledge about
knowledge. Using meta-knowledge in reasoning is the most basic kind of
introspection. Sentence (1.3) expresses the introspective insight needed by
the agent to realise that it has to acquire further knowledge to solve the task
given by the user (the task of putting the striped block on top of the dotted
one). The use of introspection in reasoning about what you do not know is
treated in depth in, among others, Konolige [1988] and Kraus et al. [1991].

1.3. FORMAL INTROSPECTION 21

1.3.2. The Syntactic Status of K. We have not yet said anything
about the syntactic status of the K’s (and the B’s to express belief). What
is the syntactic relationship between a sentence ϕ and the sentence Kϕ ex-
pressing that ϕ is known? We will at this point only touch on the issue quite
briefly to keep the introduction as clean from technical involvement as pos-
sible. The problem will be discussed more thoroughly in Section 2.4. There
are essentially two different ways to treat K: either it is a modal operator
(a propositional operator, a one-place connective) or it is a predicate. If K
is a predicate and ϕ is a sentence, then Kϕ it is actually an abbreviation
for K(pϕq), where pϕq is a term denoting ϕ (a name for ϕ). In terms of
expressiveness, the predicate treatment is much stronger than the operator
treatment (at least in the context of first-order formalisms). The reason is
that if x is a variable then Kx is a well-formed formula in the predicate treat-
ment but not in the operator treatment: x is a term and not a well-formed
formula, and operators only apply to formulas, whereas predicates only apply
to terms. This means that only in the predicate treatment will it be pos-
sible for the knowledge base of the agent to contain strongly introspective
knowledge such as:

• “The agent knows that some of its beliefs are false”:

K∃x (Bx ∧ ¬True(x)) .

• “The agent knows that Alice knows at least as much about skiing as
itself”:

K∀x (About (x, skiing) ∧Kx→ KAlice x) .

• “The agent knows that is has no knowledge about a striped block”:

K¬∃x (About (x, striped) ∧Kx) . (1.4)

• “The agent knows that in order to move an object it must have some
knowledge about the object”:

K∀x (¬∃y (About (y, x) ∧Ky)→ ¬Can-move (x)) .

These sentences all express introspective knowledge that should be accessible
to any agent we claim to be strongly introspective. Since the sentences can
only be expressed within the predicate approach (they all contain either K or
B applied directly to a variable), we will choose this approach throughout the
thesis. Note that the sentence (1.4) gives a simpler and more general formali-
sation of the agent’s ignorance concerning the striped block than the sentence
(1.3) considered above (assuming that we have given a suitable formalisation
of the About predicate). Only the less general sentence (1.3) could be part of
an agent’s knowledge base on the operator approach. The operator approach
only gives a rather limited kind of introspection, since in this approach all we

22 1. INTRODUCTION

have is that whenever ϕ is a sentence in our language, there is another sentence
Kϕ expressing “ϕ is known” (or “ϕ is in the knowledge base”). The operator
approach does not allow us to express statements such as “the agent knows
that it does not have any contradictory beliefs”: K¬∃x (Bx ∧Bnot (x)).1

1.4. The Problem with Introspection

We have now decided which language to equip our artificial intelligence
agents with: first-order predicate logic with knowledge and belief treated as
predicates. We have argued that this language is expressive enough to allow
the agents to express strongly introspective beliefs. It seems that there is then
only a short step to actually build these agents using either a logic program-
ming inference engine or a general first-order theorem prover. Unfortunately,
the step is not as short as it seems. The reflective character of strong in-
trospection makes it vulnerable to self-referential reasoning which can cause
paradox and inconsistency in the knowledge base.

A paradox is a “seemingly sound piece of reasoning based on seemingly
true assumptions, that leads to a contradiction (or other obviously false con-
clusion)” (The Cambridge Dictionary of Philosophy). If an agent engages
in a paradoxical piece of reasoning, it will introduce a contradiction into its
knowledge base. In the worst case this will make the agent useless, since from
a contradiction the agent will be able to derive any conclusion, whether true
or false (if the logic underlying the agent’s reasoning is classical). Thus we
should prevent our agents from being able to engage in paradoxical reasoning.
But with strong introspection and its close relative self-reference, this is not
an easy matter.

1.4.1. The Knower Paradox. It is well-known that self-reference can
cause paradox when used in connection with the concept of truth. A classical
example of this is the liar paradox The liar paradox is the contradiction that
emerges from trying to determine whether the liar sentence is true or false.
The liar sentence is the self-referential sentence L saying of itself that it is not
true. We can express L in the following way

L : sentence L is not true.

The reasoning that leads to a contradiction goes as follows:

If the sentence L is true, what it states must be the case. But it
states that L is not true. Thus if L is true, it is not true. On the
contrary assumption, if L is not true, then what it states must

1We assume here that the function symbol not represents a function mapping names of
formulas to the names of their negations.

1.4. THE PROBLEM WITH INTROSPECTION 23

not be the case and, thus, L is true. Therefore, the liar sentence
L is true if and only if it is not true. This is a contradiction.

More recently, it has been shown that self-reference can also cause paradox
when used in connection with the concepts of knowledge and belief [Kaplan
and Montague, 1960; Montague, 1963; Thomason, 1980]. This turns out to
be a serious threat to the ambition of building strongly introspective artificial
intelligence systems. The main goal of the thesis is to show how these prob-
lems can be circumvented without sacrificing neither the underlying classical
(two-valued) logic, nor the ability to form strongly introspective beliefs.

The simplest paradox of self-reference and knowledge is the knower para-
dox (or the paradox of the knower) [Kaplan and Montague, 1960]. We will
give a version of it here. The knower paradox is closely related to the liar
paradox. It is based on the knower sentence S given by

S : sentence S is not known by Mr. X.

This sentence is obviously self-referential : it expresses a property concerning
the sentence itself (the property of not being known by Mr. X). Reasoning
about whether S is known by Mr. X or not turns out to lead to a paradox.
Let us first prove the fact that

Sentence S is not known by Mr. X. (1.5)

The argument leading to this conclusion goes as follows:

Assume to obtain a contradiction that S is known by Mr. X.
Then S must be true (nothing false can be known, only believed).
Thus, what S states must be the case. But it states that it itself
is not known by Mr. X. In order words, S is not known by Mr.
X. This contradicts the assumption that S is known by Mr. X,
so that assumption must be false.

The argument shows that S is unknowable to Mr. X: Mr. X can never correctly
know S to be true, since assuming this leads to a contradiction. Note that
since our conclusion (1.5) is actually nothing more than the sentence S itself,
we have also proved that S is indeed true! Thus we have the counter-intuitive
consequence that there exists a true sentence (the sentence S) which Mr. X
can express but which he can never know.2 It seems to prove that that Mr.
X will always be under some kind of restriction regarding what he can know.
Interestingly, S can easily be known by another agent Mr. Y—only can it
not be known by Mr. X, since it is a proposition concerning Mr. X himself.
The situation has a much more disturbing consequence than this, however.

2It is not a coincidence that this conclusion appears to be closely related to Gödel’s First
Incompleteness Theorem [Gödel, 1931] saying approximately: There exists a true sentence
which formal arithmetic can express but which formal arithmetic can not prove.

24 1. INTRODUCTION

The piece of reasoning given above—leading to the conclusion (1.5)—should
be accessible to anyone with sufficient reasoning capabilities. In particular,
Mr. X should be able to carry out the argument himself, if he possesses the
sufficient reasoning powers. The result of Mr. X carrying out this piece of
reasoning will be that he himself comes to know that (1.5) holds. Thus we
get

Mr. X knows that (1.5) holds.

But since (1.5) is simply the sentence S itself, we can replace (1.5) by S and
get

Mr. X knows that S holds. (1.6)

What we have now is a paradox : Our two conclusions (1.5) and (1.6) are in
immediate contradiction with each other. This is the knower paradox.

1.4.2. Formalising the Knower Paradox. The sentence S on which
the knower paradox is based is certainly of a somewhat pathological nature,
since it is merely expressing a claim concerning its own epistemological status
(as the liar paradox is merely a sentence expressing a claim concerning its
own semantic status). The fact that S is pathological could reasonably lead
us to the conclusion that we should not worry about the sentence and any
counter-intuitive consequences it might have. Unfortunately, it is a sentence
that can easily be formalised within the logical framework for introspective
agents we have been presenting. Let us show how. Let ϕ be the following
sentence

∀x (Dx→ ¬Kx) .

Suppose the predicate Dx is chosen or constructed such that it is satisfied
exactly when x is ϕ (or, more precisely, when x is the term denoting ϕ).
There does not seem to be any reasons why an agent should not have access
to a predicate such as Dx: it simply picks out a particular sentence in the
language of the agent. The sentence ϕ expresses that the sentence picked out
by the predicate Dx is not known by the agent. But the sentence picked out
by Dx is the sentence ϕ itself. Thus the sentence ϕ expresses that ϕ is not
known by the agent. It is therefore self-referential in the same way as the liar
sentence L and the knower sentence S considered above. If we name the agent
that ϕ concerns ’Mr. X’, then the proposition expressed by ϕ is the exact same
as the proposition expressed by the knower sentence S. Actually, we can now
within our logical framework recapture the entire informal reasoning carried
out above—using the sentence ϕ as the formal counterpart to the knower
sentence S. First of all, we can prove that

The sentence ¬Kϕ is true. (1.7)

1.4. THE PROBLEM WITH INTROSPECTION 25

This conclusion is the formal counterpart to (1.5) given above. The argument
leading to (1.7) is the following:

Assume to obtain a contradiction that ¬Kϕ is false. ThenKϕ is
true. Thus the agent knows ϕ, and so ϕmust be true. Therefore,
∀x (Dx→ ¬Kx) is true, and sinceDϕ is true, ¬Kϕmust be true
as well. But this contradicts the assumption that ¬Kϕ is false,
so that assumption must be false.

Now this piece of reasoning—leading to the conclusion (1.7)—should be ac-
cessible to any agent with sufficient reasoning capabilities. In particular, the
agent with which the argument is concerned should be able to carry it out
itself. The result of the agent carrying out this piece of reasoning will be that
it comes to know that ¬Kϕ is true, that is, we get that K¬Kϕ is true. But
now consider the following argument:

We are given that the sentence K¬Kϕ is true. Since ϕ is the
only object satisfying Dx, we have that ¬Kϕ is equivalent to
∀x (Dx→ ¬Kx). Thus we can replace ¬Kϕ by ∀x (Dx→ ¬Kx)
in K¬Kϕ, which gives us the sentence

K∀x (Dx→ ¬Kx) .

But this is the same as Kϕ. We have thus shown that K¬Kϕ
is equivalent to Kϕ, and since K¬Kϕ is true, this proves Kϕ
to be true.

This argument shows that we have the following counterpart to (1.6):

The sentence Kϕ is true. (1.8)

Now again we have a contradiction: (1.7) and (1.8) are in immediate con-
tradiction with each other. What we have obtained is a formalisation of
the knower paradox (a more detailed presentation of the formalities of this
paradox will be given in the proof of Theorem 4.5 in Section 4.2.2). Since
the contradiction is now derived completely within our logical framework, it
shows our reasoning framework for introspective agents to be inconsistent!
Thus there must be a serious flaw in the proposed framework.

The knower paradox shows that mixing self-reference with the concept of
knowledge can form an explosive cocktail. Thus we have to be very careful
whenever we deal with situations in which we have both of these ingredi-
ents. One such situation occurs when we try to implement introspection in
knowledge-based agents, since along with introspection we automatically get
self-reference. In particular, we can within the logical framework for these
agents construct a self-referential sentence ϕ as above (a knower sentence).
Reasoning about this sentence leads to a contradiction, showing the frame-
work to be inconsistent. To obtain a useful framework for introspective agents,

26 1. INTRODUCTION

we must therefore somehow avoid self-reference or limit its harmful influences.
Most of the thesis will concern different strategies to avoid self-reference or
to make it innocuous in connection with introspective agents.

1.5. Avoiding the Problems of Introspection

We have been showing that equipping agents with an ability to form
strongly introspective beliefs allows these agents to form self-referential state-
ments, and that reasoning about these statements can lead to paradox. The
problem we are facing is therefore to tame self-reference in a way that allows
us to avoid paradox but still keep the expressiveness and strong reasoning
powers of introspection. To do this, we must take a closer look at how self-
reference enters the picture, and what can be done to avoid the problems that
it carries along.

1.5.1. Modelling Oneself. Let us first try to explain why self-reference
enters the picture, and why it is not a trivial matter to avoid it. Consider again
the agent in Figure 1.3. This agent is non-introspective, since none of the sen-
tences in the knowledge base express propositions concerning the agent itself.
As previously mentioned, we can think of the knowledge base of an agent as
a model that this agent has of its world. Any non-introspective agent only
models its external environment, that is, all items in its knowledge base con-
cern the external world only. This means that we have a complete separation
between the model (the knowledge base) and the reality being modelled (the
external environment). The situation is much more complicated and prob-
lematic with introspective agents. These differ from non-introspective ones by
modelling not only their external environment but also themselves. It is by
having models of themselves they are given the ability to introspect (humans
also have models of themselves, since we generally believe that we can predict
our own reactions to most situations that can occur to us. We rely heavily on
this ability when we plan our actions). Modelling not only one’s environment
but also oneself means that we can no longer have a complete separation be-
tween the model (the knowledge base) and the reality being modelled (the
world including the agent and its knowledge base). It is as a consequence
of this lack of separation between that which models and that which is being
modelled that we are able to form sentences concerning themselves, that is,
self-referential sentences. Self-reference is made possible by the fact that in-
trospection breaks down the separation between model and modelled reality.
Thus self-reference is automatically introduced along with strong introspec-
tion, and this makes it very difficult to get rid of self-reference (or its harmful
effects) while still keeping the introspection.

1.5. AVOIDING THE PROBLEMS OF INTROSPECTION 27

The problematic thing about self-reference is that it allows us to form
sentences that express properties only concerning themselves. These are sen-
tences of a somewhat pathological nature, since they do not model an exter-
nal reality, but only themselves. Some of these sentences express properties
of themselves that are opposite of the properties that they actually possess.
This is precisely what makes them paradoxical, and what threatens to con-
taminate the entire knowledge base with paradox (as is the case with the
knower paradox). It is important to note that although these sentences are
indeed pathological, they are still natural consequences of modelling a part of
reality containing the model itself.

1.5.2. Dependency Graphs. To be able to avoid the problems im-
posed by self-reference, we must first of all be able to identify situations in
which self-reference occur and separate these from situations in which no
self-reference is involved. This requires us to have a way of mathematically
representing relations of reference through which we can give self-reference a
precise meaning. In the thesis, we show how to do this using graphs. Using
these graphs and their properties, we are able to prove a number of general
results relating questions of the presence of self-reference (and related phe-
nomena) to questions of consistency and paradox-freeness. From these results
we are then able to construct a number of logical theories allowing strong in-
trospection but avoiding the problems of self-reference. In particular, we are
able to construct logical theories that circumvent the knower paradox.

We now give a brief sketch of our graph theoretical approach to reference
and self-reference. The idea is to represent relations of reference by a directed
graph. We take the nodes of this graph to be the sentences of the language
that our agents use. In the graph we then put an edge from a node p to
a node q whenever p is a sentence referring to the sentence q. If p is the
sentence KOn (b, d) and q is the sentence On (b, d), then we will have an edge
from p to q since the sentence KOn (b, d) (“the agent knows that the black
block is on the dotted block”) refers to the sentence On (b, d) (“the black
block is on the dotted block”). Similarly, the sentence K¬KOn (b, d) refers
to ¬KOn (b, d), so we would have an edge from K¬KOn (b, d) to ¬KOn (b, d)
as well. Furthermore, we choose to have an edge from a sentence ϕ to a
sentence ψ whenever ψ is an immediate constituent of ϕ (for instance when
ϕ is the sentence ¬KOn (b, d) and ψ is the sentence KOn (b, d)). Finally, we
have an edge from ϕ to ψ whenever ψ is a substitution instance of ϕ (for
instance when ϕ is ∀x (Dx→ ¬Kx) and ψ is DOn (b, d)→ ¬KOn (b, d)).

The obtained graph is called a dependency graph. Since we are thinking
of it as representing relations of reference, it may seem more appropriate
to call it a reference graph. However, our choice of name relies on the fact

28 1. INTRODUCTION

that our concept is closely related to other notions of dependency graphs
used in various fields within computer science (in particular, our graphs are
closely related to the dependency graphs used in logic programming [Apt et
al., 1988]). We say that a sentence ϕ refers indirectly to a sentence ψ if there
is a path from ϕ to ψ in the dependency graph. The following is an example
of a path in a dependency graph

K¬KOn (b, d) // ¬KOn (b, d) // KOn (b, d) // On (b, d) .

This path shows that the sentence K¬KOn (b, d) refers indirectly to the sen-
tence On (b, d). This is in accordance with our standard use of the notion
’indirect reference’: when we say that it is known that it is not known that
the black block is on the dotted block, then we make an indirect reference
to the relative position of the two blocks expressed by the sentence On (b, d).
We now say that a sentence ϕ is self-referential if it refers indirectly to itself,
that is, if ϕ is contained in a cycle in the dependency graph. Thus cases
of self-reference in the language become identified as cycles in the associ-
ated dependency graph. In Section 1.4.2 we claimed the sentence ϕ given by
∀x (Dx→ ¬Kx) to be self-referential. This is consistent with the definition
of self-referentiality just given. To see this, consider the following subgraph
of the dependency graph:

ϕ
df
= ∀x (Dx→ ¬Kx)

&&NNNNNNNNNNN

**UUUUUUUUUUUUUUUUUUU

Kϕ

;;vvvvvvvvv

� Dϕ→ ¬Kϕ

wwooooooooooo

��=
==

==
==

· · ·

¬Kϕ

ddIIIIIIIII

Dϕ

It is seen that ϕ is contained in a cycle, and thus it is self-referential by the
definition given.

Using dependency graphs, we can now always check whether a particular
sentence is self-referential or not. By considering such graphs we can see
which sentences we need to remove from our language to avoid self-reference
and thus avoid paradoxes. In some cases we want to keep all the self-referential
sentences, but then we can use the graphs to see how the underlying logic can
be weakened so that these sentences will do no harm. In both cases, what we
obtain are consistent formalisms that can be used as the reasoning frameworks
for introspective agents.

1.7. SHORT OVERVIEW OF THE THESIS 29

1.6. Summing Up

Let us briefly sum up the content of this chapter. We have argued that
introspection is a crucial cognitive ability that we would like artificial intel-
ligence agents to have. We have then shown that first-order predicate logic
with knowledge and belief treated as predicates is an expressive formalism
in which strongly introspective representation and reasoning can take place.
We therefore propose to use this formalism as the framework for building in-
trospective agents. Unfortunately, it turns out that a bi-product of the high
expressiveness of the formalism is that agents using it will be able to engage in
paradoxical reasoning, and thus become useless. The possibility of engaging
in paradoxical reasoning is caused by the presence of self-referential sentences
in the language. Self-reference is automatically introduced together with in-
trospection, since introspection implies that one can no longer separate one’s
model of the world from this world itself. To save the formalism from paradox,
we need to either exclude the self-referential sentences from the language or
ensure that all self-reference becomes innocuous. By introducing dependency
graphs, we are able to identify self-referential sentences, and through these
graphs we are then able to give paradox-free (consistent) formalisms that still
have the expressiveness needed in strong introspection.

1.7. Short Overview of the Thesis

The thesis is organised as follows. In Chapter 2 we will describe different
views and intuitions towards the formalisation of knowledge within a logical
theory, and then explain the views and intuitions underlying this thesis. We
will be discussing the advantages of formalising knowledge within first-order
predicate logic. In Chapter 3 we give a detailed definition of the languages
and theories of predicate logic to be used in the thesis. In Chapter 4 we
present the inconsistency problems related to the formalisation of introspec-
tive knowledge. We also present a number of approaches to circumvent these
inconsistency problems. In Chapter 5 we present an original approach to the
problem. This approach involves using graphs and graph-based methods. We
apply these methods in Chapter 6 to strengthen a number of the previously
known consistency results. These strengthened results are Theorem 6.9 and
Theorem 6.23, which are the main results of the thesis. The chapter includes
a number of examples of how the results can be applied in constructing agents
that can safely do introspective reasoning. The thesis ends with a conclusion.

CHAPTER 2

Setting the Stage

As mentioned in the previous chapter, our overall goal is to construct log-
ical formalisms to serve as the reasoning mechanisms for introspective agents.
There are many choices that have to be made in this connection: choices
of underlying logical framework; choices of how statements within the log-
ical framework are intended to be interpreted; choices of which aspects of
the problem to include and which to leave out, etc. In the following we will
describe and motivate the choices we have made in relation to the work of
this thesis. We will describe different possible views and intuitions towards
the formalisation of knowledge and belief within a logical theory, and explain
the views and intuitions underlying this thesis. The detailed mathematical
definitions of the logical theories to be used are left for the next chapter.

2.1. Knowledge Bases as Logical Theories

The ’consciousness’ of an artificial intelligence agent is its knowledge base
in which its knowledge about the world is recorded. Known facts are repre-
sented within the knowledge base as sentences of some formal language. Thus
the knowledge base can be thought of as simply being a set of formal sen-
tences. However, the agent is required to be able to reason about the world
using the facts about the world represented in its knowledge base. Therefore
the knowledge base needs to be equipped with some machinery for manip-
ulating the sentences in the base and for deriving new consequences of the
facts represented by these sentences.

Suppose, for instance, that the knowledge base of an agent consists of the
following sentences

KOn (dotted, black)

K∀x∀y (On (x, y)→ ¬On (y, x)) .
(2.1)

This situation is illustrated in Figure 2.1. The first sentence expresses the
agent’s knowledge of the fact that the dotted block is on the black block,
and the second sentence expresses the agent’s knowledge of the fact that the
On-relation is asymmetric. If the agent is asked whether the black block is
on the dotted block, it can not answer this question by a simple look-up in

31

32 2. SETTING THE STAGE

PSfrag replacements

KOn (black,floor)

KOn (dotted, black)

KOn (white,floor)

KOn (black,floor)

KOn (dotted, black)

KOn (white,floor)

KOn (dotted, black)

K∀x∀y (On (x, y)→ ¬On (y, x))

Figure 2.1. Another Agent in the Blocks World

its knowledge base, since the knowledge base does neither explicitly contain a
proposition claiming that the black block is known to be on the dotted block:

KOn (black, dotted) ,

nor does it contain a proposition claiming that the black block is known not
to be on the dotted block:

K¬On (black, dotted) .

Nevertheless, the fact that the black block is not on the dotted block is im-
plicitly represented in the knowledge base, since it is a consequence that can
be logically deduced from the fact that the dotted block is on the black block
and the fact that the On-relation is asymmetric. We would certainly want
the agent to be able to deduce this consequence from the facts represented in
its knowledge base. The simplest way to obtain this is to provide the agent
with logical inference rules that it can use to derive new facts from the facts
already given.

This leads to the idea of taking the agent’s knowledge base to be a logical
theory rather than simply a set of formal sentences. In a logical theory we
have axioms to represent known facts and inference rules to allow the agent
to derive new facts, theorems, from the known facts. If we take the knowledge
base of an agent to be a logical theory, then the reasoning mechanism of the
agent is nothing more than a mechanism for making formal proofs within the

2.3. EXTERNAL VERSUS INTERNAL VIEW 33

logical theory. This means that the reasoning mechanism can be implemented
in a computer simply by using the inference engine of a logic programming
interpreter or a suitable theorem prover.

2.2. Explicit Versus Implicit Knowledge

If the knowledge base of an agent is a logical theory, how should we then
think about the axioms, proofs and theorems of this theory? First of all, the
knowledge base is not necessarily a static theory. At every point in time,
the knowledge base is a logical theory, but this logical theory may evolve over
time as new observations are made and new facts are learned. If the reasoning
mechanism of an agent is a theorem prover proving theorems of some logical
theory, then it seems sensible that whenever a new theorem is proved (a new
fact is learned), it is added as an axiom to the theory. This implies that the
logical theory will expand over time.

Suppose the knowledge base of an agent at some point in time is given
as a logical theory S of some suitable formal language. If Kϕ is an axiom
in S, we say that ϕ is explicitly known by the agent. If Kϕ is a theorem in
S but not an axiom, we say that Kϕ is implicitly known by the agent. If
S is the theory consisting of the two axioms (2.1), then the agent explicitly
knows that the dotted block is on the black block. It does not explicitly know
that the black block is not on the dotted block, but it might implicitly know
this if S contains the sufficient inference rules for K¬On (black, dotted) to be
a theorem (see Section 3.7 below).

We will not be too concerned with the distinction between explicit and
implicit knowledge in this thesis. Since our primary focus is to find ways
to ensure that certain things can never be inferred by our agents (such as
paradoxes), we focus primarily on implicit knowledge. When we talk about
knowledge we will therefore most often be referring to implicit knowledge. If
we say that an agent knows ϕ, what we mean is that Kϕ is a theorem of the
logical theory that constitutes the agent’s knowledge base.

2.3. External Versus Internal View

As mentioned in Chapter 1, we can think of the knowledge base of an
agent as the model that this agent has of its environment. We have chosen
to represent this model as a logical theory. The agent uses the logical theory
to reason about its environment. But such a logical theory also has another
possible use. It could just as well be a theory that we humans use to reason
about the agent. That is, the logical theory could be considered to be our
model of the agent rather than the agent’s model of its world. Then we
can use the theory to prove various properties of the agent. When we think

34 2. SETTING THE STAGE

of the logical theory in this way, the agent itself does not have to be of
a type involving any kind of explicitly represented knowledge. The agent
could for instance be a very simple reactive system such as a thermostat.
In this case, when we use the logical theory to prove that the system or
agent knows certain facts, this is simply knowledge that we ascribe to the
agent—not necessarily knowledge that it explicitly possesses. We can ascribe
a thermostat the knowledge that if it gets to cold the heat must be turned
on, but this is not a piece of knowledge explicitly represented within the
thermostat [McCarthy, 1979].

Consider again the theory consisting of the two axioms (2.1). We may
use this theory to describe any agent that can correctly answer questions
about the relative position of the black and the dotted block. We can do this
independently of the kind of internal representation of facts (if any) that the
agent actually has. When we for instance prove that K¬On (black, dotted)
holds in the theory, this means that we ascribe to the agent the knowledge
that the black block is not on the dotted block. There are many different
ways in which this piece of knowledge could be represented within the agent
itself, and it might only be represented very indirectly.

Thus the logical theories become our tool for reasoning about the be-
haviour of agents and for proving facts about them. Such reasoning can be
very useful in analysing, designing and verifying various types of computer
systems—in particular distributed computer systems, where each automaton
(process) within the system is modelled as an individual agent having its own
knowledge and belief [Fagin et al., 1995].

The view of a logical theory as a tool for us to reason about agents is called
the external view (or the descriptive view). The view of a logical theory as
the reasoning mechanism within an agent itself is called the internal view
(or the prescriptive view). In this thesis we are mostly concerned with the
internal view, although most of the results we obtain apply equally well to the
external view. In fact, we will not be explicitly distinguishing between the
two views. If a logical theory S is describing the knowledge base of an agent
and if K¬On (black, dotted) is provable within that theory, then we simply say
that the agent knows ¬On (black, dotted). Whether this is only knowledge we
ascribe to the agent, or we think of it as knowledge that the agent has itself
inferred using the axioms and inference rules of S, is not of central importance
to the things we have to say.

2.4. Operator Versus Predicate Approach

It is common to distinguish two approaches to the question of how to syn-
tactically represent knowledge and belief in a logical theory [Whitsey, 2003;

2.4. OPERATOR VERSUS PREDICATE APPROACH 35

des Rivières and Levesque, 1988]. These two approaches are called the opera-
tor approach and the predicate approach. The traditional as well as currently
dominating approach is the operator approach which goes at least back to
Hintikka [1962]. In this approach, K and B are sentential operators (modal
operators) that are applied directly to formulas. The operator approach is
usually combined with a possible-world semantics [Kripke, 1963]. Often the
operator treatment of knowledge and belief is realised within a propositional
modal logic, but various first-order modal logics have been proposed as well
[Levesque, 1984; Lakemeyer, 1992; Levesque and Lakemeyer, 2000] (general
presentations of first-order modal logic can e.g. be found in Hughes and Cress-
well [1996] or Fitting and Mendelsohn [1998]).

The second approach is the predicate approach. In this approach, K
and B are predicates of a first-order predicate logic, and they are applied
to names of formulas (which are terms) rather than the formulas them-
selves. There have been given many arguments in favour of the predicate
approach over the traditional operator approach [Asher and Kamp, 1986;
Attardi and Simi, 1995; Carlucci Aiello et al., 1995; Davies, 1990; Fasli, 2003;
Konolige, 1982; McCarthy, 1997; Morreau and Kraus, 1998; Perlis, 1985; 1988;
des Rivières and Levesque, 1988; Turner, 1990]. A couple of the most success-
ful recent frameworks using the predicate approach in formalising the knowl-
edge and belief of agents can be found in Morreau and Kraus [1998], Grant et
al. [2000] and Fasli [2003]. Since the predicate approach is the one we are go-
ing to pursue in this thesis, we will briefly review some of the most common
arguments given in favour of it. This is done in the following subsections.

2.4.1. Logical Omniscience. In the classical operator approach, one
has a language of propositional modal logic with K and B being modal oper-
ators. This language is given a possible-world semantics. The possible-world
semantics seems very suitable and intuitively appealing as a semantics for
languages involving knowledge and belief. The idea is that for Kϕ to be true,
the proposition expressed by ϕ must be true in every world that the agent in
question considers possible. For the agent to know something is thus for this
something to hold in all possible states of affairs that are indistinguishable to
the agent from the actual state. Let us give an example. Imagine that the
dotted block in Figure 2.1 is blocking the view of the agent such that it cannot
see the white block. Then the agent would both consider the world in which
there is a white block on the floor behind the dotted block and the world in
which there is not as possible (since it is aware that there might be something
on the floor behind the dotted block that it cannot see). Thus in this case the
sentence KOn (white,floor) would not be true in the possible-world semantics.
But we would still have that the sentence KOn (dotted, black) is true, since

36 2. SETTING THE STAGE

the agent does not consider any worlds possible in which On (dotted, black) is
not the case.

Although the possible-world semantics seems intuitively appealing and
has several advantages, it also possesses some major disadvantages. One of
these is the logical omniscience problem. On the possible-worlds account, Kϕ
is true if ϕ is true in all worlds considered possible by the agent. Suppose
ϕ and ψ are logically equivalent formulas. Then they must receive the same
truth-value in all worlds. In particular, they must receive the same truth-
value in all worlds considered possible by the agent. Suppose furthermore
that Kϕ holds. Then ϕ is true in all worlds considered possible by the agent,
and by the logical equivalence of ϕ and ψ, the formula ψ must be true in
all of these worlds as well. This implies that Kψ holds. Thus, if the agent
knows ϕ and if furthermore ϕ and ψ are logically equivalent, then the agent
necessarily knows ψ as well. This property is called logical omniscience. It is
the property that knowledge is closed under logical equivalence.

Logical omniscience seems as an unreasonable property of artificial intel-
ligence agents (and humans, for that matter) to have. If I know ϕ, and if ϕ
and ψ are logically equivalent, I do not necessarily know ψ, because I might
be unaware that ϕ and ψ are indeed equivalent. For this reason, many have
considered the combination of the operator approach and the possible-world
semantics as an improper framework for formalising knowledge and belief. It
should be noted, however, that if we think of Kϕ as expressing that ϕ is
implicitly known, then logical omniscience might be an acceptable property
after all.

The predicate approach does not suffer from the logical omniscience prob-
lem. In the standard predicate approach, one has a language of first-order
predicate logic with K and B being one-place predicate symbols. This lan-
guage is given a standard Tarskian (truth-functional) semantics, which means
that we assign an extension to every predicate symbol in the language. The
idea is here that for Kϕ to be true, ϕ must be in the extension of the predi-
cate symbol K (or rather, the name of ϕ must be in this extension). In this
semantics, there is nothing forcing Kϕ to be semantically related to Kψ even
if ϕ and ψ are logically equivalent. Whether Kϕ and Kψ are true or false
only depends on whether ϕ and ψ are included in the extension of K or not,
and this extension can be chosen independently of the meaning we assign to
ϕ and ψ. We can always choose to include ϕ in the extension but exclude ψ.
Thus, we are not forced to have logical omniscience.

One of the reasons put forward to prefer the predicate approach over
the operator approach is that logical omniscience can be avoided [Asher and
Kamp, 1986; Davies, 1990; Fasli, 2003; Turner, 1990; Whitsey, 2003]. More
generally, we can see from the presentation of the two approaches given above

2.4. OPERATOR VERSUS PREDICATE APPROACH 37

that the predicate approach offers a much more fine-grained notion of propo-
sition than the operator approach. Note, however, that there has also been
considerable work on how to avoid the logical omniscience problem while
staying within the operator approach. One of the possibilities is to intro-
duce impossible worlds. This and other approaches to avoid the problem are
reviewed in Fagin et al. [1995].

2.4.2. Introducing New Modalities. McCarthy [1997] gives several
arguments for the inadequacy of modal logic as the basis for constructing
artificial intelligence agents. One of his arguments is that modal logic is
unsuitable to take care of the situation in which an agent adds a new modality
to its language. By modality in this context is meant a manner in which
an agent (or group of agents) relates to a proposition or a sentence. Such
modalities are also known as propositional attitudes. As classical examples of
such modalities we have knowing and believing. Knowing is a modality, since
it is used to express the certain way in which an agent relates to a proposition
(sentence) when it is said to know this proposition (sentence). As further
examples of modalities (propositional attitudes) we have: intending, fearing,
hoping, desiring, obligating. Concerning such modalities, McCarthy [1997]

writes: “Human practice sometimes introduce new modalities on an ad hoc
basis. [...] Introducing new modalities should involve no more fuss than
introducing a new predicate. In particular, human-level AI requires that
programs be able to introduce modalities when this is appropriate.”

The idea is that an agent might come to need a new modality in the course
of its reasoning, and the formalism with which the agent is built should some-
how support this. For instance, an agent might come to need a modality
for expressing common knowledge or distributed knowledge among a group of
agents to carry out the required reasoning (an example of this is the reasoning
required in the muddy children puzzle [Fagin et al., 1995]). The agent should
somehow have access to such modalities, even though it has not explicitly
been equipped with these from the beginning. On the operator approach in
general—and in modal logic in particular—only modalities that are included
in the language from the beginning will be accessible to the agent. If we
want agents to be able to reason about common and distributed knowledge
on the operator approach, we must have operators for these modalities in our
language as well as a number of axioms in the underlying theory expressing
the basic properties of these modalities. The occasional need for new modal-
ities might thus lead to a proliferation of theories on the operator approach,
since we need to extend the language and add corresponding axioms to the
underlying theory whenever we wish to be able to handle a new modality.

38 2. SETTING THE STAGE

As we will show in Section 3.5.2 and Section 6.2.2, the predicate approach
fares much better with respect to this problem. In this approach, modali-
ties such as common and distributed knowledge can be reduced to the basic
modality of knowing. This means that the language only needs to be equipped
with a knowledge modality (a K predicate), and that other modalities such
as common and distributed knowledge can be expressed entirely in terms of
this basic modality. Other modalities one might come to need and which
on the predicate approach can be reduced to the basic modality of knowing
are: knowing more, knowing about, only knowing, knowing at least, knowing at
most (the last three of these modalities are considered in Levesque and Lake-
meyer [2000]). The reason that these modalities can be reduced to knowledge
in the predicate approach but not the operator approach is that the predicate
approach is much more expressive than the operator approach. Knowledge
can be referred to in much more complex ways in the predicate approach than
the operator approach.

The conclusion—which we share with McCarthy [1997]—is that since we
would like to allow our artificial intelligence agents to add new modalities to
their languages whenever needed, we should choose the predicate approach
rather than the operator approach in the formalisation of these agents’ knowl-
edge.

2.4.3. Expressive Power. Probably the strongest argument in favour
of the predicate approach is that it gives a much more expressive formal-
ism than can be obtained with the operator approach (at least as long as
we do not consider higher-order formalisms). This argument in favour of the
predicate approach has been put forward by Asher and Kamp [1986], Car-
lucci Aiello et al. [1995], Davies [1990], Fasli [2003], Moreno [1998], Morreau
and Kraus [1998], des Rivières and Levesque [1988], Turner [1990] and Whit-
sey [2003]. It constitutes the main reason for choosing the predicate approach
in this thesis. There are simply propositions that cannot be expressed on the
operator approach that are essential to have in a formalism that claims to
support strong introspection. We gave a number of examples of such propo-
sitions in Section 1.3.2. We will now give some more, and explain why these
propositions are important to be able to express.

One of the simplest examples of a sentence expressible in the predicate
approach but not the operator approach is

“Bill knows everything Sue knows” (2.2)

(this example appears in Asher & Kamp [1986] and Attardi & Simi [1995]).
The sentence can be formalised in the predicate approach as

∀x (Ksue x→ Kbill x) .

2.4. OPERATOR VERSUS PREDICATE APPROACH 39

The reason that the sentence can not be formalised in the operator approach
is that it involves quantifying over knowledge. In the predicate approach
such quantifications can be expressed by applying K to a variable x and
then quantify over this variable. This is not possible if K is an operator,
however, since then K only applies to well-formed formulas and not to terms
such as the variable x. The problem could possibly be solved in the operator
approach by moving into a higher-order modal logic, but this possibility has
not been investigated by the author. Higher-order modal logics are not very
well-known although several such logics have been developed [Fitting, 2002b;
Gallin, 1975].

Why do we even want to be able to express a sentence such as (2.2)?
Unless we can imagine agents that would gain from being able to express and
reason about such a sentence, the fact that the predicate approach has higher
expressive power will not be a strong argument for choosing that approach.
But it is quite easy to imagine situations involving several agents (multi-agent
systems) in which a sentence such as (2.2) is required. We give an example
of this in the following.

Example 2.1 (Knowing more). Imagine a world in which there are three
agents: Bill, Sue and Ole (the third one is a Danish agent). We will consider
these agents to be software agents “living” on the Internet—however, the
example could just as well have been made with the agents being for instance
mobile robots. Bill and Sue are agents assisting Ole in carrying out various
information gathering tasks on the behalf of a human user. Suppose Ole asks
the two agents Bill and Sue to find information on the Internet concerning
cool jazz. They will do this by traveling around on the Internet and possibly
communicating with other agents as they move along. When the two agents
“return”, Ole asks them where they have been. From their reports, Ole is able
to infer that everywhere Sue has been, Bill has also been. From this fact Ole
should be able to infer that Bill knows at least as much as Sue knows (about
cool jazz). Thus we expect the following sentence to enter the knowledge base
of Ole:

Kole∀x (Ksue x→ Kbill x)

or maybe rather:

Kole∀x (About (x, cool jazz) ∧Ksue x→ Kbill x) .

This can only happen on the predicate approach, since only on the predicate
approach can we express these two sentences. Coming to know that Bill knows
everything Sue knows allows Ole to deduce that he only needs to ask Bill for
information on the subject of cool jazz. He can thus immediately send Sue out

40 2. SETTING THE STAGE

to solve a new task while “questioning” only Bill about what he has learned
about the subject.

An advocate for the operator approach might object to the necessity of
the predicate approach in this example by noting that we could just introduce
a ’knows more’ modal operator into the operator language and then express
the propositions above through this new operator. This would of course be
possible, but it would leave us in the situation we argued against in Section
2.4.2: it should not be necessary to extend the entire underlying logical frame-
work just to be able to express a piece of reasoning involving a new modality.
In particular not when this new modality in a simple way can be derived from
the basic modality of knowing.

The example above does not involve introspection, but the following sim-
ple variant of it does.

Example 2.2 (Knowing more). We consider again the agent scenario
presented above. Suppose that this time Bill and Sue are independently
send out by two different users to gather information on cool jazz. They
coincidentally meet on the Internet, and Bill asks Sue whether she knows
anything about the subject. Note at this point that even to express that Sue
knows something about cool jazz, we need the predicate approach:

∃x (About (x, cool jazz) ∧Ksue x) .

When Sue answers yes to Bill’s question, he asks her at which sites she has
been obtaining her knowledge on the subject, and he realises that she has not
been anywhere that he himself has not. From this he comes to know that he
knows more about the subject than Sue:

Kbill∀x (About (x, cool jazz) ∧Ksue x→ Kbill x) .

This is a piece of introspective knowledge, since it is knowledge held by Bill
concerning Bill’s own knowledge. Whether it is a piece of self-referential
knowledge as well depends—as we will see in Example 6.10—on how we for-
malise the About predicate.

A couple of other examples of sentences only expressible in the predicate
treatment are the following:

• “John knows that Bill knows something that John himself doesn’t”:

Kjohn∃x (Kbill x ∧ ¬Kjohn x)

(presented in [Priest, 1991; Attardi and Simi, 1995]).
• “John believes that he has a false belief”:

Bjohn∃x (Bjohn x ∧ ¬True(x)) (2.3)

(presented in [Perlis, 1985; Attardi and Simi, 1995]).

2.4. OPERATOR VERSUS PREDICATE APPROACH 41

Furthermore, we need the predicate approach if we want to express sentences
concerning knowledge shared by all agents in the world or all agents in a
certain group.

Example 2.3 (Everybody knows). To express that all agents know that
the dotted block is on the black block, we can write

∀xKxOn (dotted, black) . (2.4)

This sentence is actually an abbreviation for

∀xK (x, pOn (dotted, black)q) .

We will explain the details of these syntactic matters in Chapter 3. If we
knew the names of all agents, we could replace the sentence (2.4) by a finite
conjunction of sentences of the form

KN.N.On (dotted, black) , (2.5)

where N.N. is the name of a particular agent. Such a finite conjunction would
be expressible in the operator approach, but it is not always likely that we
know the names of all agents. In particular, what we might intend to express
by (2.4) is that any agent at any time knows the dotted block to be on the
black block. Since the number of agents might vary over time, there will be no
finite conjunction of sentences on the form (2.5) that can replace the sentence
(2.4). The sentence (2.4) is only expressible in the predicate approach. The
reason is that in the operator approach one has an individual modal operator
for each agent, so it is only possible to refer to the knowledge of a group of
agents by referring directly to the names of the agents in this group. As before,
the problem can be circumvented in the operator approach by introducing a
new modality, but as we have argued in Section 2.4.2 this is an inadequate
solution.

We have now given a number of examples of propositions expressible only
on the predicate approach. It is furthermore easy to see that any proposi-
tion expressible on the operator approach is also expressible on the predicate
approach: If ϕ is an operator sentence we simply have to replace all subfor-
mulas on the form Kψ (or Bψ) by K(pψq) (or B(pψq)) in order to get a
corresponding predicate sentence (the details of this translation are carried
out in des Rivières and Levesque [1988]). Thus we have succeeded in showing
that the predicate approach is more expressive than the operator approach.
This fact constitutes an important argument in favour of the predicate ap-
proach. Furthermore, from the examples we have given, we see that the
predicate approach is needed in expressing many natural propositions involv-
ing knowledge—propositions we would like our agents to be able to express.
In particular, the predicate approach allows us to quantify over knowledge,

42 2. SETTING THE STAGE

which is needed in strong introspection—for instance when expressing the in-
trospective awareness that one has a false belief (sentence (2.3) above). This
is our main reason for choosing the predicate approach in this thesis.

2.4.4. Concluding Remarks. Above we have given a number of argu-
ments in favour of the predicate approach, but none in favour of the operator
approach. If the predicate approach is so much superior to the operator ap-
proach, why is the operator path still the one most often taken? A number
of both technical and philosophical reasons have been given in the literature.
Among the technical reasons is that propositional modal logic is decidable
whereas first-order predicate logic is only semi-decidable. Semi-decidability
is, however, probably the price we have to pay to use any kind of logic as
strongly expressive as predicate logic (and in this thesis we need such an
expressive logic to be able to express strongly introspective beliefs, which a
propositional modal logic cannot). Among the philosophical reasons is that it
has been argued that the proper object of a belief is a proposition rather than
a sentence, and only the operator approach with a possible-world semantics is
faithful to this view. But the most important argument against the predicate
approach is that it is prone to inconsistency [Kaplan and Montague, 1960;
Montague, 1963; Thomason, 1980]. We already saw this in Chapter 1 with the
knower paradox (Sections 1.4.1 and 1.4.2). If our ambition is to build artifi-
cial intelligence agents with strong introspective abilities we need the strongly
expressive framework, and thus we are required to find a way to overcome the
inconsistency problems. This is, as mentioned several times, what this thesis
is all about.

Concluding this section of comparing the operator approach to the pred-
icate approach, we should note that some authors refer to the operator ap-
proach as the semantic approach (or the semantic treatment) and the pred-
icate approach as the syntactic approach (or the syntactic treatment). We
will avoid using the latter terms in this thesis, since the semantic/syntactic
distinction most often carries a somewhat different meaning: The semantic
approach is used to describe situations in which the objects of knowledge
and belief are taken to be propositions, and the syntactic approach is used to
describe situations in which these objects are sentences. In most cases the op-
erator/predicate distinction and the semantic/syntactic distinction coincide,
but not always.

2.5. Aspects not Covered in the Thesis

There are several important aspects involved in the construction of arti-
ficial intelligence agents that we do not cover in this thesis. For instance we
do not discuss feasibility and tractability, that is, whether we can implement

2.5. ASPECTS NOT COVERED IN THE THESIS 43

inference engines for our logics that will be able to deduce useful conclusions
from the facts in the knowledge base in reasonable time (useful conclusions
will be deducible because of the semi-decidability of the logical theory con-
stituting the knowledge base, but in practice we might face problems of not
obtaining the desired conclusions as fast as we would like). We also do not dis-
cuss details of implementation, that is, whether our inference engine should
be build on a first-order theorem prover or a suitable inference engine for
extended logic programs.

In addition, we do not cover issues such as how to combine knowledge
bases of agents with actions like moving blocks or asking questions. Intro-
ducing actions into the framework can be done for instance by using knowledge
based programs [Fagin et al., 1995]. These are programs that can be built on
top of any formalism for representing and reasoning about knowledge. The
formalism for reasoning about knowledge does therefore not itself need to have
an ability to deal with actions. We are thus not required to include mech-
anisms for dealing with actions in our basic epistemic framework, but can
think of these mechanisms as being something added on top of the completed
epistemic framework.

Our logical theories are conceptually reasonably clean and simple by only
being directly concerned with the two basic modalities knowledge and belief,
and not for instance with intentions, desires and obligations. However, the
consistency results we will be proving could also be applied to show the con-
sistency of the predicate approach in formalising such modalities, at least to
the extend that these modalities can be described by axiomatic principles
similar to the principles used for knowledge and belief (see Section 3.7). Our
logical theories are not directly equipped with capabilities allowing an agent
to retract beliefs from its knowledge base if it discovers that some of these
beliefs are mistaken or express propositions that no longer hold (the intro-
duction of such capabilities are studied within the areas of belief revision and
belief update, respectively). Finally, our formal framework supports neither
probabilistic nor temporal representation and reasoning. Probabilistic repre-
sentation and reasoning might be needed to properly formalise agents that
make inaccurate observations and can be uncertain about their own observa-
tions and reasoning. Temporal representation and reasoning is needed if we
want to add a time parameter to the knowledge an agent ascribes to itself and
the other agents in its world, that is, if pieces of knowledge are formalised as
being pieces of knowledge held at particular points in time.

All these simplifications of the subject matter—of which we have men-
tioned far from all—are deliberate. The problem with which this thesis is
concerned—the problem of making a proper formalisation of strong intro-
spection of agents—is theoretically very challenging. We therefore choose

44 2. SETTING THE STAGE

to study the problem in the simplest context possible: a context involving
no actions, communication, intentions, belief revision, etc. By studying the
problem of introspection somewhat in isolation from these other issues, we are
given the best and cleanest point of departure for attacking the problem, and
it makes the entire treatment considerably more clear. We have no interest
in adding complicating factors to our framework, such as actions or further
basic modalities, before the fundamental problem of introspection has been
solved. We are aware that taking more factors into account in some cases
actually can make the problems involved in introspection easier to circum-
vent: adding an ability to revise one’s knowledge base might for instance be
a way to recover the knowledge base from inconsistency after having engaged
in paradoxical introspective reasoning such as involved in the knower paradox
(Section 1.4.2). However, even if one prefers to seek to avoid the problems
of self-reference and introspection by extending the underlying logical frame-
work, the problem in its more pure form is still of interest. There is no doubt
that recovering from an inconsistency should be treated differently depending
on whether the inconsistency is a result of a mistake made by the agent or a
result of paradoxical reasoning. We would even like the agent itself to be able
to figure out which one is the case in a given situation. Thus we still need
to investigate the problem of introspection in its more pure form to be able
to characterise the types of classical logical reasoning involving introspection
that can lead to paradoxes.

Much of the recent research in logic-based artificial intelligence and knowl-
edge-based systems goes in the direction of adding new dimensions to the
representing and reasoning frameworks: adding time, contexts, desires, in-
tentions, speech acts, etc. As mentioned, this thesis tries to solve a problem
that appears already in formalisms not incorporating any of these additional
dimensions, and for that reason we choose to stay within the more ’pure’
formalisms.

CHAPTER 3

First-Order Predicate Logic for Knowledge and

Belief

In this chapter we will give a detailed definition of the logical theories to
be used in the thesis, and discuss their fundamental mathematical properties.
This involves introducing most of the basic technical machinery on which
the entire thesis relies. A considerable effort has been put into choosing the
exact right definitions of our basic concepts. This has been done primarily
with the aim to make the proofs of our results concerning these concepts as
simple as possible. A consequence of this is that some of the definitions are
slightly more involved than would have otherwise been the case. This implies
that the reader may have to invest somewhat more in reading this chapter
introducing the basic concepts, but the extra effort greatly pays off in the
later and more advanced chapters, since our choices of definitions result in
considerable simplifications.

To formalise the knowledge and belief of agents we will be using languages
and theories of first-order predicate logic. More precisely, the knowledge base
of an agent will always be a theory S in a language L of first-order predicate
logic. The objects L and S should satisfy certain requirements to make sense
as being, respectively, the language and knowledge base of an agent. In this
chapter we will define these requirements, and discuss the basic properties of
these languages and theories. After that, we will define a number of axiom
schemes called reflection principles. These are general logical principles by
which an agent can infer consequences of its own knowledge. Such reflection
principles play a central role in the construction of logic-based agents.

3.1. First-order Predicate Logic

We begin by introducing a number of concepts and standard notions re-
lated to first-order predicate logic. The reader is assumed to be familiar with
this subject, so the following is just meant as a brief summary as well as to
make precise the exact version of the logic we are using here.

45

46 3. FIRST-ORDER PREDICATE LOGIC FOR KNOWLEDGE AND BELIEF

We take the connectives of first-order predicate logic to be ¬, ∧ and ∀.
When using ∨, →, ↔ and ∃ in formulas, these formulas are simply abbrevi-
ations of formulas containing only ¬, ∧ and ∀. The variables of first-order
predicate logic are

x0, x1, x2, x3, . . .

We sometimes use x, y and z to denote variables among x0, x1, . . . The con-
nectives and variables together with the following three symbols

,) (

are called the logical symbols of first-order predicate logic. In addition
to the logical symbols, a language of first-order predicate logic contains a
number of non-logical symbols. These are constant symbols, function symbols
and predicate symbols. We assume all non-logical symbols to be taken from
the following fixed vocabulary, where n ranges over the positive integers

• Constant symbols: a1, a2, a3, . . .

• n-place predicate symbols: An1 , A
n
2 , A

n
3 , . . .

• n-place function symbols: fn1 , f
n
2 , f

n
3 , . . .

These symbols together form the non-logical symbols of first-order predi-
cate logic. In practice, however, we will allow any string of lower-case Latin
letters—such as dotted or neg—to be the name of a constant or function
symbol. These strings should then be considered as simply being notational
variants of symbols belonging to the fixed vocabulary above. Similarly, we
will use capitalised strings of Latin letters—such as On and About—as pred-
icate symbols. Predicate symbols are capitalised to distinguish them from
function symbols. By a formula of first-order predicate logic we under-
stand any well-formed formula constructed from the logical and non-logical
symbols above. We will make the assumption that any variable x in a formula
ϕ is quantified at most once, that is, for any variable x there is at most one
occurrence of ∀x (or ∃x) in ϕ.

The reason we choose a fixed vocabulary of constant, function and pred-
icate symbols is primarily that it allows us to construct a Gödel numbering
in which a unique natural number is associated with any expression of any
first-order language. This has the following advantage. Assume we work with
some language L of first-order predicate logic and a Gödel numbering g. The
mapping g is assigning unique numbers to all expressions in L. At some
point we might need to extend the language L with new constant, function
or predicate symbols. With a fixed vocabulary to which all such new symbols
belong, we can from the beginning choose g such that it is also giving Gödel
numbers to the expressions of the extended language. We do therefore not

3.1. FIRST-ORDER PREDICATE LOGIC 47

need to extend the Gödel numbering every time we choose to extend the first-
order language we are considering. Gödel numberings are treated in detail in
Section 3.3.

Languages of first-order predicate logic will most often simply be called
first-order languages. First-order languages are identified with their sets
of sentences. Thus if L denotes a first-order language and we want to express
that ϕ is a sentence in L, we can simply write ϕ ∈ L. A sentence in a first-
order language is a closed formula, that is, a formula with no free variables.
Formulas with at least one free variable are called open formulas. Terms
without variables are called closed terms. In logic programming, closed
terms have been rebaptised as ground terms. We will use both names in
this thesis. The set of closed terms of a first-order language L is denoted
Terms(L). Formulas without connectives are called atomic formulas. We
will generally use lower-case Greek letters to denote formulas and sentences
of first-order languages (most often ϕ,ψ,α,β and γ).

We will allow some abbreviation of formulas in first-order languages. As
usual, we will omit parentheses whenever this is not likely to cause confusion.
We will even, when possible, allow the omission of parentheses around the
arguments of one-place function and predicate symbols. Thus if K is a one-
place predicate symbol and τ is a term, we will allow the formula K(τ) to
be abbreviated as Kτ . If s is a one-place function symbol, we will allow the
term s(s(x)) to be abbreviated ssx.

A first-order language is said to have a finite vocabulary if it only con-
tains finitely many constant symbols, function symbols and predicate sym-
bols. An example of a language with a finite vocabulary is the language of
arithmetic, which contains the following set of non-logical symbols

• A single two-place predicate symbol ’=’.
• A single constant symbol ’0’.
• A one-place function symbol ’s’.
• Two three-place predicate symbols ’+’ and ’ · ’.

Our definition of the language of arithmetic is slightly non-standard. Usually
+ and · are taken to be two-place function symbols rather than three-place
predicate symbols. We choose the non-standard definition, since it allows us
to simplify a number of the definitions and proofs given in the thesis. We will
also use the symbols>, <, ≥ and≤ in expressing formulas within the language
of arithmetic, but as usual we consider formulas involving these symbols as
abbreviations of formulas using only the symbols mentioned above. When
we say that a language L contains the language of arithmetic, we mean that
among its non-logical symbols it has the ones mentioned above.

48 3. FIRST-ORDER PREDICATE LOGIC FOR KNOWLEDGE AND BELIEF

We take first-order predicate logic to consist of the following logical
axioms [Mendelson, 1997]:

P1. α→ (β → α)
P2. α→ (β → γ)→ ((α→ β)→ (α→ γ))
P3. (¬α→ ¬β)→ ((¬α→ β)→ α)
P4. ∀xiα(xi)→ α(τ), if τ is free for xi in α(xi).
P5. ∀xi (α→ β)→ (α→ ∀xiβ), if α contains no occurences of xi.

These are axiom schemes where α and β are ranging over the formulas of first-
order predicate logic. First-order predicate logic with equality contains
in addition the following logical axioms called the axioms of equality

P6. x1 = x1

P7. x = y → (α(x, x)→ α(x, y)), where x and y are any variables such
that y is free for x in α(x, x), and α(x, y) arises from α(x, x) by
replacing some, but not necessarily all, free occurences of x by y.

Remark. Throughout this thesis, by first-order predicate logic we mean
first-order predicate logic with equality. We will often simply refer to it as
predicate logic.

Let L be a first-order language. A theory in L is simply a set of sentences
in L. These sentences are called the (non-logical) axioms of the theory.
Suppose S is a theory in L and ϕ is a formula in L. We say that ϕ is a
theorem in S or that ϕ is provable in S if there is a formal proof of ϕ
employing only

• The logical axioms P1–P7 instantiated with formulas of L.
• The non-logical axioms in S.
• The inference rules MP (modus ponens) and Gen (generalisation).

We write S ` ϕ to express that ϕ is a theorem in S. Formal proofs will
be written in the style of Mendelson [1997]. By a first-order theory we
understand a theory in any first-order language.

An example of a theory in the language of arithmetic is Robinson’s Q,
which contains the following non-logical axioms

Q1. ∃!x3 (+(x1, x2, x3))
1

Q2. ∃!x3 (·(x1, x2, x3))
Q3. x1 = x2 → sx1 = sx2

Q4. x1 = x2 ∧+(x1, x3, x4) ∧+(x2, x3, x5)→ x4 = x5

Q5. x1 = x2 ∧+(x3, x1, x4) ∧+(x3, x2, x5)→ x4 = x5

Q6. x1 = x2 ∧ ·(x1, x3, x4) ∧ ·(x2, x3, x5)→ x4 = x5

1As usual, for any formula A(x) we write ∃!xA(x) as an abbreviation for the formula
∃xA(x)∧ ∀y∀z (A(y) ∧A(z) → y = z).

3.2. FIRST-ORDER AGENT LANGUAGES AND THEORIES 49

Q7. x1 = x2 ∧ ·(x3, x1, x4) ∧ ·(x3, x2, x5)→ x4 = x5

Q8. sx1 = sx2 → x1 = x2

Q9. ¬0 = sx1

Q10. ¬x1 = 0→ ∃x2 (x1 = sx2)
Q11. +(x1, 0, x1)
Q12. +(x1, x2, x3)→ +(x1, sx2, sx3)
Q13. ·(x1, 0, 0)
Q14. ·(x1, sx2, x3) ∧ ·(x1, x2, x4) ∧+(x4, x1, x5)→ x3 = x5

Since our language of arithmetic is non-standard with + and · being predicate
symbols rather than function symbols, these axioms of Robinson’s system
Q are also non-standard. They are obtained from the standard axioms by
applying the transformation introduced in Section 2.9 of Mendelson [1997].
The theory Q will play an important role in the thesis. The central property
of Q is that all recursive functions and relations are representable in it (see
Section 3.5).

A theory S in a first-order language L is called finitely axiomatisable
if there is a theory V containing only finitely many non-logical axioms and
having the same theorems as S. The theory S is called recursively axioma-
tisable if its set of non-logical axioms is recursive.

3.2. First-order Agent Languages and Theories

We are now in a position to define the requirements we will put on our
languages and theories to be used in formalising the knowledge and belief
of agents. Languages and theories satisfying the requirements will be called
first-order agent languages and first-order agent theories, respectively.

Definition 3.1. Let L be a language of first-order predicate logic. L is
called a (first-order) agent language if it satisfies the following require-
ments

(i) L contains the language of arithmetic.
(ii) L contains a two-place predicate symbol denoted K.

Definition 3.2. Let L be an agent language and let S be a theory in L.
S is called a (first-order) agent theory in L if it satisfies the following
requirements

(i) S extends the theory Q.
(ii) S is recursively axiomatisable.

In the following sections we will explain the requirements we have put on
agent languages and theories. Throughout we assume L to be a first-order
agent language and S to be a first-order agent theory in L. The language L
can be thought of as the language with which an agent is equipped to express

50 3. FIRST-ORDER PREDICATE LOGIC FOR KNOWLEDGE AND BELIEF

its knowledge and belief and S can be thought of as this agent’s knowledge
base.

Our first requirement—item (i) in Definition 3.1—has to do with the abil-
ity of the agent to code sentences of its language as terms in this language.
We explain this in detail in the following.

3.3. Coding of Sentences

To allow introspection, the agent has to be able to refer to the objects in
its own knowledge base. These objects are sentences in the language L. The
objects with which the agent refers are also sentences in L, so we need a way
to allow sentences in L to refer to other sentences in that same language. This
is done using a Gödel coding (Gödel numbering). Through a Gödel coding
we can associate to each formula ϕ in L a unique term pϕq in L. The term
pϕq is called the Gödel code of ϕ. When a formula ψ in L contains the Gödel
code of another formula ϕ in L, we will think of ψ as referring to ϕ through
this Gödel code.

Throughout this thesis we will be using a fixed Gödel coding, which we
are now about to present. We present the coding in detail even though the
reader is assumed already to be familiar with such codings. The primary
reason for presenting the coding in detail is that there are certain properties
that not all Gödel codings share, but that we need our coding to possess. We
therefore need to be precise about our choice of coding.

Definition 3.3 (Mendelson [1997]). Let M denote the union of the set
of logical and non-logical symbols of first-order predicate logic. We define an
injective map g : M → N by, for all k, n > 0

g(() = 3 g(xk) = 13 + 8k
g()) = 5 g(ak) = 7 + 8k
g(,) = 7 g(fnk) = 1 + 8(2n3k)
g(¬) = 9 G(Ank) = 3 + 8(2n3k)
g(∧) = 11
g(∀) = 13.

Definition 3.4 (Mendelson [1997]). Let M be as above and let u1 · · · ur
be a string of symbols in M . The Gödel number of the expression u1 · · · ur
is the natural number

2g(u1)3g(u2)5g(u3) · · · p
g(ur−1)
r−1 pg(ur)

r ,

where pj for all j > 0 denotes the j’th prime number.

Through this definition we get a unique Gödel number associated with
each formula in each first-order language. But our goal was to associate

3.3. CODING OF SENTENCES 51

terms and not numbers with formulas. The following definition shows how
this can be done through the given Gödel numbering.

Definition 3.5. Let M be as above. Let L be a first-order language con-
taining the language of arithmetic and let ε denote a string of symbols from
M . The Gödel code of the expression ε is the following closed term in L

ss · · · s
︸ ︷︷ ︸

n

0

with n occurrences of s, where n is the Gödel number of ε. We denote this
term by pεq. The string ε is said to be the expression denoted by the term
pεq, and pεq is said to be the name of ε.

Terms of the form ss · · · s0 are usually called numerals. For every n ∈ N,
we use n̄ as an abbreviation for the term ss · · · s0 with n occurrences of s. We
say that n̄ is the numeral denoting the natural number n. When no confusion
can occur, we identify numerals with the natural numbers they denote. That
is, we identify n̄ with n. This means that the Gödel numbers and the Gödel
codes of expressions will be identified. For instance, suppose ϕ is a formula of
predicate logic. Then we will use the notation pϕq both to denote the Gödel
number of ϕ, which is a natural number, and to denote the Gödel code of ϕ,
which is the corresponding numeral.

The above definition successfully associates a unique term in the language
of arithmetic with every formula of predicate logic. Let L be a first-order
language containing the language of arithmetic. Suppose L contains a one-
place predicate symbol K. Each sentence ϕ in L has a Gödel code pϕq, which
is a term in L (a numeral). For any such sentence we will think of the sentence
K(pϕq) as expressing that ϕ has the property expressed by the predicate K.
If K expresses the property of being known by an agent, then K(pϕq) can be
read as saying “ϕ is known by the agent”. Similarly, K (pK (pϕq)q) can be
read as saying

“K(pϕq) is known by the agent”

or

“The sentence “ϕ is known by the agent” is known by the agent”.

When no ambiguity can occur, we will in formulas allow the term pϕq to be
abbreviated by ϕ. Thus K(pϕq) will be abbreviated K(ϕ) or simply Kϕ, and
K (pK (pϕq)q) will be abbreviated K (K(ϕ)) or simply KKϕ. Using such
abbreviations result in much simpler notation.

Requirement (i) in the definition of a first-order agent language (Defini-
tion 3.1) states that the language contains the language of arithmetic. This
requirement is included to make sure that the agent has names (Gödel codes)

52 3. FIRST-ORDER PREDICATE LOGIC FOR KNOWLEDGE AND BELIEF

for all expressions in its language. This allows it to refer freely to the objects
in its knowledge base as needed to do introspection.

3.4. Predicates for Knowledge and Belief

Requirement (ii) in Definition 3.1 states that any first-order agent lan-
guage contains a two-place predicate symbol K. As before, this predicate
will be used to express knowledge. The first argument position is intended to
contain the name of an agent. The intended interpretation of

K(john, ϕ) (3.1)

is therefore that ϕ is known by the agent John. To simplify notation, we will
most often write the first argument to K as a subscript of K, so that (3.1)
becomes

Kjohn(ϕ)

or simply
Kjohn ϕ.

The fact that K is a two-place predicate symbol is required in connection
with multi-agent systems where we want our agents to be able to express and
reason about the knowledge of other agents in the system. To express that
John knows that Sue knows that the dotted block is on the black block, we
would write

KjohnKsueOn (dotted, black)

which is an abbreviation for

K(john, pK(sue, pOn (dotted, black)q)q).

When an agent wishes to express its own knowledge, we assume that the
constant symbol 0 is put in the first argument position to K. That is, we
think of 0 as being a default name for the agent itself. Thus if

K0On (dotted, black)

is a sentence in the knowledge base of an agent, the intended interpretation
is that this agent itself knows the dotted block to be on the black block. In
this case we will often omit the subscript and simply write

KOn (dotted, black) ,

as we have been doing so far. To simplify notation, we will even allow to omit
the subscript of K (the first argument to K) in all cases where the value of
this subscript is not of central importance to the situation at hand.

We have not required agent languages to contain a predicate symbol B
to express belief. The symbol B is left out to simplify notation. Our results
will, however, be independent of whether K is intended to denote knowledge

3.5. REPRESENTABILITY 53

or belief (or any other modality for that matter). Thus we will sometimes use
the predicate symbol K to denote knowledge and sometimes to denote belief.
Treating only one modality at a time—which we always denote K—simplifies
the exposition in a number of places. The simplification does not result in a
loss of generality, since we can always construct agent languages and theories
with more than one modality by adding one at a time. In examples, however,
we will most often keep the notation we have been using so far: using K to
denote knowledge and B to denote belief.

For any first-order agent language L, we will use L− {K} to denote the
language L with the predicate symbol K removed. Thus a theory in L−{K}
will be a theory in which there is no mention of knowledge (belief).

3.5. Representability

3.5.1. Definitions and Theorems. We have required that any first-
order agent theory S extends the theory Q—this is requirement (i) of Defi-
nition 3.2. The primary reasons for this are that it ensures that the Gödel
coding becomes well-behaved and that all recursive functions and relations
become representable in S. Representability is defined in the following way.

Definition 3.6 (After Mendelson [1997]). Let S be a theory in a first-
order language extending the language of arithmetic. Let R be an n-place
relation over the natural numbers (n > 0). We say that R is representable
in S if there is a formula R(x1, . . . , xn) in S with free variables x1, . . . , xn
such that the following holds

• For all k1, . . . , kn ∈ N, if R(k1, . . . , kn) is true then S ` R(k1, . . . , kn).
• For all k1, . . . , kn ∈ N, if R(k1, . . . , kn) is false then S ` ¬R(k1, . . . , kn).

We say that the formula R(x1, . . . , xn) represents R in S.

Definition 3.7 (After Mendelson [1997]). Let S be as above. Let a func-
tion f : N

n → N be given (n > 0). We say that f is representable in S if
there is a formula F (x1, . . . , xn+1) in S with free variables x1, . . . , xn+1 such
that the following holds

• For all k1, . . . , kn+1 ∈ N, if f(k1, . . . , kn) = kn+1 then S ` F (k1, . . . , kn+1).
• S ` ∃!xn+1F (x1, . . . , xn, xn+1).

We say that the formula F (x1, . . . , xn+1) represents f in S.

We have the following well-known results regarding representability of
recursive functions and relations.

Theorem 3.8 (After Mendelson [1997]). Let R be a recursive n-place
relation (n > 0). There exists a formula R(x1, . . . , xn) in the language of

54 3. FIRST-ORDER PREDICATE LOGIC FOR KNOWLEDGE AND BELIEF

arithmetic which represents R in any theory extending Q. In particular, the
formula R(x1, . . . , xn) represents R in any first-order agent theory.

Proof. If R is recursive, we know that there is a formula R(x1, . . . , xn)
representing R in the theory Q [Mendelson, 1997]. From this it immediately
follows that R(x1, . . . , xn) must also represent R in any theory extending
Q. Since by requirement (i) of Definition 3.2, any first-order agent theory
extends Q, the formula R(x1, . . . , xn) must in particular represent R in any
such theory. �

Theorem 3.9 (After Mendelson [1997]). Let f : N
n → N be a recursive

function (n > 0). There exists a formula F (x1, . . . , xn+1) in the language
of arithmetic which represents f in any theory extending Q. In particular,
F (x1, . . . , xn+1) represents f in any first-order agent theory.

Let R be a recursive n-place relation over the natural numbers. By Theo-
rem 3.8, there is a single formula R(x1, . . . , xn) representing R in every theory
extending Q, and thus in particular in every first-order agent theory. We can
therefore simply refer to this formula as the formula representing R, without
referring to any particular theory. Given a relation R, we will therefore often
simply say “let R(x1, . . . , xn) be a formula representing R” rather than “let
R(x1, . . . , xn) be a formula representing R in the theory S”. The same will
be done with formulas representing recursive functions.

3.5.2. Examples. Theorem 3.8 demonstrates an important property of
first-order agent theories, since it allows our agents to express statements
concerning any recursive set of sentences. Suppose S is a first-order agent
theory in a language L. If M is a recursive set of sentences in L, then by
Theorem 3.8 there is a formula M(x1) representing the set of Gödel numbers
of the elements in M. The following sentence

∀x (Mx→ Kx)

will therefore be a sentence that the agent can use to express that all the
sentences in M are known. In the following we will give some examples of
how this can be used.

Example 3.10 (The About predicate). We have a couple of times been
considering an About predicate (sections 1.3.2 and 2.4.3). The intended inter-
pretation of

About (τ1, τ2)

is that τ1 denotes a formula which expresses a proposition involving the object
denoted by τ2. For instance, we would say that the sentence “snow is white”
is about snow, so we intend the sentence

About (Is (snow,white) , snow)

3.5. REPRESENTABILITY 55

to hold. Conversely, we do not intend

About (Is (snow,white) , cool jazz)

to hold. Using the fact that all first-order agent theories can represent all
recursive relations makes it easy to give a good formalisation of the About
predicate in such theories. Let About be the following binary relation over
the natural numbers

About = {(pϕq, pcq) | ϕ is a sentence and c is a constant symbol

occurring in ϕ} .

This is obviously a recursive relation.2 There must therefore exist a formula
About (x1, x2) representing the relation About in any first-order agent theory
S. Let S be any such theory and suppose it is the knowledge base of an agent.
Using the definition of the relation About we get the following theorems in S

S ` About (On (striped, dotted) , striped)

S ` About (On (dotted, striped) , striped)

S ` About (¬On (striped, dotted) , striped)

S ` ¬About (On (black, dotted) , striped) .

(3.2)

We see that these theorems are consistent with the intended interpretation
of the About predicate. Given this formalisation of the About predicate, the
agent will be able to properly express that it has no knowledge about a striped
block:

K∀x (About (x, striped)→ ¬Kx) . (3.3)

If the sentence (3.3) is a theorem in S and if we are given the appropriate
axioms to allow the agent to infer consequences of its knowledge (see Section
3.7 below), then from (3.3) it will be able to infer for instance

K (¬KOn (striped, dotted) ∧ ¬K¬On (striped, dotted)) ,

expressing that it does not know whether the striped block is on the dotted
block or not.

Actually, the formalisation of About we have given turns out to present
some problems related to introspection and self-reference. We will present
these problems in Example 4.1 and a solution to them in Example 6.10. The

2We will not be giving detailed proofs of the recursiveness of any functions or relations
in this thesis. In the cases we consider, it will always be fairly obvious that the functions
and relations in question are computable. To get from computability to recursiveness we
rely on Church’s Thesis.

56 3. FIRST-ORDER PREDICATE LOGIC FOR KNOWLEDGE AND BELIEF

purpose of the example given has simply been to illustrate that representabil-
ity of recursive relations is quite “handy” for an agent to have when expressing
knowledge or ignorance of a set of sentences.

Example 3.11 (Formalising common knowledge). Representability of re-
cursive relations in first-order agent theories also gives us the possibility of
formalising common knowledge in these theories without the need to intro-
duce extra non-logical symbols or axioms (cf. the discussion in Section 2.4.2).
The concept of common knowledge can be described in the following way. As-
sume we are given a group of agents and a sentence ϕ. For the group to have
common knowledge of ϕ means that: everyone in the group knows ϕ, everyone
in the group knows that everyone knows ϕ, everyone in the group knows that
everyone knows that everyone knows ϕ, and so on [Fagin et al., 1995]. Com-
mon knowledge is a considerably stronger modality than “everyone knows”.
Consider the following example.

In the Hans Christian Andersen fairy-tale “The Emperor’s New Clothes”,
the Emperor appears naked in front of a large group of people. They all
notice that he is naked, so it would be reasonable to say that everyone knows
the emperor is naked. However, the group of people does not have common
knowledge of the fact that the Emperor is naked, since they are not sure about
what the other people see. Therefore, if A and B are different persons, then A
does not know that B knows that the Emperor is naked. That is, not until the
little child says: “But the Emperor has nothing at all on”. At that moment
it becomes common knowledge that the Emperor is indeed naked. At that
moment everyone knows that everyone knows that . . . everyone knows that
the Emperor is naked.

Let us consider how common knowledge among a group of agents can
be formalised. For simplicity, we will denote the agents in the group by
0, 1, . . . , n− 1, where n is the number of agents in the group. A sentence ϕ is
then common knowledge of this group if the sentence

Ki1Ki2 · · ·Kimϕ (3.4)

holds for all m > 0 and all choices of i1, i2, . . . , im < n. The sentence (3.4)
expresses that agent i1 knows that agent i2 knows that . . . agent im knows
that ϕ. In the traditional operator approach, it is impossible to express such
infinitely many sentences as a single sentence. Therefore one is required to
introduce extra symbols and axioms to take care of this modality. However,
in the predicate approach we actually can express these infinitely many sen-
tences in one single sentence. This is allowed through our ability to represent
arbitrary recursive relations within the predicate theories. Let us show how.

3.5. REPRESENTABILITY 57

Let IterateK be the following ternary relation over the natural numbers

IterateK = {(pϕq, n, pKi1Ki2 · · ·Kimϕq) | ϕ is a sentence, m ≥ 0,

and i1, i2, . . . , im < n} .

The relation IterateK is easily seen to be recursive, so there is a formula

IterateK (x1, x2, x3)

representing IterateK in any first-order agent theory. We can therefore express
that (3.4) holds for all m > 0 and all i1, . . . , im < n by the following single
sentence in the agent language

∀x∀y (IterateK (pϕq, n, x) ∧ y < n→ Ky (x)) . (3.5)

It is easy to show that all the sentences of the form (3.4) with m > 0 and
i1, . . . , im < n are logical consequences of (3.5). To see this, assume such m

and i1, . . . , im to be given. Then we obtain the following formal proof of (3.4)
assuming (3.5)

1. ∀x∀y (IterateK (pϕq, n, x) ∧ y < n→ Ky (x)) (3.5)
2. IterateK (pϕq, n, pKi2 · · ·Kimq) ∧ i1 < n→

Ki1 (pKi2 · · ·Kimq) instance of 1
3. IterateK (pϕq, n, pKi2 · · ·Kimq) by def.
4. IterateK (pϕq, n, pKi2 · · ·Kimq) ∧ i1 < n 3, Q ` i1 < n

5. Ki1 (pKi2 · · ·Kimq) 2, 4, MP

As usual, we abbreviate

Ki1 (pKi2 · · ·Kimϕq)

by

Ki1Ki2 · · ·Kimϕ,

so the derived sentence is indeed (3.4), as required.
What we have shown is that the representability of recursive relations

gives us a simple way of formalising common knowledge. This is very impor-
tant, since the common knowledge modality has been shown to be required
in formalising many naturally occurring pieces of common sense reasoning.
In particular, obtaining common knowledge has been shown to be a general
prerequisite for coordinating actions and achieving agreements among groups
of agents [Fagin et al., 1995]. In the operator approach, common knowledge
can only be introduced by extending the logical framework with new symbols
and axioms to take care of this modality. As noted in Section 2.4.2, this seems
to be an unsatisfactory solution [McCarthy, 1997]. We have shown that the
predicate approach fares better in this respect, since common knowledge can
be expressed purely in terms of the basic modality of knowing. From the

58 3. FIRST-ORDER PREDICATE LOGIC FOR KNOWLEDGE AND BELIEF

example given here, it is not hard to see that many other modalities can be
given a similar treatment using the representability of recursive relations.

Example 3.12. Let Neg be the following binary relation over the natural
numbers

Neg = {(pϕq, p¬ϕq) | ϕ is a sentence of predicate logic} .

This is obviously a recursive relation, so there exists a formula Neg (x1, x2)
representing the relation in any first-order agent theory. The sentence

∀x1∀x2 (Neg (x1, x2)→ ¬ (Kx1 ∧Kx2))

therefore expresses that there is no ϕ such that both ϕ and ¬ϕ are known. If
an agent knew itself not to possess any contradictory knowledge, this could
be expressed by the sentence

K∀x1∀x2 (Neg (x1, x2)→ ¬ (Kx1 ∧Kx2)) .

The three examples above illustrate why we have requirement (i) in the
definition of first-order agent theories (Definition 3.2): It ensures that all
recursive relations become representable in any such theory, which allows the
agent to express in a simple way many of the propositions we would like it to
be able to express and reason about.

Remark. Suppose M is a set of formulas of predicate logic. If ϕ(x)
represents the set of Gödel numbers of elements in M , we will often simply
say that ϕ(x) represents the set M . In this way formulas can be thought of
as directly representing sets of other formulas.

3.6. Consistency and Models

Questions of consistency and existence of various kinds of models play a
central role in this thesis. In the following we will define these concepts. The
notion of consistency used in the thesis is the standard one by which a first-
order theory S is consistent if there is no formula ϕ such that both ϕ and ¬ϕ
are provable in S. The notion of an interpretation of S is also defined in the
standard way. That is, an interpretation consists of a domain D together
with a map I which maps each constant symbol c of S into an element cI in
D, each n-place function symbol f into a function f I : Dn → D and each n-
place predicate symbol P into a relation P I ⊆ Dn. Truth in an interpretation
is then defined in the usual way. A model of S is an interpretation in which
every theorem of S is true. Consistency of a theory S is often proved by
showing that the theory has a model.

In addition to the usual concept of an interpretation of a first-order theory,
we will be using Herbrand interpretations. These are defined by the following.

3.7. REFLECTION PRINCIPLES 59

Definition 3.13 (After Lloyd [1987]). Let L be a language of first-order
predicate logic. A Herbrand interpretation of L is an interpretation I of
L satisfying the following requirements

(i) The domain of I is the set of closed terms (ground terms) of L.
(ii) I maps every constant symbol c of L into itself.
(iii) I maps every n-place function symbol f of L into the function that takes

n closed terms τ1, . . . , τn and returns the closed term f(τ1, . . . , τn).

Lemma 3.14 (After [Lloyd, 1987]). Let L be a language of first-order
predicate logic. Any Herbrand interpretation in L is uniquely determined by
its set of true atomic sentences. That is, given a set of atomic sentences M in
L, there is a unique Herbrand interpretation in which the set of true atomic
sentences is M .

Let S be a theory in a first-order language L and let I be an interpretation
of L. If I is a Herbrand interpretation and furthermore a model of S we say
that I is a Herbrand model of S. In mathematical logic, Herbrand models
are sometimes referred to as term models or closed term models.

3.7. Reflection Principles

In this section we will be introducing the reflection principles that are
needed to allow our agents to reason about their knowledge.

3.7.1. An Example. Consider again the example presented in Section
2.1. There we considered an agent with a knowledge base consisting of the
following two sentences

KOn (dotted, black) (3.6)

K∀x∀y (On (x, y)→ ¬On (y, x)) . (3.7)

This knowledge base becomes a first-order agent theory if we add the axioms
of Q. Let us refer to the thus obtained first-order agent theory as S. Since S is
a theory of predicate logic, it has the two inference rules modus ponens (MP)
and generalisation (Gen). These are inference rules that the agent can use to
deduce new facts from the facts represented as axioms in S. As mentioned in
Section 2.1, we would like the agent to be able to deduce the sentence

K¬On (black, dotted) . (3.8)

from the two axioms (3.6) and (3.7). However, this sentence is not provable
in S, so the agent will not be able to infer that it holds. The problem is that
there are no axioms or inference rules in S allowing the agent to reason with
its own knowledge. For the agent to be of any use, we need to provide it with
such axioms and inference rules.

60 3. FIRST-ORDER PREDICATE LOGIC FOR KNOWLEDGE AND BELIEF

Suppose we extend S to a theory S ′ by adding the following axiom schemes

K (ϕ→ ψ)→ (Kϕ→ Kψ) , for all sentences ϕ and ψ. (3.9)

Kϕ, for all theorems ϕ of predicate logic. (3.10)

The axiom scheme (3.9) expresses that implicit knowledge is closed under
modus ponens. Concerning explicit knowledge, the axiom scheme gives us
that if the agent explicitly knows ϕ→ ψ and explicitly knows ϕ, then it can
in one inference step come to explicitly know ψ. The axiom scheme (3.10)
expresses that the agent (explicitly) knows predicate logic. Adding these two
axiom schemes to the knowledge base is sufficient to allow the agent to derive
a number of desirable consequences of its own knowledge. For instance we
have the following proof in S ′

1. K∀x∀y (On (x, y)→ ¬On (y, x)) axiom (3.7)
2. K

(
∀x∀y (On (x, y)→ ¬On (y, x))→

(On (dotted, black)→ ¬On (black, dotted))
)

instance of (3.10)
3. K (On (dotted, black)→ ¬On (black, dotted)) using inst. of (3.9) on 1, 2
4. KOn (dotted, black) axiom (3.6)
5. K¬On (black, dotted) using inst. of (3.9) on 3, 4

This proof shows that the agent is able to come to the knowledge that the
black block is not on the dotted block from the knowledge that the dotted
block is on the black block (expressed by axiom (3.6)) and the knowledge that
the On-relation is asymmetric (expressed by axiom (3.7)).

The formal proof leading to the conclusion K¬On (black, dotted) involves
instances of the axiom schemes (3.9) and (3.10). These are very general axiom
schemes that should be included in the knowledge bases of agents to allow
them to reason about their own knowledge and infer consequences of it. As
another example of the use of these axiom schemes, we can note that in the
context of Example 3.10, these axioms would allow the agent to deduce

K (¬KOn (striped, dotted) ∧ ¬K¬On (striped, dotted))

from

K∀x (About (x, striped)→ ¬K x) .

Axiom schemes such as (3.9) and (3.10) which express general principles by
which an agent can infer consequences of its knowledge we choose to call
reflection principles. In the literature they are often referred to as epistemic
principles, but since axiom schemes such as (3.9) and (3.10) are also consistent
with interpreting K as denoting for instance belief, provability or truth, we
choose the more neutral term reflection principle. We should note, however,
that the term reflection principle is often used in a much more narrow sense
in mathematical logic (introduced by Feferman [1962]).

3.7. REFLECTION PRINCIPLES 61

If the intended interpretation of K is belief rather than knowledge, then
the axiom schemes (3.9) and (3.10) express that (implicit) belief is closed
under modus ponens and that every theorem of predicate logic is believed.
These might be considered as reasonable principles for belief to satisfy as well.
If the intended interpretation of Kϕ is “ϕ is provable in S” for some first-
order theory S or “ϕ is true in I” for some interpretation of predicate logic I,
then it is seen that the axiom schemes (3.9) and (3.10) express valid principles
regarding both of these intended interpretations (both provability and truth
are closed under modus ponens, and every theorem of predicate logic is both
provable and true). Interpreting reflection principles as concerning knowledge
or belief is traditionally conceived as being the subjects of epistemic logic and
doxastic logic, respectively. Interpreting them as concerning provability or
truth are the subjects of provability logic and theories of truth, respectively.
The consistency results for reflection principles that we are going to prove
in this thesis can be interpreted as concerning any of these four subjects
(epistemic logic, doxastic logic, provability logic, theories of truth). All four
subjects are concerned with reflection in the general sense of representing
aspects of an object within this object itself : In the two former subjects, an
agent’s knowledge (belief) about its own knowledge base is represented within
this knowledge base itself; in the two latter subjects, provability (truth) within
a formal system is represented within this formal system itself.

3.7.2. Definition of Reflection Principles. In this thesis, we will re-
strict our attention to the following familiar set of reflection principles.

Definition 3.15. By a reflection principle we understand any of the
following axiom schemes in first-order predicate logic.

A1. Kϕ→ ϕ.
A2. K (Kϕ→ ϕ).
A3. Kϕ, if ϕ is a theorem in Q.
A4. K (ϕ→ ψ)→ (Kϕ→ Kψ).
A5. ¬ (Kϕ ∧K¬ϕ).
A6. Kϕ→ KKϕ.
A7. ¬Kϕ→ K¬Kϕ.
T. Kϕ↔ ϕ.

These reflection principles are axiom schemes. Unless otherwise stated
we will consider them to be ranging over all sentences ϕ and ψ of predicate
logic. Thus for instance reflection principle A1 stands for the infinite set of
sentences given by

{Kϕ→ ϕ | ϕ is a sentence of predicate logic} .

62 3. FIRST-ORDER PREDICATE LOGIC FOR KNOWLEDGE AND BELIEF

When we want to consider a reflection principle as ranging only over a re-
stricted set of sentences M , we will refer to it as the reflection principle in-
stantiated over M . Thus for instance the reflection principle A1 instantiated
over M will be the following set of sentences

{Kϕ→ ϕ | ϕ ∈M} .

Instances of a reflection principle over a set M are called M-instances of the
reflection principle.

Note that the reflection principles can be seen as simple translations into
predicate logic of standard axioms within propositional modal logic. Reflec-
tion principle A1 is the translation of the modal axiom T: �p → p; A4 is
the translation of the modal axiom K: � (p→ q) → (�p→ �q); A5 is the
translation of D: ¬ (�p ∧�¬p); A6 is the translation of 4: �p → ��p;
A7 is the translation of 5: ¬�p → �¬�p; and T is the translation of Triv:
�p↔ p (the names T, K, D, 4, 5 and Triv are taken from Hughes and Cress-
well [1996]).3 The details of this translation from modal logic formulas into
predicate logic can be found in des Rivières and Levesque [1988]. The reader
familiar with such translations should note that the translation used here does
does not correspond to the standard embedding of propositional modal logic
into predicate logic, where one encodes the possible-worlds semantics in the
translation [Andréka et al., 1995].

3.7.3. Interpretation of the Reflection Principles. Let us suppose
that the predicate symbol K is intended to express the knowledge of an agent.
Then the various reflection principles can be interpreted in the following way.
Reflection principle A1 is expressing that everything known by the agent is
true—in other words, that only true things are known. Reflection principle
A2 expresses that the agent knows A1, that is, the agent knows that only true
things are known. Reflection principle A3 expresses that arithmetic is known,
and A4 that (implicit) knowledge is closed under modus ponens. Reflection
principle A5 is expressing that the agent has no contradictory knowledge.
Reflection principles A6 and A7 are known as the principles of positive intro-
spection and negative introspection, respectively [Fagin et al., 1995]. If A6 is
an axiom scheme in the knowledge base of the agent, and if the agent knows
ϕ, then it will be able to use A6 to infer that it knows that it knows ϕ. Re-
flection principle A6 thus expresses the agent’s introspective awareness of its
own knowledge (“it knows what it knows” [Fagin et al., 1995]). Conversely,
reflection principle A7 expresses the agent’s introspective awareness of its own
non-knowledge.

3Note that we use T to denote the principle Kϕ ↔ ϕ rather than the principle corre-
sponding to the modal axiom T.

3.7. REFLECTION PRINCIPLES 63

All of the axiom schemes A1–A7 seem to express natural principles con-
cerning knowledge. If we interpret K as expressing belief rather than knowl-
edge, then A1 might no longer be a realistic principle, since an agent might
have incorrect beliefs. However, axiom schemes A2–A7 all seem to be consis-
tent with interpreting K as belief.

We have not yet mentioned reflection principle T, which is the strongest
of them all. It is usually only applied when K is intended to express truth.
It is recognised as Tarski’s famous schema T, which Tarski presented as
the material adequacy principle for K to be interpreted as a truth predicate
[Tarski, 1944; 1956]. The idea is that if Kϕ expresses that “ϕ is true”, then
schema T expresses the principle that

“ϕ is true” if and only if ϕ,

which is the fundamental principle characterising the predicate “is true”.
In addition to our interest in schema T as a principle of truth, there is a

more technical reason for including it among the reflection principles. This
is that schema T logically entails all of the other reflection principles. More
precisely, we have the following result.

Lemma 3.16. Let L be a first-order agent language, and let M be a set
of sentences in L satisfying the following closure property:

If ϕ,ψ ∈M then Kϕ,¬ϕ,ϕ ∧ ψ ∈M.

Let S be an agent theory in L in which all M-instances of reflection principle
T are theorems. Then all M-instances of reflection principles A1–A7 are
theorems in S as well.

Proof. Let ϕ and ψ be arbitrary sentences in M . We have to prove that
A1–A7 are theorems in S when instantiated with these sentences. By the
closure property of M , all of the following are sentences in M

¬ϕ,ϕ→ ψ,Kϕ,¬Kϕ,Kϕ→ ϕ. (3.11)

The second sentence is an abbreviation of ¬ (ϕ ∧ ¬ψ) and the last sentence is
an abbreviation of ¬ (Kϕ ∧ ¬ϕ). We now have the following formal proof in
S

1. Kϕ↔ ϕ M -instance of T
2. Kϕ→ ϕ 1, biconditional elimination
3. K (Kϕ→ ϕ)↔ (Kϕ→ ϕ) M -instance of T
4. (Kϕ→ ϕ)→ K (Kϕ→ ϕ) 3, biconditional elimination
5. K (Kϕ→ ϕ) 2, 4, MP

In this proof, line 2 is A1 and line 5 is A2. Thus these must be theorems of
S. A3–A7 are shown to be theorems of S in a similar manner using instances
of T over the sentences in (3.11). We leave the details to the reader. �

64 3. FIRST-ORDER PREDICATE LOGIC FOR KNOWLEDGE AND BELIEF

As shown by the example given in the beginning of this section, reflection
principles as the ones we have been presenting above can be used by an
agent to infer important consequences of its own knowledge (belief). We
would therefore suggest to include a subset of these principles in any first-
order agent theory. Unfortunately, it turns out that if we take a first-order
agent theory and add such a subset of reflection principles as axioms, then
the theory is most likely to become inconsistent. The problem is that the
reflection principles will give the agent sufficient reasoning powers to be able
to reason about self-referential sentences and thereby engage in paradoxical
reasoning such as involved in the knower paradox (Sections 1.4.1 and 1.4.2).

We will present the inconsistency results related to the reflection princi-
ples in detail in the following chapter. After that we will proceed to present
our graph theoretical approach to circumventing these inconsistencies. These
inconsistencies are the main threat to the construction of logical frameworks
for introspective agents in the predicate approach. Finding ways to circum-
vent them could thus reasonably be conceived as the most important task in
the predicate approach to formalising the knowledge and belief of agents.

3.8. Chapter Notes

The introduction of first-order predicate logic in Section 3.1 is adapted
from Mendelson [1997]. There are a number of deviations from his presen-
tation, however. These are deviations due to the author with the purpose
of making a framework which is simpler to deal with in connection with for-
malising knowledge and belief. One of these deviations is the non-standard
definition of Q. Even with our deviations, we stay completely within classical
first-order predicate logic. The definition of first-order agent languages and
theories in Section 3.2 is due to the author. These are simply first-order lan-
guages and theories satisfying a few extra requirements. In principle, we could
just as well have implicitly required all languages and theories of first-order
predicate logic to satisfy these requirements. The examples in Section 3.5.2
are due to the author as well. The author is not aware of similar approaches
to formalising the modalities of knowing about and common knowledge. Such
modalities are usually not introduced through arithmetical formulas repre-
senting recursive relations, but rather through extending the language with
new operators or predicates and corresponding axioms. We argued against
doing things in this way in Section 2.4.2. Our examples show that an agent
do not have to be equipped with a tailormade language in order for it to be
able to express and reason about such modalities.

Formalising knowledge as a predicate within a language of first-order pred-
icate logic is a well-known approach. It can be found e.g. in des Rivières and

3.8. CHAPTER NOTES 65

Levesque [1988], Morreau and Kraus [1998] and Grant et al. [2000]. The two
first of these articles also introduce the reflection principles A1–A7 given in
Section 3.7.2. They do not refer to them as reflection principles, however, but
simply as axioms. Lemma 3.16 appears in Bolander [2002a].

CHAPTER 4

Problems of Introspection and Self-Reference

In this chapter we will show in which way self-reference becomes a prob-
lem in the construction of strongly introspective agents. More precisely, we
will show that equipping agents with a number of reflection principles will in
many cases allow them to reason about self-referential sentences in a para-
doxical way. This implies that the knowledge bases of the agents become
inconsistent. In this chapter we present the well-known inconsistency results
by Montague and Thomason concerning this problem. We also present an
original inconsistency result related to the problem of constructing agents
with perfect introspection.

After having proved these results, we turn to the problem of how the
inconsistencies can be avoided, that is, how we can ensure that our agents
will not engage in paradoxical reasoning. We discuss different approaches to
this problem, and present the particular approach forming the basis of this
thesis. Two known results within this approach are presented: the Rivières-
Levesque theorem and the Morreau-Kraus theorem.

We start the chapter by giving a motivating example illustrating how
self-reference can unexpectedly cause the inconsistency of a knowledge base.

Example 4.1 (The About predicate). This example is the promised con-
tinuation of Example 3.10. We again assume that we are given a formula
About (x1, x2) representing the relation About given by

About = {(pϕq, pcq) | ϕ is a sentence and c is a constant symbol

occurring in ϕ} .

An agent will then be able to express that it has no knowledge about a striped
block by

K∀x (About (x, striped)→ ¬Kx) .

However, does this really work? Suppose S is a first-order agent theory con-
stituting the knowledge base of the agent in question. Suppose further that
S contains the reflection principle A1 (“Everything known is true”). If the
agent knows that it does not have any knowledge about a striped block, we

67

68 4. PROBLEMS OF INTROSPECTION AND SELF-REFERENCE

should have

S ` K∀x (About (x, striped)→ ¬Kx) . (4.1)

Let ϕ denote the sentence ∀x (About (x, striped)→ ¬Kx). Then (4.1) can be
abbreviated as

S ` Kϕ. (4.2)

Note that by definition of About (x1, x2), we have

S ` About (ϕ, striped) . (4.3)

Now the agent will be able to carry out the piece of reasoning given by the
following formal proof in S

1. Kϕ (4.2)
2. Kϕ→ ϕ instance of A1
3. ϕ 1, 2, MP
4. ∀x (About (x, striped)→ ¬Kx) same as 3
5. About (ϕ, striped)→ ¬Kϕ instance of 4
6. About (ϕ, striped) (4.3)
7. ¬Kϕ 5, 6, MP
8. Kϕ ∧ ¬Kϕ 1, 7, conj. introduction

We have hereby derived a contradiction in S, so S is inconsistent! How
could this happen? At first it does not seem that we have any particularly
problematic axioms in S that could cause this inconsistency. The only non-
logical axioms we are using in the proof above are the ones in Q (which give
us line 6), one instance of A1 (line 2), and the sentence expressing that the
agent knows that nothing is known about the striped block (line 1). However,
it turns out that problems of self-reference are lurking in the background.

The sentence Kϕ is actually self-referential. It is so for the following
reason. It expresses that the agent knows ϕ, where ϕ expresses that nothing is
known about the striped block. But if the agent knows ϕ then it actually does
know something about the striped block: it knows that it knows nothing about
it. So Kϕ is actually a piece of knowledge contradicting itself: it expresses
the non-knowledge of a set of sentences (those concerning the striped block)
of which it is itself an element. The inconsistency derived from this sentence
is structurally very closely related to the liar paradox in the original version
in which a Cretan is stating: “All Cretans are liars”.

A case of self-referential knowledge similar to the above would be the
following: “I know only two things about Malaysia”. Then it seems that
unless we are very careful in the way we interpret the word “about”, this very
statement would constitute a third piece of knowledge about Malaysia.

The problem of self-reference occurring in these examples can be avoided
by giving an alternative definition of the About predicate. We will do this in

4.1. THE DIAGONALISATION LEMMA 69

Example 6.10. At this point we just want to draw the readers attention to
the following facts illustrated by the example:

1) Self-reference can occur in sentences that at first do not seem to be
self-referential, or at least are not constructed with the purpose of being self-
referential. Such a sentence is Kϕ above, which was constructed entirely with
the purpose of expressing an agents knowledge of its own ignorance concerning
the properties of a certain object.

2) Reasoning about such self-referential sentences can be paradoxical and
thereby cause the theories in which the reasoning takes place to become in-
consistent. In the case of first-order agent theories this is fatal, since then
everything becomes provable in the theory. If the theory is the knowledge
base of an agent, it means that the agent will become useless.

In the following we will give a number of general theorems showing how
self-referential reasoning can cause inconsistency. We will then look at the
possibilities of regaining consistency by suitably restricting this kind of rea-
soning.

4.1. The Diagonalisation Lemma

We have already mentioned that the predicate approach to knowledge and
belief allows agents to form and reason about self-referential statements. In
this section we will give the details of how this is possible, in that we will give
a general method by which such sentences can be constructed.

Self-reference and its properties is an interesting subject in itself. Many
formal languages have been developed which are explicitly equipped with the
means to form self-referential statements. One such language is proposed
by Smullyan [1984]. In his system, there is a chameleonic term σ which is
always interpreted as denoting the formula in which it itself occurs. It is thus
a term with a context dependent semantics, and it plays more or less the
same role in the formal language as the term “this sentence” does in natural
language. In such a formal language there is a very straightforward way to
formalise sentences such as “this sentence is not true” (the liar sentence) or
“this sentence is not known by Mr. X” (the knower sentence). A related
approach to formalising self-referential statements is taken by Barwise and
Etchemendy [1987], where the formal language is equipped with a term “this”
which is similarly intended to denote the sentence in which it occurs.

First-order predicate logic does not have any such direct means to for-
mulate self-referential statements. There is, however, an indirect method by
which one can construct self-referential sentences in predicate logic (or, at
least, sentences that behave as self-referential ones). This method is known
as the diagonalisation method. It is named so because it is inspired by—and

70 4. PROBLEMS OF INTROSPECTION AND SELF-REFERENCE

structurally closely related to—the diagonalisation method used originally
by Cantor to prove the uncountability of the powerset of the set of natural
numbers [Cantor, 1891]. The diagonalisation method in logic is most often
presented in the form of the so-called diagonalisation lemma. We state and
prove a version of this lemma below. The lemma involves a diagonalisation
function d : N→ N defined by

d(pϕ(x)q) = pϕ(pϕ(x)q)q, for all formulas ϕ(x) with exactly x free.1

With the usual abbreviations, this equality can be written as d(pϕ(x)q) =
pϕ(ϕ(x))q. The function d is recursive, so by Theorem 3.9 there exists a
formula D(x1, x2) representing d in Q. Given the formula D(x1, x2), the di-
agonalisation lemma can be formulated in the following way.

Lemma 4.2 (The diagonalisation lemma. Mendelson [1997]). Let γ(x)
be a formula of predicate logic with only x free. Define formulas α(x1) and β
by α(x1) = ∀x2 (D(x1, x2)→ γ(x2)) and β = ∀x2 (D(α, x2)→ γ(x2)) = α(α).
Then

Q ` β ↔ γ(β).

Proof. The implication from left to right is proved by the following for-
mal proof.

1. β assumption
2. ∀x2 (D(α, x2)→ γ(x2)) same as 1
3. D(α, β)→ γ(β) instance of 2
4. D(α, β) D(x1, x2) represents d (in Q)
5. γ(β) 3, 4, MP
6. Q, β ` γ(β) 1–5

From line 6 we now immediately get Q ` β → γ(β) by the deduction theo-
rem. This proves the implication from left to right. The opposite implication
is proved by the following.

1. γ(β) assumption
2. D(α, x2) assumption
3. ∃!x2D(α, x2) D(x1, x2) represents d
4. ∃x2D(α, x2)∧

∀x2∀x3 (D(α, x2) ∧D(α, x3)→ x2 = x3) same as 3
5. ∀x2∀x3 (D(α, x2) ∧D(α, x3)→ x2 = x3) 4, conj. elimination

1This condition actually only gives a partial function on � , since d only assigns values
to arguments that are Gödel numbers of particular sentences. We will here and throughout
the thesis simply assume that such partially defined functions are assigned the value 0 for
all other arguments.

4.1. THE DIAGONALISATION LEMMA 71

6. D(α, x2) ∧D(α, β)→ x2 = β instance of 5
7. D(α, β) D(x1, x2) represents d
8. D(α, x2)→ x2 = β by 6, 7
9. x2 = β 2, 8, MP

10. x2 = β → (γ(β)→ γ(x2)) instance of P7
11. γ(β)→ γ(x2) 9, 10, MP
12. γ(x2) 1, 11, MP
13. Q, γ(β), D(α, x2) ` γ(x2) 1–12
14. Q, γ(β) ` D(α, x2)→ γ(x2) 13, deduction theorem
15. Q, γ(β) ` ∀x2 (D(α, x2)→ γ(x2)) 14, Gen
16. Q, γ(β) ` β same as 15

From line 16 we immediately get Q ` γ(β) → β. The proof is therefore
complete. �

The proof above relies on an instance of axiom scheme P7 (p. 48), which
is one of the axioms of equality. Without this axiom the proof would not go
through. The diagonalisation lemma is therefore only a result that holds in
predicate logic with equality or, alternatively, only for theories with equality
(a theory with equality is a theory that has P6 and all the relevant instances
of P7 as theorems).

It is probably not immediately obvious in which way the diagonalisation
lemma is related to self-reference. We will try to explain this now. In general,
self-referential sentences can be put on the following form

S : Sentence S has the property P . (4.4)

Here S is considered to be a name referring to the sentence “Sentence S has
the property P”. We already saw two examples of sentences given on this
form in Section 1.4.1: the liar sentence and the knower sentence given by,
respectively,

L : Sentence L is not true.

S : Sentence S is not known by Mr. X.

Alternatively, one could use the demonstrative “this sentence” to obtain self-
reference. In that case, a sentence of the form (4.4) would be expressed as:
“This sentence has the property P”. The liar sentence would then become
“This sentence is not true” and the knower sentence would become “This
sentence is not known by Mr. X”.

Any sentence S given on the form (4.4) must satisfy the following semantic
principle

S is true if and only if “Sentence S has the property P” is true. (4.5)

72 4. PROBLEMS OF INTROSPECTION AND SELF-REFERENCE

This semantic principle holds simply because S is a name referring to the sen-
tence “Sentence S has the property P”. It is this semantic principle we apply
whenever we reason about self-referential sentences. Let us try to compare
the principle to the diagonalisation lemma. In the diagonalisation lemma a
sentence β is constructed which satisfies

Q ` β ↔ γ(β). (4.6)

We can think of the subformula γ(β) as saying “β has the property expressed
by γ”. We can therefore read the equivalence in (4.6) as expressing

β is true if and only if “β has the property expressed by γ” is true. (4.7)

But this is the same as (4.5) when replacing S by β and replacing “the prop-
erty P” by “the property expressed by γ”. Thus the equivalence (4.6) proved
by the diagonalisation lemma is actually expressing the semantic principle
which characterises a self-referential sentence β given by

β : Sentence β has the property expressed by γ. (4.8)

Thus we can think of the sentence β constructed in the diagonalisation lemma
as being a self-referential sentence saying of itself that it has the property
expressed by γ. This means that we can interpret the diagonalisation lemma
as proving that given any property expressible by a formula γ, there is a
sentence β saying of itself that it has this property (or, at least, it behaves
semantically as if it were such a sentence). If γ is the formula ¬Kx, then
β says of itself that it is not known. This is a formal variant of the knower
sentence. We will consider such formal knower sentences many times in the
following, so they deserve to be given a separate definition.

Definition 4.3. By a formal knower sentence we understand a sen-
tence β satisfying

Q ` β ↔ ¬Kβ.

The diagonalisation lemma guarantees that such a sentence exists. Note
that a formal knower sentence is the same as a formal liar sentence: If we
interpret K as expressing truth rather than knowledge, then the sentence β
will be expressing that it itself is untrue.

4.2. The Inconsistency Results

We have chosen the predicate approach to formalising the knowledge and
belief of agents, since it provides the agents with a much higher expressive
power than the traditional operator approach. For instance it allows the
agents to express modalities such as common knowledge and knowing more
(Examples 3.11 and 2.1) in a simple way. It also allows the agents to express

4.2. THE INCONSISTENCY RESULTS 73

strongly introspective knowledge such as “I know that I do not have any con-
tradictory knowledge”: K∀x1∀x2 (Neg (x1, x2)→ ¬ (Kx1 ∧Kx2)) (Example
3.12). What we have been showing in the previous section is that in addition
to all of this, the predicate approach allows the agents to form self-referential
sentences such as: “This sentence is not known” (the knower sentence). This is
permitted through the diagonalisation lemma. Unfortunately, self-referential
sentences are known to be potential troublemakers. As many of these sen-
tences are denying their own properties, they seem to be in conflict with
some of our most basic semantic understandings and with the way we for-
mally treat such semantics. Self-referential sentences concerning knowledge
is no exception to this fact.

In the following we will show a number of results to the effect that self-
referential sentences concerning knowledge, belief and truth can cause the
inconsistency of the logical frameworks in which they are formulated. These
inconsistencies only appear in logical theories that have been equipped with a
number of reflection principles, since the reflection principles are what allows
us to reason about the relevant sentences (see Section 3.7). The diagonal-
isation lemma is at the heart of all our inconsistency results below. More
precisely, all results below are based on reasoning about a formal knower
sentence, and such a sentence is guaranteed to exist by the diagonalisation
lemma.

4.2.1. Tarski’s Theorem. The first inconsistency result is a version of
Tarski’s famous theorem on the undefinability of truth.

Theorem 4.4 (Tarski’s theorem. After Tarski [1956]). The theory Q
extended with reflection principle T (schema T) is inconsistent.

Proof. Recall that reflection principle T is the axiom scheme given by

Kϕ↔ ϕ.

Let β be a formal knower sentence, that is, a sentence satisfying

Q ` β ↔ ¬Kβ.

Since we have
T ` Kβ ↔ β,

we immediately get
Q,T ` Kβ ↔ ¬Kβ.

This shows that the theory Q ∪ T is inconsistent. �

Since schema T expresses the principle that K must satisfy in order to
be interpreted as a truth predicate (Section 3.7.3), Tarski’s theorem above
can be seen as a proof of the impossibility of having a (formal) language

74 4. PROBLEMS OF INTROSPECTION AND SELF-REFERENCE

containing a truth predicate for that same language [Tarski, 1956]. If we
intend to interpret K as a knowledge predicate rather than a truth predicate,
then schema T expresses that everything known is true (this is the implication
Kϕ → ϕ, which is identical to reflection principle A1) and that everything
true is known (this is the implication ϕ→ Kϕ). That is, schema T expresses
a principle of correct and complete knowledge. Tarski’s theorem shows that
having both correct and complete knowledge is unattainable in the predicate
approach.

The apparent impossibility of having an agent with both correct and com-
plete knowledge has not been a great worry to researchers in artificial intelli-
gence. It does not seem to be a realistic property of an agent to have anyway.
The following two inconsistency results have been met with much more con-
cern, however, since they prove that an agent can not even consistently be
equipped with reflection principles expressing quite basic and natural prop-
erties of knowledge and belief.

4.2.2. Montague’s Theorem. The following theorem can be interpreted
as showing that we can not give a consistent treatment of knowledge using
the predicate approach.

Theorem 4.5 (Montague’s theorem. After Montague [1963]). The theory
Q extended with reflection principles A1–A4 is inconsistent.

Proof. Let β be a formal knower sentence. Then we have the following
proof in Q extended with A1–A4

1. K (β → ¬Kβ) A3, since Q ` β ↔ ¬Kβ
2. K (Kβ → β) A2
3. K

(
(Kβ → β)→ ((β → ¬Kβ)→ ¬Kβ)

)
A3 on tautology

4. K
(
(β → ¬Kβ)→ ¬Kβ

)
2, 3, A4

5. K¬Kβ 1, 4, A4
6. K (¬Kβ → β) A3, since Q ` β ↔ ¬Kβ
7. Kβ 5, 6, A4
8. β → ¬Kβ since Q ` β ↔ ¬Kβ
9. Kβ → β A1

10. (Kβ → β)→ ((β → ¬Kβ)→ ¬Kβ) tautology
11. (β → ¬Kβ)→ ¬Kβ 9, 10, MP
12. ¬Kβ 8, 11, MP
13. Kβ ∧ ¬Kβ 7, 12, conj. introduction

This proof shows that Q extended with A1–A4 is inconsistent, since the
contradiction Kβ ∧ ¬Kβ is provable within that theory. �

4.2. THE INCONSISTENCY RESULTS 75

A few things should be noted about the proof above. The reader familiar
with Montague’s proof will notice that our proof is considerably simpler and
involves a much simpler self-referential sentence. We have been able to give
this simpler proof because our reflection principle A3 is slightly stronger than
the corresponding axiom scheme considered by Montague. Instead of the
reflection principle A3, Montague has

A3′. Kϕ, if ϕ is a logical axiom of predicate logic or an axiom of Q.

Note that in the proof above, the lines 1–5 form a precise “modalised
copy” of the lines 8–12: each formula ϕ appearing in lines 8–12 appear as Kϕ
in the lines 1–5. This means that in the proof we carry out the same piece
of reasoning at two different levels: the “objective level” and the “knowledge
level”. The proof is actually nothing more than a formalisation of the knower
paradox, which we presented in a slightly less formal way in Section 1.4.2.
What we have obtained by the above theorem is therefore to show that if an
agent has the reflection principles A1–A4 in its knowledge base, then it will
be able to carry out the reasoning involved in the knower paradox, and the
knowledge base will therefore become inconsistent.

Since all of the reflection principles A1–A4 express natural principles of
knowledge (cf. Section 3.7.3), Montague’s theorem apparently prove that
knowledge can not be treated consistently in the predicate approach. To
preserve the predicate approach we therefore need to circumvent this incon-
sistency result somehow. The main theme of this thesis is to find ways of
doing this.

4.2.3. Thomason’s Theorem. The following theorem shows that even
if we exclude both of the strong reflection principles T and A1, we can still
find an inconsistent combination of the principles.

Theorem 4.6 (Thomason’s theorem. After Thomason [1980]). The the-
ory Q extended with reflection principles A2–A6 is inconsistent.

Proof. Let β be a formal knower sentence. Note that the first 8 lines
of the proof of Montague’s theorem above are carried out in the theory Q
extended with A2–A4. We therefore already know from lines 5 and 7 in this
proof that

Q,A2–A4 ` K¬Kβ (4.9)

and

Q,A2–A4 ` Kβ. (4.10)

76 4. PROBLEMS OF INTROSPECTION AND SELF-REFERENCE

We now have the following proof in Q extended with A2–A6

1. K¬Kβ (4.9)
2. Kβ (4.10)
3. Kβ → KKβ A6
4. KKβ 2, 3, MP
5. KKβ ∧K¬Kβ 1, 4, conj. introduction
6. ¬ (KKβ ∧K¬Kβ) A5
7. (KKβ ∧K¬Kβ) ∧ ¬ (KKβ ∧K¬Kβ) 5, 6, conj. introduction

Line 7 is a contradiction, so the theory in question must be inconsistent. �

Montague’s theorem from the previous section proved that we can not
consistently get a formalisation of knowledge satisfying all the principles we
would like knowledge to satisfy. Thomason’s theorem can be considered to
give a similar conclusion for the case in which K is interpreted to denote
belief rather than knowledge. In Section 3.7.3 we noted that all the reflection
principles A2–A7 express natural properties of belief, and the theory shown
to be inconsistent by Thomason’s theorem only contains reflection principles
from this group.

4.2.4. Inconsistency of Perfect Introspection. We now give our fi-
nal inconsistency result. It is inspired by the theorems of Montague and
Thomason.

Theorem 4.7. The theory Q extended with reflection principles A3–A7
is inconsistent.

Proof. Let β be a formal knower sentence. Then we have the following
proof in Q extended with A3–A7

1. K (β → ¬Kβ) A3, since Q ` β ↔ ¬Kβ
2. K (β → ¬Kβ)→ (Kβ → K¬Kβ) A4
3. Kβ → K¬Kβ 1, 2, MP
4. Kβ → KKβ A6
5. Kβ → KKβ ∧K¬Kβ from 3, 4
6. ¬ (KKβ ∧K¬Kβ)→ ¬Kβ 5, contraposition
7. ¬ (KKβ ∧K¬Kβ) A5
8. ¬Kβ 6, 7, MP
9. ¬Kβ → K¬Kβ A7

10. K¬Kβ 8, 9, MP
11. K (¬Kβ → β) A3, since Q ` β ↔ ¬Kβ
12. K (¬Kβ → β)→ (K¬Kβ → Kβ) A4
13. K¬Kβ → Kβ 11, 12, MP
14. Kβ 10, 13, MP

4.2. THE INCONSISTENCY RESULTS 77

15. Kβ ∧ ¬Kβ 8, 14, conj. introduction

This shows that Q extended with A3–A7 is inconsistent. �

Let us try to interpret this theorem. Suppose that Q and A3–A7 are the
axioms in the knowledge base of an agent (these axioms constitute a first-
order agent theory). Suppose further that K is intended to denote belief. We
have not included reflection principles A1 and A2 in the knowledge base, so
there is neither a claim that beliefs should be correct, nor a claim that the
agent believes its own beliefs to be correct. What we have is the following

(i) Arithmetic is believed (reflection principle A3).
(ii) No contradictions are believed (reflection principle A4).
(iii) Implicit belief is closed under modus ponens (reflection principle A5).
(iv) If something is believed, then the agent can in one inference step come

to believe that it is believed (reflection principle A6).
(v) If something is not believed, then the agent can in one inference step

come to believe that it is not believed (reflection principle A7).

When we have reflection principles A6 and A7 together, as we do in this
case, we say that the agent has perfect introspection [Lakemeyer, 1992].
The properties expressed by A6 and A7 are given as (iv) and (v) above.
Perfect introspection expresses that the agent has full introspective awareness
of its own beliefs: whether something is believed or not, the agent will always
(implicitly) know which one is the case. Lakemeyer puts it this way: “Agents
with perfect introspection may have incomplete beliefs about the world, but
they possess complete knowledge about their own beliefs” [Lakemeyer, 1992].
The theorem above shows that there can not exist an agent whose beliefs
satisfy all of the properties (i)–(v), since any agent theory containing reflection
principles A3–A7 will be inconsistent. Thus we apparently also have to give
up the goal of having agents with perfect introspection if we want to use the
predicate approach in formalising the beliefs of these agents.

4.2.5. Concluding Remarks. The four theorems above are collected
into the following corollary.

Corollary 4.8. The theory Q extended with any of the following sets of
reflection principles is inconsistent.

(i) T.
(ii) A1–A4.
(iii) A2–A6.
(iv) A3–A7.

78 4. PROBLEMS OF INTROSPECTION AND SELF-REFERENCE

The natural conclusion to draw from these inconsistency results seems
to be that we should abandon the predicate approach altogether. This has
also been the conclusion drawn by many researchers within the knowledge
representation community, and this is without doubt the reason that the
operator approach is still so prevalent even though the predicate approach
has a number of significant advantages (Section 2.4).2 For our purpose—
the construction of strongly introspective agents—the expressive power of the
predicate approach is required, so rather than abandoning this approach we
need to find a way to circumvent the inconsistency results that threatens it.

4.3. Regaining Consistency

In this section we will mention some of the possible ways to circumvent the
inconsistency results presented in the previous section. An obvious possibility
would be to choose an even smaller subset of the reflection principles than the
ones shown to be inconsistent above. From the examples of Section 3.7.1 we
know that even if we only take the reflection principles A3 and A4, our agents
will still be able to infer at least some useful consequences of their knowledge.
Another obvious possibility would be to modify the “form” of the reflection
principles in order to make them weak enough to be consistent [Aczel and
Feferman, 1980; Feferman, 1984; 1991; Friedman and Sheard, 1987; Grant et
al., 2000; McGee, 1985; Perlis, 1985; Turner, 1990]. A third possibility would
be to replace the underlying logical framework (classical first-order predicate
logic) by a weaker, non-standard logic such as for example a many-valued logic
[Kerber, 1998], a paraconsistent logic [Priest, 1991; 1989] or a typed logic.

The strategy we will be choosing in this thesis to avoid the inconsistency
problems is different from all of the above-mentioned. Our strategy is based
on noting that all of the proofs of the inconsistency results above are based
on reasoning about formal knower sentences. It therefore seems appropriate
to somehow try to prevent such sentences from being reasoned about. There
do not seem to be any particularly good reasons that an agent should be
allowed to reason about pathologically self-referential sentences. Thus, if we
can somehow prevent this from happening without at the same time sacrific-
ing too much else, this would appear to be a good solution. Thus what we
suggest is to try to exclude the pathological sentences from the reflection prin-
ciples, that is, to only instantiate the reflection principles with sentences that
are “safe” to reason about. This is the approach taken by des Rivières and
Levesque [1988] and Morreau and Kraus [1998]. We will review their results

2It should be noted at this point that the operator approach has been shown to suf-
fer from the same inconsistency problems when it is suitably extended with resources for
encoding and substituting [Asher and Kamp, 1986; Perlis, 1988; Grim, 1993].

4.3. REGAINING CONSISTENCY 79

in the following. Rivières and Levesque show that the reflection principles
can consistently be instantiated with what they call the regular sentences
and Morreau and Kraus extend this result to the more inclusive class of what
they call the RPQ sentences.

4.3.1. The Rivières-Levesque Theorem. The regular sentences are
defined in the following way.

Definition 4.9 (After des Rivières & Levesque [1988]). Let L be a first-
order agent language. The set of regular formulas of L is the least set
satisfying

(i) Any atomic formula of L− {K} is a regular formula.3

(ii) The regular formulas are closed under the connectives ∧, ¬ and ∀.4

(iii) If ϕ is a regular formula then Kϕ is a regular formula.5

A regular sentence is a closed regular formula.

The following result is proved by des Rivières and Levesque [1988].

Theorem 4.10 (Rivières-Levesque theorem). Let L be a first-order agent
language. Suppose S is the theory Q extended with one of the following sets
of reflection principles

(i) The axiom schemes A1–A4 instantiated over the regular sentences of
L.

(ii) The axiom schemes A2–A6 instantiated over the regular sentences of
L.

Then S is consistent.

This theorem should be contrasted with the theorems of Montague and
Thomason (Theorem 4.5 and Theorem 4.6). The theorem above shows that
consistency can be regained from these inconsistency results if we just refrain
from instantiating the reflection principles with non-regular sentences. The
usefulness of the result of course highly depends on how expressive regular
sentences really are. It depends on whether the sentences we would like our
agents to be able to express can be expressed as regular ones. We will look
into this in the following.

What characterises the regular formulas? Condition (ii) of Definition 4.9
gives us that the regular formulas are closed under all the connectives of

3Recall that L− {K} denotes the language L with the predicate symbol K removed.
4We take this to mean that if ϕ and ψ are regular formulas and x is a variable, then

ϕ ∧ ψ, ¬ϕ and ∀xϕ are regular formulas.
5For simplicity, we have again suppressed mentioning of the subscript of K (the first

argument to K). Letting the subscript be explicit, the condition would read: If ϕ is a
regular formula and τ is any term in L then Kτϕ is a regular formula.

80 4. PROBLEMS OF INTROSPECTION AND SELF-REFERENCE

predicate logic. Together with condition (i) this implies that any formula not
containing the K predicate is regular. From condition (iii) we furthermore
see that a formula ϕ can only be regular if it satisfies the following condition:

For every subformula of ϕ on the form Kτ we have τ = pψq for
some regular formula ψ.

Notice that this implies that no formula containing Kx as a subformula—
where x is any variable—can be regular.

Let us try to see which of the formulas we have considered so far are
regular. Below is a representative subset of these formulas.

(i) KOn (black,floor)
(ii) K¬KOn (striped,white)
(iii) K (¬KOn (striped,floor) ∧ ¬K¬On (striped,floor))
(iv) K¬∃x (About (x, striped) ∧Kx)
(v) Kole ∀x (About (x, cool jazz) ∧Ksue x→ Kbill x)
(vi) Kjohn ∃x (Kbill x ∧ ¬Kjohn x)
(vii) ∀x∀y (IterateK (ϕ, n, x) ∧ y < n→ Ky (x))
(viii) ∀x1∀x2 (Neg (x1, x2)→ ¬ (Kx1 ∧Kx2))

It is easily seen that only (i)–(iii) are regular, since each of the other formulas
contain a subformula Kτx for some variable x (and term τ). This implies that
the Rivières-Levesque theorem is not of much use for our purpose. One of the
main reasons we chose the predicate approach was to be able to formulate sen-
tences such as (iv)–(viii) that involve quantification over knowledge. However,
the Rivières-Levesque theorem does not guarantee that we can consistently
instantiate the reflection principles with any of these sentences. It only guar-
antees that we can consistently instantiate with (i)–(iii), but the predicate
approach is not even needed to express such sentences (a propositional modal
logic would suffice).

What we are looking for is a stronger consistency result which will show
that the reflection principles can also consistently be instantiated with sen-
tences such as (iv)–(viii). Such a consistency result will show that we can also
safely allow agents to reason about these sentences. Our goal in this thesis
is to provide such a strengthened consistency result. Another strengthened
consistency result appears in Morreau and Kraus [1998], which we review in
the following.

4.3.2. The Morreau-Kraus Theorem. Morreau and Kraus [1998] ex-
tend the Rivières-Levesque theorem by showing that consistency can still be
retained if we instantiate the reflection principles over the larger set of RPQ
sentences. Since the RPQ sentences are defined in a somewhat non-standard
way, we will not try to give our own version of the definition, but simply quote

4.3. REGAINING CONSISTENCY 81

the original one as it appears in Morreau and Kraus [1998]. First we must note
that corresponding to our first-order agent languages, they define a language
Lα including the language of arithmetic and, for each i > 1, an (i + 1)-place
predicate symbol αi. These predicate symbols correspond to our predicate
symbol K. That is, α1

a(pϕq) is read as “ϕ is known (believed) by agent a”. If
ϕ(x1, . . . , xn) is a formula with x1, . . . , xn free, then αn+1

a (pϕq, x1, . . . , xn) is
intended to express that ϕ(x1, . . . , xn) is known. The idea is that this allows
us to write for instance

∃xα2
john (pPhone-number (bill, x)q, x) , (4.11)

which is intended to express that John knows the phone number of Bill (or,
more precisely, that there is a number x such that John knows x to be the
phone number of Bill) [Perlis, 1985]. The reason for the extra x in the ar-
gument of the knowledge predicate α is that the variable x is not free in the
term pPhone-number (bill, x)q—this term is simply a numeral. Thus writing

∃xα1
john (pPhone-number (bill, x)q)

would not give the intended effect, since here the scope of the existential
quantifier is the closed formula α1

john (pPhone-number (bill, x)q). Besides the
language Lα, Morreau and Kraus considers the language L0, which is Lα with
the predicate symbols αi removed.

Morreau and Kraus [1998] write: “To begin we must once again slightly
extend Lα. We add to Lα the new monadic predicate symbols T and P. Also,
in addition to the variables x, x1, x2, . . . , y, . . . , we add a countable stock of
new variables X,X1, X2, . . . , Y,

Intuitively speaking, the symbol P will pick out (Gödel numbers of) sen-
tences of Lα; T will pick out true sentences. The following definition con-
cerns the promised set, to which we shall generalize Theorem 3 [the Rivières-
Levesque theorem].

Definition (Regular formulas with propositional quantification (RPQ)). The
RPQ formulas are the smallest set such that:

(1) Any atomic formula of L0 is an RPQ formula, as is T (X), for any
(new) variable X.

(2) If ϕ and ψ are RPQ formulas and x is an (old) variable, then ϕ ∧ ψ,
ϕ ∧ ψ, ϕ→ ψ, ¬ϕ, ∀xϕ and ∃xϕ are RPQ formulas.

(3) If ϕ(x1, . . . , xk, X1, . . . , Xl) is an RPQ formula, and a is a constant,
then

αk+l+1
a (pϕq, x1, . . . , xk, X1, . . . , Xl)

is an RPQ formula.
(4) If ϕ is an RPQ formula then ∀X (P(X)→ ϕ) and ∃X (P(X) ∧ ϕ) are

also RPQ formulas, where X is a (new) variable.”

82 4. PROBLEMS OF INTROSPECTION AND SELF-REFERENCE

It is easy to see that any regular formula is also an RPQ formula (when
replacing K by α1). Morreau and Kraus give the following example of an
RPQ sentence

∀X
(
P(X)→

(
utter (system, X)→ α2

system (pT (X)q, X)
))

(4.12)

which expresses, in their words, that “the system says only what it takes
[believes, knows] to be true”. To express a sentence such as (v) above as an
RPQ sentence, we would have to write

α1
ole

(
p∀X

(
P(X)→

(
About (X, cool jazz) ∧ α2

sue (pT (X)q, X) →

α2
bill (pT (X)q, X)

)))
,

which is certainly more cumbersome. Conversely, in the context of our first-
order agent languages, we would have expressed (4.12) as

∀x (Utter (system, x)→ Ksystemx) .

Morrau and Kraus [1998] prove the following consistency result.

Theorem 4.11 (Morreau-Kraus theorem). Suppose S is the theory Q

extended with one of the following sets of reflection principles

(i) The axiom schemes A1–A4 instantiated over the RPQ sentences of Lα.
(ii) The axiom schemes A2–A6 instantiated over the RPQ sentences of Lα.

Then S is consistent.

Consider the two theories proven to be consistent by this theorem. There
are no axioms in these theories that prevent us from constructing models
in which P is assigned the extension ∅. In such models, a sentence as for
example (4.12) would of course be trivially true and not receive its intended
interpretation. The fact that we can construct models of the two theories in
which P is assigned the empty extension, makes the Morreau-Kraus theorem
an almost entirely trivial consequence of the Rivières-Levesque theorem. This
is without doubt not what the two authors intended. The predicate symbol
P is of course not intended to have the empty extension, and neither does it
receive this extension in the model constructed by Morreau and Kraus.

Our work is related to the work of Morreau and Kraus in that we are also
going to provide an extension of the Rivières-Levesque consistency result.
We stay within our basic first-order agent languages, however, and do not
extend the language with special variables, extra predicate symbols such as
P and T or infinitely many predicate symbols K i of different arities. These
differences makes it problematic to give a precise mathematical comparison
of our results with theirs. Adding to this that they have formulated their
consistency result so that it is a direct consequence of the Rivières-Levesque

4.4. STRENGTHENING THE CONSISTENCY RESULTS 83

theorem (by constructing a model I with P I = ∅), we will not be considering
their result further in this thesis.

4.4. Strengthening the Consistency Results

As argued in Section 4.3.1, the Rivières-Levesque theorem is not suffi-
ciently strong for our purposes. Most of the sentences we have considered
so far are not regular. The Rivières-Levesque theorem guarantees that it is
safe to instantiate the reflection principles with regular sentences, but does
not guarantee that we can still retain consistency if we start instantiating
with non-regular ones. If we are restricted to only instantiate the reflection
principles with regular sentences, then our agents will only be able to reason
about such sentences. This has the unfortunate consequence of preventing
the agents from carrying out any kind of strongly introspective reasoning.
Actually, if we are only interested in regular sentences, we could just as well
choose the operator approach, since any regular sentence corresponds to a
sentence within this modal formalism.

To allow the construction of strongly introspective agents on a safe foun-
dation, that is, without being in risk of allowing paradoxical reasoning, we
must obtain a much stronger consistency result than the Rivières-Levesque
theorem. That is, we must find a considerably larger set M of sentences
that the reflection principles can consistently be instantiated with. How can
we find such a set? The Rivières-Levesque theorem is proved by a careful
translation into predicate logic of a corresponding first-order modal logic. It
is therefore not surprising that the result only concerns sentences that are
expressible within this modal formalism. To strengthen their result, it seems
that we are required to develop an alternative method.6

To find a larger set M over which we can safely instantiate our reflection
principles, we have to take a closer look at the inconsistency results (The-
orems 4.4, 4.5, 4.6 and 4.7). As noted previously, these are all based on
instantiating reflection principles with formal knower sentences. So we need
to exclude at least such sentences from the set M . At the same time, we
wish to exclude as few sentences from M as possible, to get the strongest
possible consistency result. To find such a set we are required to be able to
characterise the “knower-like” sentences that we need to exclude from it. We
could characterise these sentences informally by their self-referentiality. In
the next chapter we will try to make this informal characterisation precise by

6That is, unless we want to try to make translations into predicate logic of higher-order
modal formalisms, but we have not looked in this possibility. The Morreau-Kraus theorem
is, however, obtained by such a translation from a second-order modal logic.

84 4. PROBLEMS OF INTROSPECTION AND SELF-REFERENCE

providing a mathematical characterisation of self-referentiality. This will be
done in the following way.

First we associate with any first-order agent language a dependency graph.
The nodes of this graph are the sentences in the language, and there is an
edge from a sentence α to a sentence β if and only if α semantically refers to
β. Given such a graph, we can then say that a sentence ϕ is self-referential
if it is contained in a cycle in the dependency graph. In this way we are
able to characterise the self-referential sentences and thereby the “knower-
like” sentences that we have to exclude from M . This will then allow us to
construct various sets M which are considerably larger than the set of regular
sentences, but at the same time do not include any pathological “knower-
like” sentences. We will prove that the reflection principles can consistently
be instantiated over these sets of sentences.

4.5. Chapter Notes

Example 4.1 is the author’s. A related modality of only-knowing-about is
introduced in Levesque and Lakemeyer [2000]. Our proof of the diagonalisa-
tion lemma is roughly the proof given by Mendelson [1997]. We have included
it because the diagonalisation lemma and how it is brought about is very im-
portant to the work of this thesis. It is the diagonalisation lemma that leads
to all of the inconsistency results. Another reason for including the proof of
the lemma has been to show that it uses equality in an essential way. This
is of significance to our methods for regaining consistency. The discussion of
the diagonalisation lemma is adapted from Bolander [2002c].

As mentioned above, our proofs of the theorems of Montague and Thoma-
son are considerable simpler than the original proofs (this is made possible
by having a slightly stronger version of the reflection principle A3). Among
the advantages of these simpler proofs is that all of the theorems of Tarski,
Montague and Thomason become based on the same self-referential sentence
which we call a formal knower sentence. This makes it more clear what kind
of sentences we have to exclude from our reflection principles to regain con-
sistency.

The last inconsistency result, Theorem 4.7, is due to the author. It shows
that even if we make absolutely no claims to the connection between what is
believed and what is true, we still risk inconsistency.

Our definition of the regular formulas is adapted from the definition given
by Morreau and Kraus [1998]. Des Rivières and Levesque [1988] give an
alternative, but equivalent, definition of the regular formulas. Our definition
is slightly simplified compared to the original definition. This also implies
that our set of regular formulas is slightly more restrictive than the set of

4.5. CHAPTER NOTES 85

regular formulas considered by the aforementioned authors. We have chosen
the alternative definition since it turns out to be more appropriate for our
purposes. Everything we have said about the regular formulas in this chapter
also holds for the regular formulas in the original formulation.

In this chapter we mentioned various approaches towards regaining con-
sistency. We presented our own approach as based on the idea that to regain
consistency we only need to prevent the pathological self-referential sentences
to be reasoned about. This idea is rooted in the understanding that nothing
useful can result from reasoning about pathological sentences such as formal
knower sentences, so if we can just prevent such reasoning from taking place,
we can keep everything else. The idea seems to be somewhat original, since
usually more drastic methods are used to try to regain consistency: weakening
the underlying logic or changing the forms of the reflection principles.

CHAPTER 5

The Graph Approach to Avoiding Inconsistency

In this chapter we will introduce our graph-based method, which is going
to allow us to generalise the Rivières-Levesque theorem. The method is based
on two new concepts: sentence nets and dependency graphs. These new con-
cepts are defined in the beginning of the chapter. Subsequently we will show
how proving the consistency of restricted reflection principles can be reduced
to proving properties of corresponding dependency graphs. In the next chap-
ter we will use this reduction to prove our two main results strengthening the
Rivières-Levesque theorem.

5.1. Sentence Nets

We will not be associating dependency graphs directly with our first-
order agent languages. Rather we will go through a simple formal language
especially designed to express self-referential and related types of sentences.
In this language, sets of mutually referring sentences can be expressed in a
simple way. We will present this formal language in the following.

The idea behind the formal language we are about to present can be
sketched as follows. Some sentences in natural language are characterised by
only making claims about the truth or falsity of other sentences in that same
language (as a special case, only making claims about the truth or falsity of
themselves). Among the simplest examples is the sentence T saying of itself
that it is true. We can express T in the following way

T : sentence T is true. (5.1)

Sentence T is known as the truth-teller sentence. We also have the liar sen-
tence introduced in Section 1.4.1:

L : sentence L is not true. (5.2)

Both of T and L demonstrate cases of direct self-reference: sentences that
directly make claims about themselves. We can also construct sentences that

87

88 5. THE GRAPH APPROACH TO AVOIDING INCONSISTENCY

are indirectly self-referential as for instance in the following pair

s1 : sentence s2 is true. (5.3)

s2 : sentence s1 is false.

We are going to define a formal language for expressing such sentences in
a simple way. This will allow us to give simple representations of various para-
doxes such as the liar paradox and the knower paradox within the language.
Through these representations we are then be able to study the paradoxes
and their properties. Furthermore, we are able to investigate the conditions
under which a set of sentences is paradoxical. This is of central importance
to our search for consistent instantiation classes of the reflection principles.

Definition 5.1. Let N be a countable set. We define a formal language�
N by

(i) For any s ∈ N , s is an expression.
(ii) true and false are expressions.
(iii) If E is an expression then ¬E is an expression.
(iv) If {Ei | i ∈M} is a (possibly infinite) set of expressions, then both

∧
{Ei | i ∈M} and

∨
{Ei | i ∈M} are expressions.1

(v) If s is an element of N and E is an expression, then s :E is a clause.
The element s is called the head of s :E and E is called the body.

The elements of N are called sentences in
�
N .

Remark. In the following we will, unless otherwise stated, assume N to
be denoting a fixed countable set.

The language
�

{si|i∈ � } contains clauses such as

s1 : s2 ∨ s3 (5.4)

and

s1 :
∨

{¬si | i > 1} . (5.5)

The intended meaning of the clause (5.4) is that the sentence s1 claims that
either s2 or s3 is true. It is simply a short-hand for

s1 : s2 is true or s3 is true.

Clause (5.5) is a short-hand for

s1 : one of the si with i > 1 is not true.

1We sometimes write �
i∈M

Ei and �
i∈M

Ei instead of � {Ei | i ∈M} and� {Ei | i ∈M}, respectively. As usual, we most often use infix notation in the finite case,
that is, we write E1 ∧ E2 ∧ · · · ∧En instead of � {Ei | 1 ≤ i ≤ n} and similarly for � .

5.1. SENTENCE NETS 89

As further examples of clauses in
�

{si|i∈ � } we have

s1 : ¬s1 s1 is the liar sentence
s2 : s2 s2 is the truth-teller sentence

s3 : ¬s4
s4 : s3

}

s3 and s4 are mutually referring sentences

(5.6)

When we work with sets of clauses we want to avoid the case where two dif-
ferent clauses have the same head. Sets of clauses satisfying this requirement
are called sentence nets.

Definition 5.2. Let N be a countable set. A sentence net U over N
is a set of clauses in

�
N in which no two clauses have the same head. The

elements of N are called sentences in U .

Note that this definition ensures that when considering sentence nets we
always have a canonical isomorphism between clauses and sentences: the
isomorphism that maps every clause to its head. We will therefore often be
identifying clauses with their corresponding heads.

Example 5.3. The four clauses (5.6) together form a sentence net over
{s1, s2, s3, s4}. The set {s1 : s2, s1 : s3}, however, is not a sentence net since
there are two clauses with the same head.

We will now define the semantics for sentence nets.

Definition 5.4. Let U be a sentence net over a countable set N . An
interpretation of U is a map I from N to the set of truth-values {t, f}.
Interpretations extend to give truth-values to the expressions true and false
by letting I(true) = t and I(false) = f . Interpretations extend further to give
truth-values to all compound expressions in

�
N in the obvious, classical way.

An interpretation I : N → {t, f} is called a model of U if for every clause
s :E in U we have

I(s) = I(E). (5.7)

Example 5.5 (The liar and the truth-teller). Let Ut be the sentence net
over {s} consisting only of the clause s : s. The sentence s is the truth-teller
sentence. It is a sentence s to the effect that s itself is true. It thus corresponds
to the sentence “this sentence is true”. Ut has the two interpretations I1 and
I2 given by I1(s) = t and I2(s) = f . These are both models of Ut, since
equation (5.7) in this case simply reduces to I(s) = I(s). The existence of
these two models corresponds to the fact that we can consistently assign both
the truth-value true and the truth-value false to the sentence “this sentence
is true”.

90 5. THE GRAPH APPROACH TO AVOIDING INCONSISTENCY

Let Ul be the sentence net consisting only of the clause s :¬s. The sentence
s is the liar sentence. The clause s :¬s is short-hand for

s : s is not true.

The sentence defined by the clause is a sentence s to the effect that s itself
is not true. It thus corresponds to the sentence “this sentence is not true”.
Ul has the same two interpretations as Ut, but it has no models since the
equation I(s) = I(¬s) does not hold for any interpretation I (¬s receives
the opposite truth-value of s under I). This corresponds to the fact that the
sentence “this sentence is not true” can neither consistently be assigned the
truth-value true nor the truth-value false. It is a paradoxical sentence (the
liar paradox).

Definition 5.6. A sentence net is called paradoxical if it does not have
a model. Otherwise it is called non-paradoxical.

Example 5.7 (The liar and the truth-teller). In Example 5.5 we consid-
ered the sentence nets Ut = {s :s} and Ul = {s :¬s}. The sentence net Ut has
a model, so it is non-paradoxical. The sentence net Ul does not have a model,
so it is paradoxical. The paradoxicality of Ul corresponds exactly to the liar
paradox introduced in Section 1.4.1. It is the paradoxicality of the sentence
s to the effect that s itself is not true.

In Section 5.3 we will be showing how to associate a canonical sentence
net with any first-order agent language. In Section 5.4 this will be used to
show how the question of consistency of first-order agent theories is related
to the question of paradoxicality of corresponding sentence nets. Before we
turn to that, we will show how to associate dependency graphs with sentence
nets.

5.2. Dependency Graphs

Our current situation can be sketched as follows: We are looking for a
way to characterise paradoxicality and self-reference that will allow us to
strengthen the Rivières-Levesque theorem. To this end we now introduce
dependency graphs. Dependency graphs are graphs associated with sentence
nets. The dependency graph of a sentence net is intended to represent the
patterns of semantic dependency among the sentences in the net. If s1 and
s2 are sentences in the net, then there will be an edge from s1 to s2 in the
dependency graph if and only if the sentence s1 contains a semantic reference
to s2. This is the case for instance with the sentence s1 in (5.3) on page 88.
Dependency graphs are defined in the following way.

5.2. DEPENDENCY GRAPHS 91

sMM

Figure 5.1. The simple loop.

s1
$$
s2dd

Figure 5.2. Simple indirect self-reference.

Definition 5.8. Let U be a sentence net over a countable set N . The
dependency graph of U is the directed graph G given by

• Every sentence in U is a node in G.
• If s1 : E is a clause in U and s2 is a sentence occurring in E, then

there is an edge from s1 to s2 in G.

Example 5.9 (The liar). Consider again the sentence net

Ul = {s : ¬s}.

The sentence s is the liar sentence. The dependency graph of Ul is presented
in Figure 5.1. The graph is called the simple loop. The sentence net Ut =
{s : s} also has the simple loop as its dependency graph.

Example 5.10. Consider the sentence net over {s1, s2} consisting of the
following two clauses

s1 : ¬s2

s2 : s1.

The dependency graph of this sentence net is presented in Figure 5.2. It is a
cycle spanned by the two nodes s1 and s2.

Graphs are usually given as pairs G = (V,B), where V is the set of nodes
and B ⊆ V 2 is the edge relation of G. The dependency graph of a sentence
net U over N can thus be expressed as

G =
(
N, {(s1, s2) | s1 : E is in U and s2 occurs in E}

)
.

The edge relation of the dependency graph of U is called the dependency
relation of U . We will generally be identifying dependency graphs with their
corresponding dependency relations. A graph is countable when its set of
nodes is either a finite or a countably infinite set.

Remark. By graph we will everywhere mean a directed and countable
graph.

92 5. THE GRAPH APPROACH TO AVOIDING INCONSISTENCY

A path in a graph G is a sequence (r1, r2, . . . , rn) of nodes such that
(ri, ri+1) is an edge in G for all 0 < i < n. The path is called simple if all
the nodes on the path are distinct. If r1 = rn then the path is called a cycle.
Any graph containing a cycle is called a cyclic graph. Otherwise it is called
acyclic. If (r1, r2) is an edge in a graph and r1 = r2, then the edge is called
a loop at r1. An infinite path in G is an infinite sequence (r1, r2, r3, . . .) of
nodes such that (ri, ri+1) is an edge in G for all i > 0. Note that if (r1, . . . , rn)
is a cycle, then

(r1, . . . , rn−1, r1, . . . , rn−1, r1, . . . , rn−1, . . .)

is an infinite path. Thus if a node is contained in a cycle, then it is also
contained in an infinite path. If (r1, r2, . . .) is a finite or infinite path, then
any subsequence of (r1, r2, . . .) is called a subpath. If (r1, r2) is an edge,
then r1 is called the start node and r2 the end node of the edge. If s is a
node in a graph G = (V,B), then we use ΓG(s) to denote the set of successors
of s in G. That is, we define ΓG(s) by

ΓG(s) =
{
s′ | (s, s′) ∈ B

}
.

If G is the dependency graph of a sentence net U and s : E is a clause in
U , then ΓG(s) is the set of sentences occurring in E. A graph G is called
well-founded if it does not contain any infinite paths. Otherwise it is called
non-wellfounded. Note that any well-founded graph is acyclic, since if a
graph does not contain any infinite paths then it can in particular not contain
any cycles.

The idea of representing semantic dependency between sentences by graphs
is by no means new. Probably the area where this idea has been pursued to
the largest extend is in logic programming. In this field, dependency graphs
where originally introduced by Apt et al. [1988], and since then they have
been used extensively to prove the existence of various types of semantics for
general logic programs (see for instance Apt and Bol [1994] or Baral and Gel-
fond [1994] for surveys). Our dependency graphs are very closely related to
the ones used in logic programming, and we will study these relationships in
detail in Section 5.5. Dependency graphs have also been studied in philosoph-
ical logic. In the literature on truth predicates and paradoxes, dependency
graphs have been used explicitly in among others Beck [2002], Cook [2002],
Gaifman [1992] and Yablo [1982]. Another use of graphs related to the
present work is the one found in non-wellfounded set theory [Aczel, 1988;
Barwise and Etchemendy, 1987; Barwise and Moss, 1996].2

2We should note that the term dependency graph also occurs in connection with graphs
used to model data and control flow in hardware and software design. In this thesis, we only

5.2. DEPENDENCY GRAPHS 93

We are now ready to define what it means for a sentence in a sentence
net to be self-referential. The definition uses the connection to dependency
graphs.

Definition 5.11. Let U be a sentence net and let G be its dependency
graph. Let s1 and s2 be sentences in U . We say that

• s1 refers directly to s2 in U if (s1, s2) is an edge in G.
• s1 refers indirectly to s2 in U if there is a path from s1 to s2 in G.
• s1 is directly self-referential in U if G contains a loop at s1.
• s1 is indirectly self-referential in U if there is a cycle in G contain-

ing s1.
• s1 is doubly dependent on s2 in U if there are at least two distinct

paths from s1 to s2 in G.

Example 5.12 (The liar). Consider again the sentence net

Ul = {s : ¬s}.

The dependency graph of this sentence net is the simple loop presented in
Figure 5.1. The loop represents the fact that the liar sentence is directly self-
referential. Note that, in addition, s is doubly dependent on itself since both
(s, s) and (s, s, s) are paths from s to s.

Example 5.13. Consider again the sentence net over {s1, s2} consisting
of the following two clauses

s1 : ¬s2

s2 : s1.

The dependency graph of this sentence net was presented in Figure 5.2. From
this graph we see that the first sentence, s1, refers directly to the second, s2,
represented by the edge from s1 to s2. The second sentence refers directly
to the first, represented by the edge from s2 to s1. We note that the graph
is cyclic: there is a path leading from s1 through s2 back to s1. Thus both
sentences are indirectly self-referential.

Definition 5.14. A graph G is said to be paradoxical if there exists a
paradoxical sentence net having G as its dependency graph. Otherwise G is
called non-paradoxical.

Using the definition of a paradoxical sentence net (Definition 5.6), we see
that a graph G is non-paradoxical if and only if every sentence net with depen-
dency graph G has a model. Note that we are using the notions paradoxical

use the term dependency graph in the sense of graphs representing semantic dependencies
between formal sentences.

94 5. THE GRAPH APPROACH TO AVOIDING INCONSISTENCY

and non-paradoxical both for sentence nets and for graphs. Suppose U is a
sentence net and G is its dependency graph. If U is paradoxical then G is
paradoxical as well, but the opposite is not necessarily true. That is, G can
be paradoxical without U being paradoxical. If G is paradoxical it just means
that there is some paradoxical sentence net with dependency graph G—this
could be another sentence net than U .

Example 5.15. The simple loop considered in Example 5.9 is the depen-
dency graph of both of the sentence nets Ul and Ut. In Example 5.7, we saw
that Ul is paradoxical while Ut is non-paradoxical. The paradoxicality of Ul
implies that the simple loop is paradoxical.

In the following section we will show how we can associate sentence nets
(and thus, indirectly, dependency graphs) with first-order agent languages.
Through this association we become able to use the notions defined in Defi-
nition 5.11 directly on sentences of agent languages. In particular, we get a
notion of when a sentence in an agent language is self-referential.

5.3. From Agent Languages to Dependency Graphs

Remark. To simplify notation, we will take L to denote a fixed first-order
agent language in the remainder of this thesis.

5.3.1. The Dependency Graph G � . The following definition shows
how we associate a “canonical” sentence net UL with the first-order language
L. In this way a “canonical” dependency graph will by associated with L as
well: the dependency graph of the sentence net UL.

Definition 5.16. We define UL to be the sentence net over {sϕ | ϕ ∈ L}
consisting of the following clauses

(i) sϕ∧ψ : sϕ ∧ sψ, for all sentences ϕ,ψ in L.
(ii) s¬ϕ : ¬sϕ, for all sentences ϕ in L.
(iii) s∀xϕ(x) :

∧

τ∈Terms(L) sϕ(τ), for all variables x and all ∀xϕ(x) in L.

(iv) sKϕ : sϕ, for all sentences ϕ in L.
(v) sϕ : true, when ϕ is atomic in L and Q ` ϕ.
(vi) sϕ : false, when ϕ is atomic in L and Q ` ¬ϕ.

The dependency graph of UL is denoted GL.

The nodes of GL are sentences of the form sϕ where ϕ is a sentence in
L. To simplify notation, we will be identifying every node sϕ in GL with the
corresponding first-order sentence ϕ. Thus, by the identification, the nodes
of GL are the sentences of L. From items (i)–(iv) in Definition 5.16 we see
that GL contains the following set of edges

5.3. FROM AGENT LANGUAGES TO DEPENDENCY GRAPHS 95

(I) (ϕ ∧ ψ,ϕ) and (ϕ ∧ ψ,ψ), for all sentences ϕ,ψ in L.
(II) (¬ϕ,ϕ), for all sentences ϕ in L.

(III) (∀xϕ(x), ϕ(τ)), for all ∀xϕ(x) in L and all terms τ in L.
(IV) (Kϕ,ϕ), for all sentences ϕ in L.

We will be referring to these edges by the names given in the following defi-
nition.

Definition 5.17. Any pair of the form (ϕ ∧ψ,ϕ) or (ϕ ∧ψ,ψ), where ϕ
and ψ are sentences of L, is called a ∧-edge. A pair of the form (¬ϕ,ϕ) is
called a ¬-edges and a pair of the form (Kϕ,ϕ) a K-edge. Finally, a pair
of the form (∀xϕ(x), ϕ(τ)), where ∀xϕ(x) is a sentence in L and τ is a term
in L, is called a ∀-edges.

By (I)–(IV) above we see that any edge in GL is of one of the four types
given in this definition (when identifying sϕ with ϕ for all ϕ in L). The
underlying intuition here is that we have ∧-edges to represent the fact that
any sentence ϕ ∧ ψ refers directly to both ϕ and ψ; ¬-edges to represent the
fact that any sentence ¬ϕ refers directly to ϕ; ∀-edges to represent the fact
that any sentence ∀xϕ(x) refers directly to each substitution instance ϕ(τ);
and finally K-edges to represent the fact that any sentence Kϕ refers directly
to ϕ.

Example 5.18. Let us try to look at a fragment (subgraph) of GL. Let
ϕ be the sentence given by

ϕ = K (¬KOn (striped, dotted) ∧ ¬K¬On (striped, dotted)) .

If ϕ is a sentence in L, then GL will contain the subgraph presented in Figure
5.3, where we have marked each edge by its type. From this subgraph we
see that ϕ refers indirectly to On (striped, dotted) (in UL). It is even doubly
dependent on this subformula. The sentence ϕ is not self-referential, since the
subgraph shown includes all paths starting at ϕ, and none of these paths are
cycles. These conclusions about ϕ all fit well with our intuitions.

Example 5.19. Consider the sentence

K∀x (About (x, striped)→ ¬Kx) .

This is an abbreviation for the sentence ψ given by

ψ = K∀x¬ (About (x, striped) ∧Kx) .

If ψ is a sentence in L, then GL will contain the subgraph presented in Figure
5.4. From this subgraph we see that ψ refers indirectly to About (ψ, striped).
We also see that ψ must be indirectly self-referential, since the subgraph con-
tains the cycle presented in Figure 5.5. This is in agreement with the conclu-

96 5. THE GRAPH APPROACH TO AVOIDING INCONSISTENCY

K (¬KOn (striped, dotted) ∧ ¬K¬On (striped, dotted))

K
��

¬KOn (striped, dotted) ∧ ¬K¬On (striped, dotted)
∧

uullllllllll ∧

))SSSSSSSSSSS

¬KOn (striped, dotted)

¬
��

¬K¬On (striped, dotted)

¬
��

KOn (striped, dotted)

K
��

K¬On (striped, dotted)

K
��

On (striped, dotted) ¬On (striped, dotted)¬
oo

Figure 5.3. A subgraph of GL.

ψ

K��
∀x¬ (About (x, striped) ∧Kx)

∀��
¬ (About (ψ, striped) ∧Kψ)

¬��
About (ψ, striped) ∧Kψ

∧
rrffffffffffff ∧

++VVVVVVVVVVVVVV

About (ψ, striped) Kψ

K

oo

Figure 5.4. Another subgraph of GL.

¬ (About (ψ, striped) ∧Kψ)

¬

uulllllllllllll

About (ψ, striped) ∧Kψ

∧

!!C
CC

CC
CC

C
	 ∀x¬ (About (x, striped) ∧Kx)

∀
iiSSSSSSSSSSSSSS

Kψ
K // ψ

K
::uuuuuuuuuu

Figure 5.5. A cycle in GL.

5.3. FROM AGENT LANGUAGES TO DEPENDENCY GRAPHS 97

β

∀��
¬ (D(α, β) ∧Kβ)

¬��
D(α, β) ∧Kβ

∧

ttiiiiiiiii ∧

))SSSSSSSSSS

D(α, β) Kβ

K

nn

Figure 5.6. Yet another subgraph of GL.

sion we reached in Example 4.1. There we showed how the self-referentiality
of ψ could cause a knowledge base containing it to become inconsistent.

Example 5.20. As a final example of a subgraph of GL, consider a formal
knower sentence given by

∀x2 (D(α, x2)→ ¬K(x2)) , (5.8)

where α = ∀x2 (D(x1, x2)→ ¬K (x2)) (cf. the diagonalisation lemma, Lemma
4.2). The sentence (5.8) is an abbreviation for the sentence β given by

β = ∀x2¬ (D(α, x2) ∧K(x2)) .

The sentence β is contained in the subgraph of GL presented in Figure 5.6.
The sentence β is contained in a cycle in this subgraph. Thus β is indirectly
self-referential, as expected.

We have indicated that the edges of GL should be interpreted as rep-
resenting relations of reference. Alternatively, we can think of the edges
as representing relations of semantic dependency. In the standard Tarskian
(truth-functional) semantics, the truth-value of a conjunction ϕ ∧ ψ is de-
fined uniquely in terms of the truth-values of the conjuncts ϕ and ψ. This
fact is represented in GL by having an edge from ϕ ∧ ψ to each of the con-
juncts ϕ and ψ. Similarly, we have an edge from ¬ϕ to ϕ to represent the
fact that the truth-value of ¬ϕ depends uniquely on the truth-value of ϕ. In
the Tarskian semantics, the truth-value of a sentence ∀xϕ(x) is determined
uniquely in terms of the truth-values of the infinitely many substitution in-
stances ϕ(τ) where τ ∈ Terms(L) (assuming that the domain of the interpre-
tation is Terms(L)). This fact is represented by having an edge from ∀xϕ(x)
to each ϕ(τ) where τ ∈ Terms(L). In general, we can think of any edge (ϕ,ψ)
in the graph as expressing: “The semantic value of ϕ depends directly on the
semantic value of ψ”. This is also the case with the special K-edges, which
expresses that the semantic value of Kϕ depends directly on the semantic

98 5. THE GRAPH APPROACH TO AVOIDING INCONSISTENCY

value of ϕ. If a sentence ϕ is contained in a cycle in the graph, then this
implies that ϕ depends semantically on itself. This, once again, corresponds
to self-reference.

If we did not have the special K-edges in the graph, then we could be
certain that the graph would not contain any cycles. This follows immediately
from the fact that for any ∧-, ¬- or ∀-edges (ϕ,ψ), the syntactic complexity
of ψ is lower than the syntactic complexity of ϕ. Therefore, along any path
in such a graph, the syntactic complexity would be decreasing, and the graph
would thus be well-founded (see the proof of Lemma 5.21 below). The ∧-,
¬- and ∀-edges adhere to the principle of compositionality in semantics: the
semantic value of a compound expression depends uniquely on the semantic
values of the constituents of the expression. TheK-edges do not adhere to this
principle. Consider a K-edge (Kϕ,ϕ). The sentence ϕ is not a constituent
in Kϕ, since the latter sentence is simply an abbreviation for K(pϕq), where
pϕq is a numeral. The start node Kϕ of the edge is an atomic sentence,
whereas the end node ϕ can be any sentence. This implies that along K-
edges the syntactic complexity will be (monotonically) increasing rather than
decreasing. Thus with the presence of K-edges in the graph, we loose the
possibility of semantically stratifying the sentences according to syntactic
complexity. It is precisely this phenomenon that makes it difficult to give
a semantics for the agent languages that takes proper care of the sentences
involving the K predicate. As we have seen from the inconsistency results
(Chapter 4), this difficulty sometimes even takes the form of an impossibility.

5.3.2. Basic Properties of G � . As mentioned in Section 4.4, our goal
is to use dependency graphs to see which instances of the reflection principles
we need to exclude in order to regain consistency from the inconsistency
results. As we will show in Section 5.4, this problem can be reduced to
determining which K-edges we have to remove from GL in order for the graph
to become non-paradoxical. It seems that we are required to exclude at least
all instances over self-referential sentences, since these are the ones causing the
inconsistency results (Section 4.2). Suppose ϕ is an indirectly self-referential
sentence in UL. Then by definition, ϕ is contained in a cycle in GL. From
this it follows that ϕ must be contained in an infinite path in GL. In the
following, we will prove a number of general results concerning the kind of
sentences and edges that are contained in infinite paths in GL. This will then
also give us information on the kind of sentences and edges to be found in
cycles in GL. From this we will be able to deduce valuable information on
the properties of self-referential sentences, which will later become useful in
the search for consistent sets of instances of our reflection principles.

5.3. FROM AGENT LANGUAGES TO DEPENDENCY GRAPHS 99

Lemma 5.21. Suppose σ is an infinite path in GL. Then σ contains
infinitely many K-edges.

Proof. Assume to obtain a contradiction that GL contains an infinite
path σ with only finitely manyK-edges. Then there will be an infinite subpath
σ′ of σ with no K-edges. Thus all edges on this subpath must be ∧-, ¬- or
∀-edges. That is, all edges must be on one of the following forms

(i) (ϕ ∧ ψ,ϕ) or (ϕ ∧ ψ,ψ), for some ϕ,ψ ∈ L.
(ii) (¬ϕ,ϕ), for some ϕ ∈ L.
(iii) (∀xϕ(x), ϕ(τ)), for some ∀xϕ(x) ∈ L and τ ∈ Terms(L).

Now note that on any such edge, the end node has lower syntactic complexity
than the start node (that is, the end node contains fewer connectives than
the start node). Thus along the subpath σ ′, the syntactic complexity will be
strictly decreasing. But this contradicts that σ ′ is an infinite path, and the
proof is hereby complete. �

Example 5.22. Consider the subgraph of GL presented in Figure 5.5. In
this subgraph, ψ is the sentence

K∀x¬ (About (x, striped) ∧Kx) .

The subgraph is a cycle and thus becomes an infinite path when repeatedly
traversing the cycle. The cycle contains aK-edge, so the corresponding infinite
path will contain infinitely many K-edges, in correspondence with Lemma
5.21.

Lemma 5.21 implies that if we remove all K-edges from GL, then the
graph will no longer contain any infinite paths and thus no longer any cycles.
This would therefore be an effective cure against self-reference, but then any
sentence Kϕ would become semantically detached from ϕ, which is not our
intention. The semantical link between Kϕ and ϕ is needed in our pursuit of
models of the reflection principles.

For the next lemma we first need a couple of new definitions.

Definition 5.23. To every formula ϕ in L we associate a natural number
d(ϕ), called its K-depth. The function d is defined recursively by

(i) d(ϕ) = 0, if ϕ is an atomic sentence not on the form Kα for some α
in L.

(ii) d(Kϕ) = 1 + d(ϕ).
(iii) d(ϕ ∧ ψ) = max{d(ϕ), d(ψ)}.
(iv) d(¬ϕ) = d(ϕ).
(v) d(∀xϕ) = d(ϕ).

100 5. THE GRAPH APPROACH TO AVOIDING INCONSISTENCY

We need to check that the function d defined in this way is well-defined.
To see this, note that we have defined our Gödel numbering (Definition 3.4)
in such a way that the following holds for all formulas ϕ and ψ of predicate
logic

pϕ ∧ ψq > pϕq, pψq.

p¬ϕq > pϕq.

p∀xϕq > pϕq.

pK(pϕq)q > pϕq.

Thus, for every formula ϕ, the K-depth of ϕ is defined exclusively in terms of
the K-depth of formulas with smaller Gödel numbers. This ensures that d is
well-defined: d(ϕ) is definable by recursion on the Gödel number of ϕ.

Example 5.24. The K-depth of any formula not containing the predicate
symbol K is zero. The K-depth of K(0 = 0) is one and the K-depth of
K(K(0 = 0)) is two. The K-depth of A(K(0 = 0)) is zero if A is a predicate
symbol different from K.

Definition 5.25. A sentence ϕ in L is called grounded if it does not
contain Kx as a subformula for any variable x. Otherwise it is called un-
grounded.3

Example 5.26. The sentence K¬KOn (striped,white) is grounded, but
∀x (About (x, striped)→ ¬Kx) is not. The sentence

K∀x (About (x, striped)→ ¬Kx)

is also grounded, since it is simply an abbreviation for

K(p∀x (About (x, striped)→ ¬Kx)q).

We should note that our use of the term “grounded” is borrowed from
Kripke [1975] rather than from the use of this term in logic programming.
The intuition behind our grounded sentences is more or less the same as
Kripke’s, although the concept defined here is not identical to his.

We noted in Section 4.3.1 that if ϕ is a regular sentence then it does not
contain Kx as a subformula for any variable x. Thus all regular sentences are
grounded. The opposite is not the case. Consider the following sentence

K∀xKx.

This sentence is an abbreviation for

K (p∀xK(x)q)) ,

3We still suppress mentioning of the subscript of K. To be more precise, ϕ is grounded
if it does not contain Kτx as a subformula for any variable x and any term τ .

5.3. FROM AGENT LANGUAGES TO DEPENDENCY GRAPHS 101

so it does not contain Kx as a subformula. It is therefore grounded, but it
is not regular, because then ∀xKx would have to be regular as well. If n is
a numeral not denoting any sentence in L, then Kn is also grounded but not
regular. We therefore have the following result.

Lemma 5.27. The set of grounded sentences of L is a proper extension
of the set of regular sentences of L.

In Section 6.1.1 we will show that all reflection principles can consistently
be instantiated over the grounded sentences. Since the grounded sentences
properly include the regular ones, this result will be a (minor) strengthening
of the Rivières-Levesque theorem. Before we can prove this strengthened
theorem we need to introduce some more machinery.

Lemma 5.28. Suppose σ is an infinite path in GL. Then σ contains
infinitely many ∀-edges (∀xϕ(x), ϕ(τ)), where Kx occurs in ϕ(x).

Proof. Assume to obtain a contradiction that there exists an infinite
path σ in GL with only finitely many ∀-edges (∀xϕ(x), ϕ(τ)) for which Kx

occurs in ϕ(x). Then there will be an infinite subpath σ ′ of σ with no such
edges.

Claim. The K-depth is monotonically decreasing along σ ′.

Proof of claim. Let (r1, r2) be any edge in σ′. We have to show that
d(r2) ≤ d(r1). If (r1, r2) is a K-, ∧- or ¬-edge, we immediately get d(r2) ≤
d(r1) from the clauses (ii)–(iv) in the definition of d. The only case left to
check is if (r1, r2) is a ∀-edge. So assume r1 = ∀xϕ(x) and r2 = ϕ(τ) for some
formula ϕ and term τ . By choice of σ′, the sentence ∀xϕ(x) does not have
any occurrence of Kx. Thus we have d(ϕ(x)) = d(ϕ(τ)), and therefore

d(r1) = d(∀xϕ(x)) = d(ϕ(x)) = d(ϕ(τ)) = d(r2).

This concludes the proof of the claim.

From this claim we can now easily obtain a contradiction with our assump-
tion. We have constructed a path σ′, along which the K-depth is monotoni-
cally decreasing. Therefore the K-depth must be constant from some point.
But then from this point the path can not contain any K-edges, since the
K-depth of the end node of such an edge is always one less than the K-depth
of the start node. This immediately contradicts Lemma 5.21. �

Example 5.29. Consider again the cycle in Figure 5.5. The cycle con-
tains the edge

(
∀x¬ (About (x, striped) ∧Kx) ,¬ (About (x, striped) ∧Kx)

)
.

102 5. THE GRAPH APPROACH TO AVOIDING INCONSISTENCY

The start node of this edge contains the subformula Kx. It is thus the kind of
edge guaranteed to exist in any infinite path (and cycle) by the lemma above.
The lemma proves that it is impossible to obtain self-reference without using
formulas in which Kx appears as subformula for some variable x—since any
cycle will contain at least one such formula.

A direct consequence of Lemma 5.28 is that any infinite path in GL will
contain infinitely many ungrounded sentences.

Lemma 5.30. Let σ be an infinite path in GL. Then σ contains infinitely
many K-edges (Kϕ,ϕ), where ϕ is ungrounded.

Proof. It suffices to prove that any infinite path contains at least one
K-edge (Kϕ,ϕ) where ϕ is ungrounded. Let thus an arbitrary infinite path σ
be given. By Lemma 5.21, σ contains infinitely many K-edges. Let σ ′ =
(r1, r2, . . .) be an infinite subpath of σ in which the first edge (r1, r2) is
a K-edge. By Lemma 5.28, the path σ′ contains infinitely many ∀-edges
(∀xϕ(x), ϕ(τ)) where ϕ(x) contains Kx. Let (rk, rk+1) be one of these edges.
Then rk contains Kx. Let (rm, rm+1) be the K-edge closest to rk in the initial
subpath (r1, . . . , rk) of σ′. Since the first edge in σ′ is a K-edge, we are guar-
anteed that such an edge exists. By the choice of m, there are no K-edges
between rm+1 and rk in σ′. This implies that all edges between these two
nodes are ∧-, ¬- or ∀-edges. This, in turn, implies that rk must be a substitu-
tion instance of a subformula of rm+1. Since rk contains Kx as a subformula,
rm+1 must then contain Kx as well. Thus rm+1 is ungrounded. This means
that (rm, rm+1) is a K-edge on the form (Kϕ,ϕ), where ϕ is ungrounded.
Since (Kϕ,ϕ) is an edge in σ, this completes the proof. �

Example 5.31. A consequence of the lemma above is that any cycle in
GL contains a K-edge (Kϕ,ϕ), where the end node ϕ is ungrounded. The
cycle in Figure 5.5 contains the K-edge

(
ψ,∀x¬ (About (x, striped) ∧Kx)

)
,

where the end node is an ungrounded sentence. The cycle also contains an-
other K-edge (Kψ,ψ), but in this edge the end node is the grounded sentence

K∀x¬ (About (x, striped) ∧Kx) .

From Lemma 5.30 we get important information on where the regular
sentences appear in GL. More precisely, we have the following result.

Lemma 5.32. If ϕ is a regular sentence in L, then ϕ is not contained in
any infinite paths in GL.

Proof. Let ϕ be an arbitrary regular sentence in L. Assume to obtain a
contradiction that ϕ is the first node in an infinite path σ in GL.

5.3. FROM AGENT LANGUAGES TO DEPENDENCY GRAPHS 103

Claim. Every sentence in σ is regular.

Proof of claim. It suffices to prove that if (r1, r2) is an edge in σ and
r1 is regular, then r2 is regular as well. So let an arbitrary edge (r1, r2) in σ

be given and assume that r1 is regular. If (r1, r2) is a ∧-, ¬- or K-edge, then
it immediately follows that r2 must be regular as well, by the definition of the
regular formulas (Definition 4.9). The only case left to check is if (r1, r2) is a
∀-edge. In that case we have r1 = ∀xϕ(x) and r2 = ϕ(τ) for some formula ϕ
and term τ . Since r1 is regular, the formula ϕ(x) can not contain Kx. But
then the regularity of ϕ(τ) follows directly from the regularity of ϕ(x). This
completes the proof of the claim.

The claim contradicts Lemma 5.30, since by that lemma every infinite
path contains a K-edge where the end node is ungrounded. We have, however,
just constructed an infinite path σ in which every sentence is regular and thus
grounded. �

The above lemma gives us some information about the self-referential
sentences. Suppose ϕ is an indirectly self-referential sentence in UL. Then,
by definition, ϕ is contained in a cycle in GL. It follows that ϕ must also
be contained in an infinite path in GL. By the lemma above, the sentence
ϕ can then not be regular. This argument shows that any indirectly self-
referential sentence in UL is non-regular. This fact should be compared with
the Rivières-Levesque theorem (Theorem 4.10). The theorem proves that we
can consistently instantiate the reflection principles A1–A4 and A2–A6 with
the regular sentences. By the argument just given, none of these sentences
are (indirectly) self-referential. Thus by only instantiating the reflection prin-
ciples over the regular sentences we effectively avoid instantiating over any
self-referential ones. This explains how restricting instantiation to the regular
sentences can give a consistent theory. By only including the regular sentences
in our instantiation class, we exclude all self-referential sentences from this
class, including the formal knower sentences causing the inconsistency.

As mentioned, it is our goal to find a larger and more useful set of consis-
tent instances of the reflection principles than the one provided by des Rivières
and Levesque. The results proven above are going to be very helpful in reach-
ing this goal. Before we can apply these results, however, we need to show
how questions of consistency of first-order agent theories relate to properties
of GL. This is the subject of the following section.

104 5. THE GRAPH APPROACH TO AVOIDING INCONSISTENCY

5.4. From Sentence Nets to Consistent Reflection Principles

We will now show how the question of consistency of reflection principles
can be reduced to the question of non-paradoxicality of certain dependency
graphs.

Definition 5.33. Let M be a set of sentences in L. We define UM to
be the sentence net obtained from UL by removing every clause sKϕ : sϕ for
which ϕ is not in M . The dependency graph of UM is denoted GM .

The following lemma is a trivial consequence of the definition.

Lemma 5.34. Let M be as above. The graph GM is the subgraph of GL

obtained by removing all K-edges (Kϕ,ϕ), where ϕ is not in M .

Example 5.35. Consider the graph G∅, that is, the graph GM where
M = ∅. This graph is obtained from GL by removing all K-edges. By Lemma
5.21, this graph can not contain any infinite paths and thus no cycles. It
is a well-founded graph. The non-wellfounded subgraphs of GL presented in
figures 5.4, 5.5 and 5.6 all become subgraphs of G∅ when we remove all the
K-edges. We immediately see that removing these edges make the subgraphs
well-founded. By removing the K-edges, all the cycles will be “cut through”.

The purpose of defining the reduced sentence nets UM is illustrated by the
following two results. The first result relates interpretations of L to interpre-
tations of UM . The second result relates consistency of reflection principles
to non-paradoxicality of UM (and, indirectly, GM).

Lemma 5.36. Let M be a set of sentences in L. If UM has a model I,
then there exists a Herbrand interpretation J of L satisfying

(i) For every sentence ϕ in L,

I(sϕ) = t ⇔ J |= ϕ. (5.9)

(ii) J is a model of Q.
(iii) J |= Kϕ↔ ϕ, for all ϕ in M .

Proof. Assume UM has a model I. Let J be the Herbrand interpretation
of L having the following set of true atomic sentences

{ϕ ∈ L | ϕ is an atomic sentence and I(sϕ) = t} .

Lemma 3.14 guarantees that a unique such Herbrand interpretation exists.
We now prove (i) by induction on the syntactic complexity of ϕ. For the
base case, assume ϕ is an atomic sentence in L. Then (5.9) holds as a trivial
consequence of the way we defined J . This proves the base case. To prove

5.4. FROM SENTENCE NETS TO CONSISTENT REFLECTION PRINCIPLES 105

(5.9) for sentences ϕ on the form ¬α, we use the fact that UM contains the
clause s¬α : ¬sα. Since I is a model of UM , this clause implies that we have

I(s¬α) = I(¬sα).

We now get

I(s¬α) = t ⇔ I(¬sα) = t ⇔ I(sα) = f
i.h.
⇔ J 6|= α ⇔ J |= ¬α,

where the second to last equivalence is by induction hypothesis. This proves
(5.9) for all sentences ϕ on the form ¬α. When ϕ is on the form ∀xα(x), we
can use the fact that UM contains the clause

s∀xα(x) :
∧

τ∈Terms(L)

sα(τ) (5.10)

to prove that

I(s∀xα(x)) = t
(5.10)
⇔ I(

∧

τ∈Terms(L)sα(τ)) = t

⇔ I(sα(τ)) = t for all τ ∈ Terms(L)
i.h.
⇔ J |= α(τ) for all τ ∈ Terms(L)

⇔ J |= ∀xα(x).

The last equivalence above follows from the fact that J is a Herbrand model.
The chain of equivalences above prove (5.9) in the case where ϕ is on the form
∀xα(x). The final case where ϕ is on the form α ∧ β is proved similarly to
the two previous cases. Thus our induction proof of (i) is complete.

To prove (ii), it suffices to show that for every atomic sentence ϕ in L we
have

Q ` ϕ ⇒ J |= ϕ. (5.11)

Q ` ¬ϕ ⇒ J |= ¬ϕ. (5.12)

Using (i) and the fact that I is an interpretation of UM , we get

Q ` ϕ ⇒ sϕ : true ∈ UM ⇒ I(sϕ) = I(true) = t
(i)
⇒ J |= ϕ.

This shows the implication (5.11). The implication (5.12) is proved by

Q ` ¬ϕ ⇒ sϕ : false ∈ UM ⇒ I(sϕ) = I(false) = f
(i)
⇒ J 6|= ϕ ⇒ J |= ¬ϕ.

Hereby (ii) is proved.
To prove (iii), let an arbitrary sentence ϕ in M be given. Then UM

contains the clause sKϕ : sϕ. This implies that

I(sKϕ) = I(sϕ). (5.13)

106 5. THE GRAPH APPROACH TO AVOIDING INCONSISTENCY

Using this equality and (i) we now get

J |= Kϕ
(i)
⇔ I(sKϕ) = t

(5.13)
⇔ I(sϕ) = t

(i)
⇔ J |= ϕ.

This proves J |= Kϕ↔ ϕ, and the proof is hereby complete. �

Theorem 5.37. Let M be a set of sentences in L closed under ∧, ¬ and
K.4 Suppose S is the theory Q extended with a set of reflection principles
instantiated over M . If UM has a model then S is consistent.

Proof. Assume UM has a model. Then by the lemma above, there exists
a Herbrand interpretation J which is a model of Q and in which Kϕ ↔ ϕ

holds for all ϕ in M . By Lemma 3.16, this implies that all of the reflection
principles A1–A7 instantiated over M hold in J . The interpretation J is
therefore a model of S, and this shows S to be consistent. �

The above theorem is very important. It shows that proving consistency
results of the Rivières-Levesque and Morreau-Kraus type can be reduced to
the problem of finding sets M for which UM has a model. This can be further
reduced to the problem of finding sets M for which GM is non-paradoxical,
since if GM is non-paradoxical then UM has a model, by definition. That
is, the consistency problem for our reflection principles becomes reduced to
proving properties of certain graphs. In the next chapter we will use this to
prove two consistency results generalising the Rivières-Levesque theorem.

5.5. Relations to Logic Programming

The reader familiar with logic programming will probably have noticed
a considerable similarity between, on the one hand, sentence nets and their
dependency graphs, and, on the other hand, logic programs and their depen-
dency graphs. We will now explore these relationships.

Our sentence nets are most closely related to propositional logic programs
(ground logic programs). These can be defined as follows. We begin with
a non-empty set of propositional letters called atoms. We take the special
symbols true and false to be among these atoms. A literal is either an atom
A or its negation ¬A. A (program) clause is an expression of the form

H ← L1, . . . , Ln

where H is an atom and all Li are literals. The atom H is called the head
of the clause and L1, . . . , Ln the body. Program clauses can also be defined
simply to be formulas of propositional logic on the form

H ← L1 ∧ · · · ∧ Ln,

4By closed under ∧, ¬ and K we mean that if ϕ and ψ are sentences in M , then so are
ϕ ∧ ψ, ¬ϕ and Kϕ.

5.5. RELATIONS TO LOGIC PROGRAMMING 107

where H and Li are as above. A (propositional) program is defined to be a
set of clauses (possibly an infinite set). Non-propositional programs—that is,
programs where the atoms are atomic formulas of first-order predicate logic—
can be translated into propositional programs by grounding them: replacing
every clause by the set of ground instances (closed instances) of it.

Clauses of propositional programs can be translated into sentence net
clauses in the following simple way. Let

H ← L1 ∧ · · · ∧ Ln

be any program clause. The translation of the clause is defined to be the
sentence net clause given by

H :
∧

{L1, . . . , Ln} .

This translation does not immediately give us a way to translate programs
into sentence nets, however, since in programs we can have several clauses
with the same head as in

A← ¬B,C

A← B

C ← ¬B.

(5.14)

In sentence nets, no two clauses can have the same head. Sentence nets are
more directly related to the Clark completions of propositional programs.
The Clark completion of a propositional program P is defined as the pro-
gram comp(P) containing the following equivalences of infinitary proposi-
tional logic: For each atom A in P ,

• If A does not appear as head of any clause in P , then A ↔ false ∈
comp(P).
• Otherwise we have

A↔
∨

i∈I

(
Li1 ∧ · · · ∧ L

i
ni

)
∈ comp(P),

where {A ← Li1 ∧ · · ·L
i
ni
| i ∈ I} is the set of clauses in P with head

A.

In the Clark completion of a program, every formula is on the form

A↔ ϕ,

where ϕ is a possibly infinitary propositional formula. We again call A the
head and ϕ the body. In the Clark completion, every atom occurs as the head
of exactly one formula. The Clark completion of a program can therefore
immediately be translated into a sentence net by simply replacing the ’↔’ in

108 5. THE GRAPH APPROACH TO AVOIDING INCONSISTENCY

every formula by ’:’. It is easy to see that the sentence net obtained in this
way has a model if and only if the Clark completed program has a model.

Any propositional program P can be assigned a dependency graph as
follows. The dependency graph is a directed graph with signed edges, that
is, it contains two different types of edges called positive and negative edges.
The nodes of the graph are the atoms occurring in the program P . There is
a positive edge from the node A to the node B if and only if there is a clause
A← L1 ∧ · · ·Ln in P such that Li = B for some 1 ≤ i ≤ n. If Li = ¬B then
there is a negative edge from A to B. The dependency graph of the program
(5.14) looks as follows

A

+
&&

−

88

+
��6

66
66

6 B

C

−

DD������

The only significant difference between these dependency graphs and the ones
we have defined for sentence nets is that our graphs are unsigned. We can
think of this difference in the following way. Whereas the dependency graphs
of programs contain information about the way in which atoms semantically
depend on one another (positively or negatively), our dependency graphs only
contain information about the patterns of semantic dependency.

For the material in this chapter, we could easily have used Clark completed
propositional programs instead of sentence nets. This would have given us a
number of the basic definitions and results almost for free, since they corre-
spond more or less directly to well-known definitions and results within logic
programming. This concerns definitions 5.4, 5.8, 6.1, 6.2 and 6.6, lemmata
6.3, 6.5 and 6.7, and Theorem 6.8. Of these, we would still have been required
to state definitions 6.2 and 6.6 as well as lemmata 6.3 and 6.5 to avoid the
need of distinguishing between programs and their Clark completions.

When considering our definitions and results concerning the relation of
sentence nets to agent theories, the situation is somewhat different. None of
these definitions and results would gain from being put into the framework
of propositional logic programs (but we would not loose anything essential by
doing it either).

5.6. Chapter Notes

Mathematical objects similar to our sentence nets have been considered
in many different places in the literature. Our sentence nets are most directly
connected to the language of paradox introduced by Cook [2002]. The formal
language defined in Definition 5.1 is an extension of this language. Cook uses

5.6. CHAPTER NOTES 109

his language to study various semantic paradoxes, in particular infinite ones
related to Yablo’s paradox [Yablo, 1985; 1993]. He also associates dependency
graphs (dependency relations) with sets of sentences, and relates questions of
paradoxicality of such sets to graph theoretical properties of the associated de-
pendency graphs. However, our framework is considerably more general than
his. Sandy Hodges has recently been considering similar sets of mutually re-
ferring sentences, but in a less formal framework. We have borrowed the term
sentence net from him, since he used this term when presenting his ideas to
the Foundations of Mathematics (FOM) discussion group. Visser [1989] con-
siders stipulation lists, which are functions from a set of propositional symbols
into propositional sentences over these symbols. They correspond to sentence
nets in which only finite disjunctions and conjunctions are used. Finally, we
should mention the theory of definitions by Gupta and Belnap [1993], which
also contains many elements closely related to our sentence nets and depen-
dency graphs. Even though there are many mathematical objects introduced
in the literature that are more or less similar to our sentence nets, we did
not find any that we could have used for our purpose without modifications.
Most of the material on sentence nets and dependency graphs in sections 5.1
and 5.2 appear in Bolander [2003b].

All the material in sections 5.3 and 5.4 is due to the author. In these sec-
tions we make the important connection between agent theories and depen-
dency graphs, and show how the consistency problem for reflection principles
is related to properties of certain dependency graphs. Some of this material
appears in Bolander [2003a].

The definition of the K-depth of a formula (Definition 5.23) is adapted
from Lakemeyer [1992]. He defines a similar notion—which he calls depth of
a formula—for formulas of first-order modal logic.

CHAPTER 6

Consistency Results for Agent Theories

We will now apply the methods developed in the previous chapter to
prove our main results concerning the consistent treatments of introspective
reasoning. Our two main results are Theorem 6.9 and Theorem 6.23. They
both generalise the Rivières-Levesque theorem. We will be giving examples
of how our results can be applied in constructing agents with considerably
stronger introspective abilities than those the Rivières-Levesque theorem gives
rise to.

6.1. First Strengthened Consistency Result

Below we will prove that all well-founded graphs are non-paradoxical.
Together with Theorem 5.37, this shows that if M is a set of sentences for
which GM is well-founded, then we can consistently instantiate our reflection
principles over M . From this we will then be able to prove that the reflection
principles can consistently be instantiated over the grounded sentences. This
is a generalisation of the Rivières-Levesque theorem.

6.1.1. The Result. To prove our result generalising the Rivières-Le-
vesque theorem, we need to introduce a few new notions and a little extra
machinery. All of this machinery is fairly standard material within the areas
of logic programming semantics and formal theories of truth.

Definition 6.1. Let U be a sentence net over a set N . A partial inter-
pretation of U is a map I from N to {t, f,⊥}, where ⊥ denotes “undefined”.
Partial interpretations are extended to give values to the expressions true and
false by letting I(true) = t and I(false) = f . Partial interpretations extend
further to give values to all compound expressions in

�
N by using the strong

Kleene valuation schemes for ¬,
∨

and
∧

.1 The domain of I, denoted

1The strong Kleene valuation schemes are defined in Kleene [1964]. In our case they
amount to the following conditions for the connectives ¬ and � .

I(¬E) =

��� �	 t, if I(E) = f

f, if I(E) = t

⊥, if I(E) = ⊥

I(�
i∈M

Ei) =

��� �	 t, if I(Ei) = t for all i ∈ M

f, if I(Ei) = f for some i ∈M

⊥, otherwise.

111

112 6. CONSISTENCY RESULTS FOR AGENT THEORIES

dom(I), is the set {s ∈ N | I(s) 6= ⊥}. We say that a sentence s is defined
in I if s ∈ dom(I) and undefined otherwise. A total interpretation of U
is a partial interpretation whose domain is N .

We can think of a sentence net as giving us a kind of “update operator”
or “revision operator”. If a sentence net contains a clause s :E and we know
E to be true, then we should update our interpretation to let s be true as
well. The following operator, ΦU , is intended to capture one pass of such an
update (this is completely analogous to what Fitting does in [Fitting, 2002a]).

Definition 6.2. Let U be a sentence net. An associated mapping ΦU ,
from partial interpretations to partial interpretations, is defined as follows.
For every partial interpretation I of U , ΦU (I) is the partial interpretation
defined by

ΦU(I)(s) =

{

I(E), if s :E is a clause in U .

I(s), if there is no clause with head s in U .

Lemma 6.3. Let U be a sentence net. If I is a total interpretation of U
and a fixed point of ΦU , then I is a model of U .

Proof. Assume I is a total interpretation of U and a fixed point of ΦU .
To prove that I is a model of U , we only have to show that I(s) = I(E) holds
for all clauses s :E in U . Let thus s :E be an arbitrary clause in U . Since I
is a fixed point of ΦU , we have ΦU (I) = I. This implies

I(s) = ΦU (I)(s) = I(E),

as required. �

The set {t, f,⊥} can be given a partial ordering @ by letting ⊥ @ f and
⊥ @ t, with x @ y not holding in any other cases. We can then define v by

x v y ⇔ x = y or x @ y.

The ordering v can be extended to partial interpretations of a sentence net
U in a point-wise fashion: I v J if and only if I(s) v J(s) for all sentences
s in U . When I v J we say that J extends I. We call a set X of partial
interpretations consistent if for every pair I, I ′ in X there is a partial in-
terpretation J extending both I and I ′. We have the following well-known
results concerning the ordering v.

Lemma 6.4 (After Visser [1989]). Suppose U is a sentence net and X is
the set of partial interpretations of U . Then the following conditions hold.

The condition for the connective � is obtained by interchanging “all” and “some” in the
condition for � .

6.1. FIRST STRENGTHENED CONSISTENCY RESULT 113

(i) Every consistent subset Y of X has a least upper bound with respect to
v. We denote this least upper bound by tY .

(ii) For any map g : X → X which is monotonic with respect to v, the set
{I ∈ X | I v g(I)} has a maximal element I∗. The partial interpreta-
tion I∗ is a fixed point of g.

(iii) Suppose g : X → X is monotonic with respect to the ordering v, and I
is an element in X satisfying I v g(I). Then g has a least fixed point
extending I.

Proof. We only have to prove that (X,v) is a coherent complete partial
order, since in Section 2 of Visser [1989] the properties (i)–(iii) are proven to
hold for any such order. A coherent complete partial order (henceforth ccpo)
is a partial order (D,≤) for which every consistent subset of D has a least
upper bound in D. It is trivial to check that ({t, f,⊥},v) is a ccpo. By item
(iii) of Lemma 2.7 in Visser [1989], it then follows that the set (X,v) is a
ccpo as well. This completes the proof. �

Lemma 6.5. The update operator ΦU is monotonic with respect to the
ordering v.

Proof. Assume I v J . We have to prove that ΦU (I) v ΦU (J). To do
this, let s be an arbitrary sentence in U . Then we have to prove

ΦU(I)(s) v ΦU(J)(s). (6.1)

We first consider the case where s is the head of some clause s :E in U . In
this case we have

ΦU (I)(s) = I(E) v J(E) = ΦU (J)(s),

where I(E) v J(E) follows from the assumption I v J and the monotonicity
wrt. v of the strong Kleene valuations used to assign values to compound
expressions (cf. Definition 6.1). This proves (6.1) in the case where s is the
head of a clause in U . If s is not the head of any clause, we get

ΦU (I)(s) = I(s) v J(s) = ΦU (J)(s).

Thus (6.1) holds in both cases, and the proof is therefore complete. �

Suppose U is a sentence net and let I be the partial interpretation of U
given by

I(s) =

{

f, if there is no clause in U with head s.

⊥, otherwise.
(6.2)

We will now show that ΦU(I) extends I, that is, I v ΦU(I). To do this, let s
be any sentence in U . We have to prove I(s) v ΦU (I)(s). If s is the head of
a clause in U we have I(s) = ⊥, and thus I(s) v ΦU(I)(s) holds trivially. If s

114 6. CONSISTENCY RESULTS FOR AGENT THEORIES

is not the head of a clause, then by definition of ΦU we have ΦU (I)(s) = I(s),
so again the inequality I(s) v ΦU (I)(s) holds. It now follows from Lemma
6.5 and item (iii) of Lemma 6.4 that ΦU has a least fixed point extending I.
This fixed point is quite important, so it deserves to be given a name.

Definition 6.6. Let U be a sentence net and let I be the partial interpre-
tation of U given by (6.2) above. The least fixed point of ΦU extending I is
called the minimal interpretation of U .

The minimal interpretation of a sentence net U corresponds closely to
Kripke’s least fixed point in Kripke [1975]. The minimal interpretation has
the following important property.

Lemma 6.7. Let U be a sentence net and let G denote its dependency
graph. If a node s in G is not contained in any infinite path, then it is defined
in the minimal interpretation of U .

Proof. Let I denote the partial interpretation given by (6.2) above and
let I0 denote the minimal interpretation of U . By definition of I0, we have
I v I0. Let M be the set of nodes in G not contained in any infinite paths.
Let M ′ be the subset of M consisting of the nodes undefined in I0, that is,
the nodes s ∈ M with I0(s) = ⊥. We have to show that M ′ is the empty
set. Assume to obtain a contradiction that M ′ is non-empty. Then there
must exist a sentence s in M ′ for which all sentences in ΓG(s) are not in M ′.
This fact is realised by noting that otherwise we could from any sentence in
M ′ construct an infinite path consisting only of elements in M ′, contradicting
that M ′ is a subset of M . The sentence s must be the head of a clause in U ,
since otherwise the definition of I and the fact that I0 extends I would give
us

I0(s) w I(s) = f,

contradicting that s is an element of M ′. Let thus s :E be the clause with
head s in U . Then ΓG(s) is the set of sentences occurring in E. By choice
of s, we have ΓG(s) ⊆ M −M ′. This means that all elements of ΓG(s) are
defined in I0. The expression E must therefore also be defined in I0. That is,
I0(E) 6= ⊥. Using that I0 is a fixed point of ΦU , we now finally get

I0(s) = ΦU (I0)(s) = I0(E) 6= ⊥.

This contradicts, once again, the choice of s. The proof is hereby complete.
�

Lemma 6.3 and Lemma 6.7 now give us the following promised result.

Theorem 6.8. Suppose G is a well-founded graph. Then G is non-para-
doxical.

6.1. FIRST STRENGTHENED CONSISTENCY RESULT 115

Proof. Let U be any sentence net with dependency graph G. We have
to show that U has a model. Let I denote the minimal interpretation of U .
We want to show that I is a model of U . Note that since G is well-founded, it
does not contain any infinite paths, and I must therefore be defined on every
sentence in U . This follows from Lemma 6.7. Now Lemma 6.3 immediately
gives us that I is a model of U . �

We are now finally ready to prove our first consistency result strengthening
the Rivières-Levesque theorem. Recall that we have decided to take L to
denote a fixed first-order agent language.

Theorem 6.9 (First main result). Suppose S is the theory Q extended
with a set of reflection principles instantiated over the grounded sentences of
L. Then S is consistent.

Proof. Using Theorem 5.37, it is sufficient to prove that UM has a model
when M is the set of grounded sentences. This can be proved by showing that
GM is non-paradoxical. We will prove that GM is well-founded. Then the
required conclusion follows from Theorem 6.8. Assume to obtain a contradic-
tion that GM is not well-founded. Then it must contain an infinite path. By
Lemma 5.30, this path must contain a K-edge (Kϕ,ϕ) where ϕ is ungrounded
(we are using that GM is a subgraph of GL). But this immediately contradicts
Lemma 5.34, and the proof is thus complete. �

In the following section we will look at some of the consequences of The-
orem 6.9 concerning consistent treatments of agent introspection.

6.1.2. Discussion. We have already noted that all regular sentences are
grounded (Lemma 5.27), so Theorem 6.9 has the Rivières-Levesque theorem
as an immediate corollary. The question is: How much more general than
the Rivières-Levesque theorem is our result? First of all, it is more general
in concerning all combinations of the reflection principles and not only the
two subsets A1–A4 and A2–A6. However, it is implicit in the construction
of des Rivières and Levesque that their result can also be generalised in this
way. Furthermore, our result is more general since it covers the larger set of
grounded sentences. The question is whether these sentences are expressive
enough to allow the kind of introspective reasoning we have been aiming
for. To answer this question, we take another look at the list of sentences
considered in Section 4.3.1:

(i) KOn (black,floor)
(ii) K¬KOn (striped,white)
(iii) K (¬KOn (striped,floor) ∧ ¬K¬On (striped,floor))
(iv) K¬∃x (About (x, striped) ∧Kx)

116 6. CONSISTENCY RESULTS FOR AGENT THEORIES

(v) Kole ∀x (About (x, cool jazz) ∧Ksue x→ Kbill x)
(vi) Kjohn ∃x (Kbill x ∧ ¬Kjohn x)
(vii) ∀x∀y (IterateK (ϕ, n, x) ∧ y < n→ Ky (x))
(viii) ∀x1∀x2 (Neg (x1, x2)→ ¬ (Kx1 ∧Kx2))

We have already noted that of these sentences only (i)–(iii) are regular. All
of the sentences (i)–(vi) are grounded, however, since none of these contain
Kx as a subformula for any variable x (they only contain Kx in coded form).
This means that the theorem above gives a significant improvement over the
Rivières-Levesque theorem. Our result shows that we can also consistently
allow agents to reason about sentences such as (iv)-(vi). The two remaining
sentences, (vii) and (viii), are not grounded, so the theorem does not guar-
antee that such sentences can be reasoned about consistently. Neither does
it guarantee that we can reason about the sentences obtained from removing
the initial K from (iv)-(vi), that is, the sentences

(iv’) ¬∃x (About (x, striped) ∧Kx)
(v’) ∀x (About (x, cool jazz) ∧Ksue x→ Kbill x)
(vi’) ∃x (Kbill x ∧ ¬Kjohn x)

We would like our agents to be able to reason about such sentences as well, if
this can be done consistently. We must therefore look for a way to strengthen
the result above.

Using Theorem 5.37, the result above can be strengthened if we can find
a set M larger than the set of grounded sentences for which GM is still non-
paradoxical. Unfortunately, no such set exists! It is possible to show that
M only needs to contain a single ungrounded sentence for GM to become
paradoxical. We will not give a proof of this statement here, but simply note
that it can be proven by showing the following two facts

• Any cyclic graph is paradoxical.
• If M contains an ungrounded sentence, then GM is cyclic.

This implies that we are in need of an alternative strategy if we wish to
strengthen the result above.

An obvious possible strategy would be to see if there, given M , are any
edges in GM which are “dispensable”. If it is somehow possible to thin out
the graph without destroying its essential properties, then we might be able
to show the well-foundedness of the modified graph, even if M contains un-
grounded sentences. In the following section we pursue this strategy.

6.2. Second Strengthened Consistency Result

We start this section by giving an example demonstrating the intuition
behind the strategy of “thinning out” (reducing) dependency graphs.

6.2. SECOND STRENGTHENED CONSISTENCY RESULT 117

Example 6.10 (The About predicate). In Example 4.1, we showed that
our formalisation of the About predicate suffers from problems related to self-
reference. We demonstrated that an agent can become inconsistent simply
from reasoning about a sentence expressing: “I do not know anything about
the striped block”. The problem is that this sentence itself constitutes a piece
of knowledge about the striped block.

The problems can be avoided by doing things slightly different. Let us
agree to call a formula ϕ in L objective if it does not contain any occurrence
of K, that is, if it is a formula in L−{K} (Lakemeyer [1992] defines objective
formulas in a similar way for a corresponding language of first-order modal
logic). When an agent expresses that nothing is known about an object c, then
in most cases the agent probably intends to be saying: “nothing objective is
known about c”. Let Obj be the set of Gödel numbers of objective sentences in
L. Since Obj is trivially recursive, there exists a formula Obj (x1) representing
Obj in any agent theory. To express that nothing objective is known about
the striped block, we can then simply write

∀x (About (x, striped) ∧Obj (x)→ ¬Kx) . (6.3)

Let us denote this formula ϕ. Since ϕ is not objective, it will not itself be
one of the sentences it claims not to be known. This will block the reasoning
reasoning carried out in Example 4.1, where the sentence corresponding to
(6.3) was instantiated with (the Gödel code of) itself. If we instantiate ϕ with
the Gödel code of ϕ, we get

About (ϕ, striped) ∧Obj (ϕ)→ ¬Kϕ.

This sentence is simply a theorem in Q, since it follows from our definition of
Obj (x1) that

Q ` ¬Obj (ϕ) .

The sentence will therefore not be able to do any harm.
There is, however, still a problem with About. Consider the following

sentence
On (striped,floor) ∨ ¬On (striped,floor) .

This sentence is valid in first-order predicate logic, so if the agent’s knowledge
base contains reflection principle A3, then the agent will be able to infer

K (On (striped,floor) ∨ ¬On (striped,floor)) . (6.4)

At the same time it will, from ϕ, be able to infer

¬K (On (striped,floor) ∨ ¬On (striped,floor)) , (6.5)

since On (striped,floor)∨¬On (striped,floor) is an objective sentence contain-
ing an occurrence of striped. Thus, the agent will be able to infer the contra-
diction obtained from taking the conjunction of (6.4) and (6.5). This problem

118 6. CONSISTENCY RESULTS FOR AGENT THEORIES

does not apply to the situation considered in Example 4.1, however, since the
only reflection principle we included there was A1. To avoid contradictions
such as the one we just inferred, we must make some further restrictions to
the way we treat About. Let Lit (x1) be a formula representing the set of
closed literals in L, that is, the set of atomic and negated atomic sentences.
Then we can replace ϕ by

ψ
df
= ∀x (About (x, striped) ∧Obj (x) ∧ Lit (x)→ ¬Kx) . (6.6)

The sentence ψ expresses that no objective literals concerning striped are
known. If ψ is contained in an agent’s knowledge base, the agent will be able
to infer

¬KOn (striped,floor)

¬K¬On (striped,floor)

¬KOn (black, striped)

...

but not problematic ones such as

¬K (On (striped,floor) ∨ ¬On (striped,floor))

¬Kψ.

To be certain that there are no further problems in our formalisation of
About, we would like to prove that sentences such as ψ can consistently be
reasoned about, that is, we can consistently instantiate our reflection prin-
ciples with such sentences. The strongest consistency result at our disposal
concerning instances of the reflection principles is Theorem 6.9. This theorem
does unfortunately not guarantee us that a sentence such as ψ can consistently
be instantiated with, since ψ is not grounded. We do still not believe that ψ
is paradoxical, however, since ψ does not refer to itself in the same way as
the sentence considered in Example 4.1 did. The occurrence of ¬Kx in ψ is
protected by the formula Obj (x), which ensures that only the non-knowledge
of a set of objective sentences is expressed. Since ψ is not objective, there is
no self-reference involved, and thus everything should be fine. With the way
we have defined our dependency graphs, these graphs are however not differ-
entiated enough to allow us to see that ψ is not self-referential. Consider the
subgraph of GL presented in Figure 6.1. We have here replaced the ψ from
(6.6) by the sentence that it abbreviates, which is

∀x¬ (About (x, striped) ∧Obj (x) ∧ Lit (x) ∧Kx) .

6.2. SECOND STRENGTHENED CONSISTENCY RESULT 119

∀x¬ (About (x, striped) ∧Obj (x) ∧ Lit (x) ∧Kx)

∀
��

¬ (About (ψ, striped) ∧Obj (ψ) ∧ Lit (ψ) ∧Kψ)

¬

��
About (ψ, striped) ∧Obj (ψ) ∧ Lit (ψ) ∧Kψ

∧
��

∧

**UUUUUUUUUUUUUUUUUUU

About (ψ, striped) ∧Obj (ψ) ∧ Lit (ψ) Kψ

Kdd

Figure 6.1. A subgraph of GL.

We see that ψ is (indirectly) self-referential in UL, since it is contained in a
cycle. Since ψ is not objective, we have

Q ` ¬Obj (ψ) .

From this alone it follows that

Q ` ¬ (About (ψ) ∧Obj (ψ) ∧ Lit (ψ) ∧Kψ) .

Thus, in this case, we do not need all of the semantic dependencies expressed
by the edges of the graph to determine the semantic value of ψ. In particular,
we can drop the edge leading from About (ψ, striped)∧Obj (ψ)∧Lit (ψ)∧Kψ to
Kψ, since the semantic value of Kψ is not needed to determine the semantic
value of the conjunction. If we can somehow reduce our graphs by dropping
edges that express semantic dependencies which are not used, then we might
be able to correctly see that ψ is actually not self-referential; and that such
sentences can also be treated consistently. We are now going to show how
such reductions of graphs can be carried out.

6.2.1. The Result. The following definition gives us a way to reduce
sentence nets and thus dependency graphs.

Definition 6.11. Let U be a sentence net and let I be a partial interpre-
tation of U . By the reduction of U modulo I we understand the sentence
net obtained from U by performing the following two transformations

• Remove every clause with head s for which I(s) = t or I(s) = f .
• Replace in the remaining clauses every occurrence of a sentence s for

which I(s) = t with the expression true and every occurrence of an s

for which I(s) = f by false.

120 6. CONSISTENCY RESULTS FOR AGENT THEORIES

The following lemma is a trivial consequence of the way we have defined
reductions of sentence nets.

Lemma 6.12. Let U and I be as above. Let G denote the dependency
graph of U and G′ the dependency graph of the reduction of U modulo I. The
graph G′ is obtained from G by removing every edge (r1, r2) for which r1 is
defined in I.

Definition 6.13. Let U be a sentence net and let I denote the minimal
interpretation of U . The reduction of U modulo I is called the minimal re-
duction of U . The minimal reduction of U is denoted U− and its dependency
graph G−.

The following two results should not come as a surprise.

Lemma 6.14. Let U be a sentence net. If U− has a model, then U has
a model.

Proof. Assume that a sentence net U over N is given. Assume further
that the minimal reduction U− of U has a model I−. We have to show that
in this case U has a model as well. Let I0 denote the minimal interpretation
of U . Note that by definition, U− is a sentence net over the set N −dom(I0).
Thus I− and I0 have disjoint domains, and they therefore have a least upper
bound I− t I0 (cf. Lemma 6.4(i)). Since I− has domain N − dom(I0) and I0
has domain dom(I0), this least upper bound must be a total interpretation of
U . We claim that I− t I0 is a model of U . To prove this claim, let s :E be
any clause in U . We have to prove that

I− t I0(s) = I− t I0(E).

Assume first that s is defined in I0, that is, I0(s) = t or I0(s) = f . Then,
since I0 is a fixed point of ΦU , we get

I− t I0(s) = I0(s) = ΦU (I0)(s) = I0(E) = I− t I0(E),

as required. Assume then that s is not defined in I0, that is, s ∈ N−dom(I0).
Then U− contains a clause s :E ′, where E′ is obtained from E by replacing
every sentence s′ for which I0(s

′) = t with true and every sentence s′ for
which I0(s

′) = f with false. From this it immediately follows that

I− t I0(E
′) = I− t I0(E).

Since I− is a model of U− we then get

I− t I0(s) = I−(s) = I−(E′) = I− t I0(E
′) = I− t I0(E).

This completes the proof. �

6.2. SECOND STRENGTHENED CONSISTENCY RESULT 121

Lemma 6.15. Let ϕ be any sentence in L. If Q ` ϕ then ϕ does not
occur in U−

L (and thus not in G−
L).

Proof. Let ϕ be given such that Q ` ϕ. We have to show that sϕ does
not occur in the sentence net U−

L . Let I0 denote the minimal interpretation
of UL. Then I0 is a fixed point of the operator ΦUL

. Consider the sentence
net U∅. This sentence net is obtained from UL by removing all clauses of the
form sKϕ :sϕ. The dependency graph G∅ of U∅ can therefore not contain any
K-edges. By Lemma 5.21, it then follows that there are no infinite paths in
G∅. From this we obtain, by Lemma 6.7, that I0 is a total interpretation of
U∅. Furthermore, since U∅ is obtained from UL by removing a set of clauses
and since I0 is a fixed point of ΦUL

, the interpretation I0 must be a fixed
point of ΦU∅

as well. What we have hereby shown is that I0 is a total fixed
point of ΦU∅

. By Lemma 6.3, I0 is therefore a model of U∅. It then follows
by Lemma 5.36 that there exists a model J of Q satisfying

I0(sϕ) = t⇔ J |= ϕ. (6.7)

Since we have assumed Q ` ϕ and since J is a model of Q, we must have
J |= ϕ and thus I0(sϕ) = t. Since I0 is the minimal interpretation of UL, it
follows by the definition of U−

L that every occurrence of sϕ in UL has been

replaced by the expression true in U−
L . In order words, sϕ does not occur in

U−
L , which is the required conclusion. �

We are now ready to define the set of sentences which we are going to prove
that our reflection principles can consistently be instantiated with. These
sentences are called protected sentences. The idea behind them is explained
in the following. We know that the ungrounded sentences are the ones causing
the problems, since we have already shown it to be safe to instantiate with
all grounded sentences (Theorem 6.9). An ungrounded sentence is a sentence
containing Kx as a subformula for some variable x. It is thus a sentence
containing a subformula of the form ∀xϕ(x), where ϕ(x) contains Kx. The
problem is here that the quantifier ∀x quantifies over all (Gödel codes of)
sentences, including the sentence itself. This means that it is a self-referential
sentence, and it is thus prone to cause inconsistency. The idea is now to
somehow prevent the quantifier ∀x from quantifying over a set of sentences
including the sentence in which it itself occurs. In Example 6.10 we hinted at
how this can be done. If we for instance write

∀x (Obj (x)→ Kx) ,

then this will be an ungrounded sentence expressing that all objective sen-
tences are known. Since all objective sentences are grounded, this sentence
will not make any claims as to whether it is itself known or not. The idea is

122 6. CONSISTENCY RESULTS FOR AGENT THEORIES

here that we have protected the occurrence of the subformula Kx by the for-
mula Obj (x) in such a way that quantification will effectively only be over the
objective sentences. This strategy of protecting occurrences of Kx to avoid
self-reference is the idea behind our definition of the protected sentences.

Definition 6.16. A sentence ϕ in L is called protected if, for any vari-
able x, the expression Kx only occurs in ϕ as part of subformulas of the form

∀x (α(x)→ β(x)) ,

where α(x) represents a set of regular sentences. Otherwise ϕ is called un-
protected.

Example 6.17 (The About predicate). Consider again the sentence ψ

from Example 6.10. This sentence is given by

ψ = ∀x (About (x, striped) ∧Obj (x) ∧ Lit (x)→ ¬Kx) .

Define formulas α(x) and β(x) by

α(x) = About (x, striped) ∧Obj (x) ∧ Lit (x)

β(x) = ¬Kx.

Then ψ is the sentence ∀x (α(x)→ β(x)). Since the subformula Obj (x) rep-
resents the set of objective sentences of L, and since all objective sentences
trivially are regular, α(x) must be representing a set of regular sentences.
This proves that ψ is protected. If we succeed in proving that the reflection
principles can consistently be instantiated with all protected sentences, then
we have a proof that ψ can safely be reasoned about by our agents. We are
going to prove this result in the following.

Example 6.18. Consider a formal knower sentence given by

β = ∀x2 (D(α, x2)→ ¬Kx2) ,

where α(x1) = ∀x2 (D(x1, x2)→ ¬Kx2). A knower sentence on this form
is guaranteed to exist by the diagonalisation lemma (Lemma 4.2). Since
D(x1, x2) represents the diagonalisation function, the formula D(α, x2) must
represent the singleton {α(α)}, which is equal to {β}. Since β is not regular,
the formula D(α, x2) represents a set of non-regular sentences. From this it
follows that the sentence β is unprotected. Thus none of the self-referential
knower sentences guaranteed to exist by the diagonalisation lemma are pro-
tected.

Example 6.17 above shows that there exists protected sentences which are
not grounded. The converse is not true. If a sentence is grounded then it does
not contain Kx as a subformula, so it trivially satisfies the condition for being
protected. We have therefore proved the following.

6.2. SECOND STRENGTHENED CONSISTENCY RESULT 123

Lemma 6.19. The set of protected sentences of L is a proper extension
of the set of grounded sentences of L.

Since we already know the grounded sentences to be a proper extension of
the regular ones (Lemma 5.27), we have the following chain of strict inclusions

{ϕ | ϕ is regular} ⊂ {ϕ | ϕ is grounded} ⊂ {ϕ | ϕ is protected}.

We wish to bring attention to the fact that there is a certain second-order
flavour to the protected sentences. We seem to have introduced two levels
of sentences: the regular sentences and the protected sentences. The regular
sentences are at the lower level, and these do not involve quantification over
knowledge. The protected sentences are at the higher level, and they only
involve quantification over knowledge concerning sentences at the lower level.

Definition 6.20. To every formula ϕ in L we associate a natural number
q(ϕ), called its non-regularity degree. The function q is defined recursively
by

(i) q(Kx) = 1, for any variable x.
(ii) q(Kϕ) = ϕ, for any sentence ϕ in L.
(iii) q(ϕ) = 0, for any other atomic formula.
(iv) q(¬ϕ) = q(ϕ).
(v) q(ϕ ∧ ψ) = q(ϕ) + q(ψ).
(vi) q(∀xϕ) = q(ϕ).

Example 6.21. The sentence ∀xKx has non-regularity degree one. By
condition (ii) above, K∀xKx also has non-regularity degree one, even though
Kx is not a subformula in K∀xKx (it appears only in coded form). The
sentence K∀xKx∧∀yKy has non-regularity degree 2, by condition (v) above.
By condition (iii), A∀xKx has non-regularity degree zero if A is distinct
from K. From conditions (ii)–(v) we see that any regular formula has non-
regularity degree zero.

The following lemma shows that it is not possible to construct indirectly
self-referential sentences in U−

L without using unprotected sentences.

Lemma 6.22. Let σ be an infinite path in G−
L . Then σ contains infinitely

many unprotected sentences.

Proof. Assume to obtain a contradiction that there exists an infinite
path σ in G−

L containing only finitely many unprotected sentences. Then
there exists a subpath σ′ of σ containing only protected sentences.

Claim 1. Suppose (∀xϕ(x), ϕ(τ)) is an edge on σ ′, where Kx occurs in
ϕ(x). Then the non-regularity degree of the end node ϕ(τ) is strictly less
than the non-regularity degree of the start node ∀xϕ(x).

124 6. CONSISTENCY RESULTS FOR AGENT THEORIES

Proof of claim. If τ is not the Gödel code of a sentence in L, then it fol-
lows directly from Definition 6.20 that ϕ(τ) must have lower non-regularity
degree than ∀xϕ(x). Assume therefore conversely that τ = pψq for some
sentence ψ. Then the edge is of the form (∀xϕ(x), ϕ(pψq)). By choice
of σ′, the sentence ∀xϕ(x) is protected. It must therefore be on the form
∀x (α(x)→ β(x)), where α(x) represents a set of regular sentences. Thus the
edge is on the form

(
∀x (α(x)→ β(x)) , α(pψq) → β(pψq)

)
.

By Lemma 6.15, we must have

Q 6` α(pψq)→ β(pψq).

This implies
Q 6` ¬α(pψq). (6.8)

Since α(x) is representing a set of natural numbers, the substitution instance
α(pψq) must be decidable in Q. From (6.8) we therefore get

Q ` α(pψq).

Since α(x) is representing a set of regular sentences, pψq must thus be the
Gödel code of a regular sentence. The edge is therefore on the form

(∀xϕ(x), ϕ(pψq)) ,

where ψ is regular. Since ψ is regular, it has non-regularity degree 0 (cf.
Example 6.21). Thus the non-regularity degree of the end node ϕ(pψq) must
be strictly less than the non-regularity degree of the start node ∀xϕ(x). This
proves the claim.

Claim 2. The non-regularity degree is monotonically decreasing along σ ′.

Proof of claim. Let (r1, r2) be any edge in σ′. We have to show that
q(r2) ≤ q(r1). If (r1, r2) is a K-, ¬- or ∧-edge, we immediately get q(r2) ≤
q(r1) by the clauses (ii), (iv) and (v), respectively, of Definition 6.20. The
only case left to check is if (r1, r2) is a ∀-edge. So assume r1 = ∀xϕ(x) and
r2 = ϕ(τ) for some formula ϕ and term τ . If ϕ(x) does not contain Kx, then
we obviously have q(r1) = q(r2). Assume therefore that ∀xϕ(x) contains Kx.
Then by Claim 1, q(r2) < q(r1). Thus the claim is proved.

Claim 1 and Claim 2 now lead to a contradiction in the following way.
Since by Claim 2, the non-regularity degree is monotonically decreasing along
σ′, there must be an infinite subpath σ′′ of σ′ on which the non-regularity de-
gree is constant. By Lemma 5.28, the path σ ′′ contains a ∀-edge (∀xϕ(x), ϕ(τ)),
where Kx occurs in ϕ(x). Now Claim 1 gives us that the end node of this
edge has lower non-regularity degree than the start node, contradicting the
choice of σ′′. �

6.2. SECOND STRENGTHENED CONSISTENCY RESULT 125

Everything is now set for proving our main result.

Theorem 6.23 (Second main result). Suppose S is the theory Q ex-
tended with a set of reflection principles instantiated over the protected sen-
tences of L. Then S is consistent.

Proof. LetM denote the set of protected sentences in L. Using Theorem
5.37, it suffices to prove that UM has a model. Using Lemma 6.14, it further-
more suffices to prove that U−

M has a model. This can be proved by showing

that G−
M is a non-paradoxical graph. We will show that G−

M is well-founded.

Then the required conclusion follows from Theorem 6.8. To prove that G−
M

is well-founded, assume the opposite. Then it must contain an infinite path
σ = (r1, r2, . . .). By Lemma 5.21, this path contains a K-edge (rn, rn+1). By
choice of M , the end node rn+1 must be a protected sentence, since in G−

M

all K-edges with non-protected end nodes have been removed (Lemma 5.34).
Let σ′ be the subpath (rn+1, rn+2, . . .) of σ. Every sentence in σ′ must be
protected, since the first node is protected and it is easy to see that all ∧-,
¬-, ∀- and K-edges in G−

M preserve protectedness (the K-edges do it simply
because all K-edges with non-protected end nodes have been removed). Thus
we immediately have a contradiction with Lemma 6.22, by which σ ′′ should
contain infinitely many unprotected sentences. �

6.2.2. Applying the Result. We will now through a number of exam-
ples show how the result above guarantees that agents can safely do a large
amount of the introspective reasoning we are interested in.

Example 6.24 (The About predicate). In Example 6.10 we considered
various ways to formalise the sentence “the agent does not know anything
about the striped block”. We came to the conclusion that in order to obtain
the intended interpretation, this sentence should be formalised as

∀x (About (x, striped) ∧Obj (x) ∧ Lit (x)→ ¬Kx) .

This sentence expresses that no objective literal concerning the striped block
is known. In Example 6.17 we showed that the sentence is protected. By
Theorem 6.23 it follows that we can consistently instantiate our reflection
principles with the sentence, and thus agents will be allowed to reason about
it consistently. Let us illustrate some of the consequences of this.

We can for instance define a formula Ignorant-about (x1, x2) by

Ignorant-about (x1, x2) = ∀x3 (About (x2, x3) ∧Obj (x3) ∧ Lit (x3)→ ¬Kx1
x3) .

This formula provides agents with an “ignorance about” modality. For any
n,m ∈ N, the sentence Ignorant-about (n,m) expresses that the agent denoted
by n is ignorant about the properties of the object denoted bym. The sentence

126 6. CONSISTENCY RESULTS FOR AGENT THEORIES

Ignorant-about (n,m) is a protected sentence, so reasoning about it can be
done consistently. An agent can for instance express

“I do not have any knowledge about Malaysia”

by
K0Ignorant-about (0,malaysia) .2

The agent will be allowed to reason about this sentence consistently, using
any of the reflection principles A1–A7 (and T). An agent could also express
the ignorance of other agents, as for instance in

Kbill Ignorant-about (sue, cool jazz) ,

expressing that Bill knows Sue to be ignorant about cool jazz. Conversely,
to express that Bill knows Sue to know something about cool jazz, we could
write

Kbill ¬Ignorant-about (sue, cool jazz) .

The ability to express and reason about such sentences can for instance
be advantageous when we want several agents to cooperate in carrying out
various tasks. If an agent wishes to find another agent to help it solve a
particular problem, then it can be important for this agent to be able to
reason about which of the other agents have knowledge about the problem.

We now take a final look at the list of sentences considered in sections
4.3.1 and 6.1.2.

(i) KOn (black,floor)
(ii) K¬KOn (striped,white)
(iii) K (¬KOn (striped,floor) ∧ ¬K¬On (striped,floor))
(iv) K¬∃x (About (x, striped) ∧Kx)
(v) Kole ∀x (About (x, cool jazz) ∧Ksue x→ Kbill x)
(vi) Kjohn ∃x (Kbill x ∧ ¬Kjohn x)
(vii) ∀x∀y (IterateK (ϕ, n, x) ∧ y < n→ Ky (x))
(viii) ∀x1∀x2 (Neg (x1, x2)→ ¬ (Kx1 ∧Kx2))

Of these sentences we know that only (i)–(iii) are regular and only (i)–(vi)
are grounded. Let us take a look at the two remaining sentences, (vii) and
(viii). We do this in the following two examples.

Example 6.25 (Formalising common knowledge). In Example 3.11 we
showed that the sentence (vii) expresses that ϕ is common knowledge among
the agents 0, . . . , n− 1. Let us define C(x1) to be the following formula

C(x1) = ∀x2∀x3 (IterateK (x1, n, x2) ∧ x3 < n→ Kx3
(x2)) .

2Recall that we use the constant symbol 0 as a default name for the agent itself.

6.2. SECOND STRENGTHENED CONSISTENCY RESULT 127

Then for any sentence ϕ, the sentence C(ϕ) expresses that ϕ is common
knowledge (among agents 0, . . . , n − 1). The concept of common knowledge
is no less problematic and no less vulnerable to problems of self-reference
than the concept of knowledge itself. In fact, we can even construct a formal
sentence ψ saying of itself that it is not common knowledge. This follows
from the diagonalisation lemma (Lemma 4.2), which ensures the existence of
a sentence ψ satisfying

Q ` ψ ↔ ¬C(ψ).

This sentence gives rise to the same problems as a formal knower sentence. We
can prove a contradiction from the sentence in the same way as we proved a
contradiction from the formal knower sentence in Montague’s theorem (The-
orem 4.5). In other words, it is not always safe to reason about common
knowledge.

Let us take a closer look at the formula C(x1). It can be rewritten as

∀x3∀x2 (IterateK (x1, n, x2)→ (x3 < n→ Kx3
(x2))) .

Let ϕ be any sentence in L. Then C(ϕ) is the sentence

∀x3∀x2 (IterateK (ϕ, n, x2)→ (x3 < n→ Kx3
(x2))) .

From this we see that C(ϕ) is protected if and only if IterateK (ϕ, n, x2) rep-
resents a set of regular sentences. Let us therefore try to see which conditions
we have to put on ϕ in order for IterateK (ϕ, n, x2) to represent such a set.
The formula IterateK (x1, x2, x3) is defined to represent the relation given by

IterateK = {(pϕq, n, pKi1 · · ·Kimϕq) | ϕ is a sentence, m ≥ 0,

and i1, i2, . . . , im < n} .

Since Ki1 · · ·Kimϕ is regular if and only if ϕ is regular, IterateK (ϕ, n, x2)
will be representing a set of regular sentences if and only ϕ is regular. The
sentence C(ϕ) is therefore protected if and only if ϕ is regular!

It now follows from Theorem 6.23 that our agents can consistently reason
about the common knowledge of regular sentences. This is probably sufficient
for most practical purposes. It allows agents to express common knowledge of
facts such as “the Emperor is naked”, “we will attack at dawn” [Fagin et al.,
1995], “at least one child has mud on his forehead” [Fagin et al., 1995], etc.
That Theorem 6.23 only guarantees that the agents can consistently reason
about common knowledge of regular sentences does not seem to be a problem
for practical purposes, since we have anyway no interest in allowing them to
express sentences such as “this sentence is not common knowledge”.

The main advantage of our approach to common knowledge is that com-
mon knowledge is expressed exclusively in terms of the K predicate, whereas
the traditional operator approach requires extra symbols and axiom schemes.

128 6. CONSISTENCY RESULTS FOR AGENT THEORIES

Even if we do not mind about introducing new axioms for common knowl-
edge, our approach still has the advantage that most other modalities can be
reduced to the K predicate as well. This includes modalities such as “know-
ing about” and “ignorance about” considered above. To express all of these
modalities, we only need the language of arithmetic extended with the single
predicate symbol K.

Example 6.26. In this example we consider the sentence ϕ given by

ϕ = ∀x1∀x2 (Neg (x1, x2)→ ¬ (Kx1 ∧Kx2))

This sentence is (viii) above. We now take K to denote belief rather than
knowledge, so the sentence expresses that there is no sentence ϕ such that
both ϕ and ¬ϕ are believed. In other words, it expresses that the agent in
question has no contradictory beliefs. The sentence is unprotected. Thus
our consistency result, Theorem 6.23, does not guarantee that the sentence
can be reasoned about consistently. Suppose U is a first-order agent theory
constituting the knowledge base of the agent in question. We assume that U
contains a set of reflection principles, but that these—to ensure consistency—
are only instantiated over the protected sentences. In this case the agent will
not be able to make the inference from for instance Kϕ to

K¬ (KOn (striped,floor) ∧K¬On (striped,floor)) ,

since ϕ is not protected.
Let Reg (x1) be a formula representing the set of regular sentences in L.

Consider the sentence ψ given by

ψ = ∀x1∀x2 (Neg (x1, x2) ∧ Reg (x1) ∧ Reg (x2)→ ¬ (Kx1 ∧Kx2)) .

This sentence expresses that the agent has no contradictory regular beliefs.
We immediately see that ψ is a protected sentence. So the agent will be able
to make the inference from Kψ to

K¬ (KOn (striped,floor) ∧K¬KOn (striped,floor))

by a protected instance of reflection principle A3.
The example shows that even if the agent is prohibited from reasoning

about general statements such as “I have no contradictory beliefs”, it can
still reason about restricted statements such as “I have no contradictory regu-
lar beliefs”. In many cases this will be sufficient. It will for instance allow an
agent to express and reason about sentences such as “I do not have any con-
tradictory beliefs about Malaysia”, where we use the formalisation of “about”
given above.

6.3. CHAPTER NOTES 129

6.3. Chapter Notes

Most of the material in this chapter up to and including Theorem 6.8 is
closely related to similar developments in connection with logic programming
semantics [Fitting, 2002a] and formal theories of truth [Visser, 1989]. Our
presentation of these parts is adapted from Bolander [2003c]. The other parts
of the chapter are original. A preliminary version of Theorem 6.9 appears in
Bolander [2002b].

Our results concerning consistency of agent theories do not seem to cor-
respond to any results developed within logic programming. There is, how-
ever, a very close correspondence in the underlying ideas: To obtain results
on consistency, we represent patterns of semantic dependency by graphs
and try to see which properties of these graphs are sufficient to guaran-
tee consistency. Results of this type within logic programming can for in-
stance be found in Apt et al. [1988], Cortesi and Filè [1993], Kunen [1987;
1989] and Sato [1990]. The main difference between our work and the work
carried out in logic programming is that in logic programming the focus is on
giving a suitable semantic treatment of negation that will ensure consistency,
whereas in our work the focus has been on giving a suitable semantic treat-
ment of quantification. Roughly, the difference is between avoiding paradoxes
by making self-reference innocuous (by restricting negation) and by avoiding
self-reference altogether (by restricting quantification).

Both of our consistency results are based on proving certain graphs to be
well-founded. From this fact one might suspect that the results can be proved
more directly by transfinite recursion. It is however not entirely obvious how
such a thing should be done.

We have not been discussing the possibility of strengthening Theorem
6.23. It seems obvious to try to prove the consistency of even larger sets
of instances of the reflection principles. It can however be shown that if we
replace “a set of regular sentences” by “a set of grounded sentences” in the
definition of the protected sentences, then Theorem 6.23 will no longer hold.
The argument is fairly simple, but involves some work in giving a slightly
more general version of the diagonalisation lemma.

Using Zorn’s lemma and the compactness theorem for first-order logic,
it can be proved that there must exist a maximal set of instances of any
combination of the reflection principles. However, McGee [1992] has shown
that no such maximal set can be recursively axiomatisable. It is therefore not
sensible to look for maximal sets of consistent instances, but rather one should
look for any consistent set of instances that will be sufficient for expressing
the things one wishes to express.

Conclusion

In the thesis we have been studying the possibility of allowing artificial in-
telligence agents to do strong introspective reasoning, that is, to reason about
their own knowledge and belief in non-trivial ways. This subject belongs
to the research area of knowledge representation and reasoning. One of the
main problems within the subject is to find ways to ensure that introspective
agents are not allowed to perform self-contradictory reasoning. This problem
has been the focus of the present work.

The thesis makes two major research contributions. The first is to in-
troduce graphs and graph-based methods into the area of syntactical treat-
ments of knowledge. The second is to apply these graph-based methods to
strengthen the previously known results on the consistency of such syntactical
treatments. Graphs and graph-based methods related to ours have been stud-
ied in the areas of logic programming semantics within computational logic
and formal theories of truth within philosophical logic. However, it is the first
time that such graphs have been defined for the full language of first-order
predicate logic and it is the first time that such methods have been applied
in solving inconsistency problems for syntactical treatments of knowledge.

What we have done is to develop a general framework for representing
patterns of semantic dependency by graphs. Through such graphs we have
been able to give a precise characterisation of self-reference. This has allowed
us to study self-referential phenomena occuring in the representation and
reasoning of introspective agents. Through these studies, we have been able
to propose new ways to prevent agents from performing self-contradictory
reasoning. This has led us to our main result, Theorem 6.23. The theorem
shows that agents can safely formulate and reason about introspective pieces
of knowledge such as: “Everything Bill knows about the game, I know”, “I
believe that none of my (regular) beliefs are contradictory” and “I do not
know anything about Malaysia”.

We began the thesis by giving an informal introduction to the research
area and research problem of our work. This was done in Chapter 1. In
Chapter 2 we argued that the traditional modal logic approach to formalis-
ing the knowledge of agents is insufficient to properly deal with introspective

131

132 CONCLUSION

knowledge. This led us to consider first-order predicate logic as an alternative
framework. In Chapter 3 we presented the details of this alternative frame-
work. Then, in Chapter 4, we showed that the framework suffers from incon-
sistency problems related to the possibility of reasoning about self-referential
sentences. In Chapter 5 we developed our graph-based method and in Chap-
ter 6 we demonstrated how it could be applied to circumvent these incon-
sistency problems. This finally led us to propose a restricted framework for
representing and reasoning about introspective knowledge. The framework
effectively avoids the inconsistency problems, but still retains the expressive
power needed for most kinds of introspective reasoning.

Bibliography

[Aczel and Feferman, 1980] Peter Aczel and Solomon Feferman. Consistency of the un-
restricted abstraction principle using an intensional equivalence operator. In To H. B.
Curry: essays on combinatory logic, lambda calculus and formalism, pages 67–98. Aca-
demic Press, London, 1980.

[Aczel, 1988] Peter Aczel. Non-Well-Founded Sets. Stanford University Center for the Study
of Language and Information, 1988.

[Andréka et al., 1995] Hajnal Andréka, Johan van Benthem, and Istvan Németi. Back and
forth between modal logic and classical logic. Journal of the Interest Group in Pure and
Applied Logics, 3(5):685–720, 1995.

[Apt and Bol, 1994] Krzysztof R. Apt and Roland N. Bol. Logic programming and negation:
a survey. Journal of Logic Programming, 19(20):9–71, 1994.

[Apt et al., 1988] K. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative
knowledge. In J. Minker, editor, Foundations of deductive databases and logic program-
ming, pages 89–142, Los Altos, CA, 1988. Morgan Kaufmann.

[Asher and Kamp, 1986] Nicholas M. Asher and Johan A. W. Kamp. The knower’s para-
dox and representational theories of attitudes. In Theoretical aspects of reasoning about
knowledge (Monterey, Calif., 1986), pages 131–147. Morgan Kaufmann, 1986.

[Attardi and Simi, 1995] Guiseppe Attardi and Maria Simi. A formalization of viewpoints.
Fundamenta Informaticae, 23(2-4):149–173, 1995.

[Baral and Gelfond, 1994] Chitta Baral and Michael Gelfond. Logic programming and
knowledge representation. Journal of Logic Programming, 19(20):73–148, 1994.

[Bartlett, 1992] Steven J. Bartlett, editor. Reflexivity—A Source-Book in Self-Reference.
North-Holland, Amsterdam, 1992.

[Barwise and Etchemendy, 1987] Jon Barwise and John Etchemendy. The Liar—An Essay
on Truth and Circularity. Oxford University Press, 1987.

[Barwise and Moss, 1996] Jon Barwise and Lawrence Moss. Vicious circles. CSLI Publica-
tions, 1996.

[Beck, 2002] Andreas Beck. The Liar Lies and Snow is White—A consistent theory of truth
for semantically closed formal languages. PhD thesis, München, 2002.

[Bolander, 2002a] Thomas Bolander. Maximal introspection of agents. Electronic Notes in
Theoretical Computer Science, 70(5), 2002. Elsevier Science. 16 pages.

[Bolander, 2002b] Thomas Bolander. Restricted truth predicates in first-order logic. In The
LOGICA Yearbook 2002, pages 41–55. Filosofia, Prague, 2002.

[Bolander, 2002c] Thomas Bolander. Self-reference and logic. Phi News, 1:9–44, 2002.
PhiLog, Kluwer Academic Publishers.

[Bolander, 2003a] Thomas Bolander. From logic programming semantics to the consistency
of syntactical treatments of knowledge and belief. In Proceedings of IJCAI-03 (Eighteenth

133

134 BIBLIOGRAPHY

International Joint Conference on Artificial Intelligence), pages 443–448. Morgan Kauf-
mann, Elsevier Science, 2003.

[Bolander, 2003b] Thomas Bolander. Which patterns of semantic dependency are paradox-
ical?, I. 2003. 20 pages. Submitted for publication.

[Bolander, 2003c] Thomas Bolander. Which patterns of semantic dependency are paradox-
ical?, II. 2003. 22 pages. Submitted for publication.

[Cantor, 1891] Georg Cantor. Über eine elementare Frage der Mannigfaltigkeitslehre.
Jahresbericht der Deutschen Mathematiker-Vereinigung, 1:75–78, 1891. Reprinted in
[Cantor, 1932].

[Cantor, 1932] Georg Cantor. Gesammelte Abhandlungen. Springer Verlag, 1932.
[Carlucci Aiello et al., 1995] Luigia Carlucci Aiello, Marta Cialdea, Daniele Nardi, and

Marco Schaerf. Modal and meta languages: consistency and expressiveness. In Meta-
logics and logic programming, pages 243–265. MIT Press, 1995.

[Cook, 2002] Roy T. Cook. Parity and paradox. In The LOGICA Yearbook 2002, pages
69–83. Filosofia, Prague, 2002.

[Cortesi and Filé, 1993] Agostino Cortesi and Gilberto Filé. Graph properties for normal
logic programs. Theoretical Computer Science, 107(2):277–303, 1993.

[Davies, 1990] Nick Davies. A first order logic of truth, knowledge and belief. Lecture Notes
in Artificial Intelligence, 478:170–179, 1990.

[des Rivières and Levesque, 1988] Jim des Rivières and Hector J. Levesque. The consistency
of syntactical treatments of knowledge. Computational Intelligence, 4:31–41, 1988.

[Fagin et al., 1995] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning About Knowledge. MIT Press, 1995.

[Fasli, 2003] Maria Fasli. Reasoning about knowledge and belief: A syntactical treatment.
Logic Journal of the IGPL, 11(2):245–282, 2003.

[Feferman, 1962] Solomon Feferman. Transfinite recursive progressions of axiomatic theo-
ries. The Journal of Symbolic Logic, 27:259–316, 1962.

[Feferman, 1984] Solomon Feferman. Toward useful type-free theories I. The Journal of
Symbolic Logic, 49(1):75–111, 1984.

[Feferman, 1991] Solomon Feferman. Reflecting on incompleteness. The Journal of Symbolic
Logic, 56(1):1–49, 1991.

[Fitting and Mendelsohn, 1998] Melvin Fitting and Richard L. Mendelsohn. First-order
modal logic, volume 277 of Synthese Library. Kluwer Academic Publishers Group, Dor-
drecht, 1998.

[Fitting, 2002a] Melvin Fitting. Fixpoint semantics for logic programming—a survey. The-
oretical Computer Science, 278(1-2):25–51, 2002.

[Fitting, 2002b] Melvin Fitting. Types, Tableaus, and Gödel’s God. Kluwer Academic Pub-
lishers, 2002.

[Friedman and Sheard, 1987] Harvey Friedman and Michael Sheard. An axiomatic ap-
proach to self-referential truth. Annals of Pure and Applied Logic, 33(1):1–21, 1987.

[Gaifman, 1992] Haim Gaifman. Pointers to truth. Journal of Philosophy, 89(5):223–261,
1992.

[Gallin, 1975] Daniel Gallin. Intensional and higher-order modal logic—With applications
to Montague semantics. North-Holland Publishing Co., Amsterdam, 1975.

[Gödel, 1931] Kurt Gödel. Über formal unentscheidbare Satze der Principia Mathematica
und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38:173–198, 1931.
Reprinted in [Gödel, 1986].

BIBLIOGRAPHY 135

[Gödel, 1986] Kurt Gödel. Collected works. Vol. I. Oxford University Press, 1986. Publica-
tions 1929–1936, Edited and with a preface by Solomon Feferman.

[Grant et al., 2000] John Grant, Sarit Kraus, and Donald Perlis. A logic for characterizing
multiple bounded agents. Autonomous Agents and Multi-Agent Systems, 3(4):351–387,
2000.

[Grim, 1993] Patrick Grim. Operators in the paradox of the knower. Synthese, 94(3):409–
428, 1993.

[Gupta and Belnap, 1993] Anil Gupta and Nuel Belnap. The Revision Theory of Truth.
MIT Press, 1993.

[Harnish, 1993] Robert N. Harnish, editor. Basic Topics in the Philosophy of Language.
Prentice-Hall, 1993.

[Hintikka, 1962] Jaakko Hintikka. Knowledge and Belief: An Introduction to the Logic of
the Two Notions. Cornell University Press, 1962.

[Hughes and Cresswell, 1996] G. E. Hughes and M. J. Cresswell. A new introduction to
modal logic. Routledge, London, 1996.

[Kaplan and Montague, 1960] David Kaplan and Richard Montague. A paradox regained.
Notre Dame Journal of Formal Logic, 1(3):79–90, 1960.

[Kerber, 1998] Manfred Kerber. On knowledge, strings, and paradoxes. Lecture Notes in
Artificial Intelligence, 1489:342–354, 1998.

[Kleene, 1964] S. C. Kleene. Introduction to Metamathematics. North-Holland, 1964.
[Konolige, 1982] Kurt Konolige. A first-order formalization of knowledge and action for a

multiagent planning system. Machine Intelligence, 10:41–72, 1982.
[Konolige, 1988] Kurt Konolige. Reasoning by introspection. In P. Maes and D. Nardi, ed-

itors, Meta-Level Architectures and Reflection. North-Holland, 1988.
[Kraus et al., 1991] Sarit Kraus, Donald Perlis, and John Horty. Reasoning about ignorance:

A note on the Bush-Gorbachov problem. Fundamenta Informaticae, 15(3–4):325–332,
1991.

[Kripke, 1963] Saul A. Kripke. Semantical considerations on modal logic. Acta Philosophica
Fennica, 16:83–94, 1963.

[Kripke, 1975] Saul Kripke. Outline of a theory of truth. The Journal of Philosophy, 72:690–
716, 1975. Reprinted in [Martin, 1984].

[Kunen, 1987] Kenneth Kunen. Negation in logic programming. Journal of Logic Program-
ming, 4(4):289–308, 1987.

[Kunen, 1989] Kenneth Kunen. Signed data dependencies in logic programs. Journal of
Logic Programming, 7(3):231–245, 1989.

[Lakemeyer, 1992] Gerhard Lakemeyer. On perfect introspection with quantifying-in. In
Theoretical Aspects of Reasoning about Knowledge: Proceedings of the Fourth Conference
(TARK 1992), pages 199–213. Morgan Kaufmann, 1992.

[Levesque and Lakemeyer, 2000] Hector J. Levesque and Gerhard Lakemeyer. The Logic of
Knowledge Bases. MIT Press, 2000.

[Levesque, 1984] Hector J. Levesque. Foundations of a functional approach to knowledge
representation. Artificial Intelligence, 23:155–212, 1984. Reprinted in [Bartlett, 1992].

[Lloyd, 1987] J. W. Lloyd. Foundations of logic programming. Springer-Verlag, Berlin, sec-
ond edition, 1987.

[Martin, 1984] Robert L. Martin, editor. Recent Essays on the Liar Paradox. Oxford Uni-
versity Press, 1984.

[McCarthy, 1979] John McCarthy. Ascribing mental qualities to machines. In Philosophical
Perspectives in Artificial Intelligence, pages 161–195. Humanities Press, 1979.

136 BIBLIOGRAPHY

[McCarthy, 1996] John McCarthy. Making robots conscious of their mental states. In Ma-
chine Intelligence 15, pages 3–17. Oxford University Press, 1996.

[McCarthy, 1997] John McCarthy. Modality si! Modal logic, no! Studia Logica, 59(1):29–32,
1997.

[McGee, 1985] Vann McGee. How truthlike can a predicate be? A negative result. Journal
of Philosophical Logic, 14(4):399–410, 1985.

[McGee, 1992] Vann McGee. Maximal consistent sets of instances of Tarski’s schema (T).
Journal of Philosophical Logic, 21(3):235–241, 1992.

[Mendelson, 1997] Elliott Mendelson. Introduction to Mathematical Logic. Chapman & Hall,
4 edition, 1997.

[Montague, 1963] Richard Montague. Syntactical treatments of modality, with corollaries
on reflection principles and finite axiomatizability. Acta Philosophica Fennica, 16:153–166,
1963.

[Moreno, 1998] Antonio Moreno. Avoiding logical omniscience and perfect reasoning: a
survey. AI Communications, 11(2):101–122, 1998.

[Morreau and Kraus, 1998] Michael Morreau and Sarit Kraus. Syntactical treatments of
propositional attitudes. Artificial Intelligence, 106(1):161–177, 1998.

[Perlis and Subrahmanian, 1994] Donald Perlis and V. S. Subrahmanian. Meta-languages,
reflection principles and self-reference. In Handbook of Logic in Artificial Intelligence and
Logic Programming, volume 2, pages 323–358. Oxford University Press, 1994.

[Perlis, 1985] Donald Perlis. Languages with self-reference I. Artificial Intelligence, 25:301–
322, 1985.

[Perlis, 1988] Donald Perlis. Languages with self-reference II. Artificial Intelligence, 34:179–
212, 1988.

[Priest, 1989] Graham Priest. Reasoning about truth. Artificial Intelligence, 39(2):231–244,
1989.

[Priest, 1991] Graham Priest. Intensional paradoxes. Notre Dame Journal of Formal Logic,
32(2):193–211, 1991.

[Sato, 1990] Taisuke Sato. Completed logic programs and their consistency. Journal of Logic
Programming, 9(1):33–44, 1990.

[Smullyan, 1984] Raymond M. Smullyan. Chameleonic languages. Synthese, 60(2):201–224,
1984.

[Tarski, 1944] Alfred Tarski. The semantic conception of truth and the foundations of se-
mantics. Philosophy and Phenomenological Research, 4:341–376, 1944. Reprinted in [Har-
nish, 1993].

[Tarski, 1956] Alfred Tarski. The concept of truth in formalized languages. In Logic, se-
mantics, metamathematics—Papers from 1932 to 1938. Hackett Publishing Co., 1956.

[Thomason, 1980] Richmond H. Thomason. A note on syntactical treatments of modality.
Synthese, 44(3):391–395, 1980.

[Turner, 1990] Raymond Turner. Truth and Modality for Knowledge Representation. Pitman
Publishing Ltd., 1990.

[Visser, 1989] Albert Visser. Semantics and the liar paradox. In Handbook of philosophical
logic, volume 4, pages 617–706. D. Reidel Publishing Company, 1989.

[Whitsey, 2003] Mark Whitsey. Logical omniscience: A survey. Unpublished paper, 2003.
[Yablo, 1982] Steve Yablo. Grounding, dependence, and paradox. Journal of Philosophical

Logic, 11(1):117–137, 1982.
[Yablo, 1985] Stephen Yablo. Truth and reflection. Journal of Philosophical Logic,

14(3):297–349, 1985.

BIBLIOGRAPHY 137

[Yablo, 1993] Stephen Yablo. Paradox without self-reference. Analysis, 53(4):251–252, 1993.

Index

⊥, 109
∀-edge, 93
¬-edge, 93
v, 110
∧-edge, 93

A1–A7, reflection principles, 61
About, 54–55
agent, 13
agent language, 49
agent theory, 49
arithmetic

language of, 47
artificial intelligence

logic-based, 13
axioms of equality, 48

body of a clause, 86

clause, 86
closed term, 47
common knowledge, 56–57
compositionality, principle of, 96
consistent partial interpretations, 110

defined sentence in an interpretation, 109
dependency graph, 88

non-paradoxical, 91
paradoxical, 91

dependency relation, 89
descriptive view, 34
diagonalisation lemma, the, 68
directly self-referential sentence, 91
domain of a partial interpretation, 109
doubly dependent, 91

equality
axioms of, 48
first-order predicate logic with, 48
theory with, 69

explicit knowledge, 33
explicitly known, 33
external view of a logical theory, 33–34

finitely axiomatisable theory, 49
first-order

agent language, 49
agent theory, 49
language, 47
predicate logic, 47
predicate logic with equality, 48
theory, 48

formal knower sentence, 70

G−, 118
GM , 102
GL, 92
Gödel code, 51
Gödel number, 50
ground term, 47
grounded sentence, 98

head of a clause, 86
Herbrand model, 59
Herbrand interpretation, 58

Ignorant-about, 123
implicit knowledge, 33
implicitly known, 33
indirectly self-referential sentence, 91
internal view of a logical theory, 33–34
interpretation

139

140 INDEX

of a first-order theory, 58
of a sentence net, 87

introspection
negative, principle of, 62
perfect, 75
positive, principle of, 62

IterateK, 57

K-depth, 97
K-edge, 93
knower sentence

formal, 70
knower paradox, 23
knower sentence, 23
knowledge

explicit, 33
implicit, 33

knowledge base, 15
knowledge representation, 13

L, 49
L− {K}, 53

N , 86
language of arithmetic, 47
liar paradox, 22
liar sentence, 22
literal, 116
logic-based artificial intelligence, 13
logical axioms

of first-order predicate logic, 47
logical omniscience, 35–37
logical symbols, 46

meta-knowledge, 20
minimal interpretation of a sentence net,

112
minimal reduction of a sentence net, 118
modality, 37
model

of a sentence net, 87
Montague’s theorem, 72
Morreau-Kraus theorem, 80
multi-agent systems, 19

negative introspection, principle of, 62
non-logical axioms

of a first-order theory, 48
non-logical symbols, 46
non-paradoxical

dependency graph, 91
sentence-net, 88

non-regularity degree, 121
non-wellfounded graph, 90
numeral, 51

objective formula, 115
operator approach, 35

ΦU , 110
paradox, 22

knower, 23
liar, 22

paradox of the knower, 23
paradoxical

dependency graph, 91
sentence-net, 88

partial interpretation of a sentence net,
109

perfect introspection, 75
positive introspection, principle of, 62
predicate approach, 35
prescriptive view, 34
propositional attitude, 37
protected sentence, 120

Q, Robinson’s, 48

recursive relation, 53
recursively axiomatisable theory, 49
reduction of sentence net, 117
reflection principle, 61
regular formula, 77
representable relation, 53
Rivières-Levesque theorem, 77
Robinson’s Q, 48
RPQ formula, 79

schema T, 63
semantic approach, 42
sentence net, 87
sentence net

interpretation of, 87
minimal interpretation of, 112
minimal reduction of, 118
model of, 87
non-paradoxical, 88
paradoxical, 88
partial interpretation of, 109

INDEX 141

reduction of, 117
syntactic approach, 42

T, reflection principle, 61
Tarski’s schema T, 63
Tarski’s theorem, 71
theory

finitely axiomatisable, 49
of first-order predicate logic, 48
recursively axiomatisable, 49
with equality, 69

Thomason’s theorem, 73
truth-teller sentence, 85

U−, 118
UL, 92
UM , 102
undefined sentence in an interpretation,

110
ungrounded sentence, 98
unprotected sentence, 120

well-founded graph, 90

