
DEL-based Epistemic Planning for Human-Robot Collaboration:
Theory and Implementation
—Supplementary Material—

Thomas Bolander, Lasse Dissing, Nicolai Herrmann

A Additional Proof Details

Proof of Proposition 1. ⇒: Suppose Z is a bisimulation be-
tween s = (W,R,L,Wd) and t = (V,Q,K, Vd) and that
s |= φ. Then prove t |= φ which is equivalent to proving
that (V,Q,K, v) |= φ for every v ∈ Vd. Choose v ∈ Vd ar-
bitrarily. By the condition [designated], there existsw ∈Wd

with (w, v) ∈ Z. Now note that Z is a standard bisim-
ulation between (W,R,L,w) and (V,Q,K, v) (it satisfies
[atom], [back] and [forth] and (w, v) ∈ Z), and it hence fol-
lows that the two states are modally equivalent (Blackburn,
de Rijke, and Venema 2001). From s |= φ and w ∈ Wd,
we now immediately get (W,R,L,w) |= φ, and hence
(V,Q,K, v) |= φ by modal equivalence.
⇐: Suppose two states s = (W,R,L,Wd) and t =

(V,Q,K, Vd) are modally equivalent. We need to find a
bisimulation Z between them. From swe build a new model
s′ = (W ′, R′, L′, wd) with W ′ = W ∪ {wd}, L(wd) = ∅,
R′

i = Ri for all i ∈ A, and we add a fresh agent j with
R′

j = {(wd, w) | w ∈ Wd}. We construct t′ from t in the
same way, using vd as the designated world and using the
same fresh agent j. By induction on the structure of the for-
mula, we can now prove s′ and t′ to be modally equivalent:
All cases except Kjφ and Cφ are trivial. The case of Kjφ
holds due to the modal equivalence of s and t (s′ |= Kjφ
iff s |= φ iff t |= φ iff t′ |= Kjφ). The case of Cφ follows
from the cases of Kiφ, i ∈ A ∪ {j}, since Cφ is true iff
Ki1 · · ·Kinφ is true for all n ≥ 0 and agents i1, . . . , in.

We have now proved s′ and t′ to be modally equivalent.
Since they are standard single-pointed epistemic models
with actual worlds wd and vd, respectively, there must exist
a bisimulation Z ′ between them with (wd, vd) ∈ Z ′ (Black-
burn, de Rijke, and Venema 2001) (note that our mod-
els are finite and hence trivially image-finite). Let Z =
Z ′ ∩ (W × W ′). Since Z ′ is a bisimulation relation on
(W ∪ {wd}) × (V ∪ {vd}), Z must satisfy the conditions
[atom], [forth] and [back] for the states s and t. It now
suffices to prove that Z also satisfies [designated]. So let
w ∈ Wd. We need to find a v ∈ Vd with (w, v) ∈ Z. By
w ∈ Wd, we get (wd, w) ∈ Rj , and since (wd, vd) ∈ Z ′

and Z ′ is a bisimulation, from [forth] we get the existence
of a world v with (w, v) ∈ Z and (vd, v) ∈ Rj . From
(vd, v) ∈ Rj we can infer v ∈ Vd, as required. The other
direction is symmetric

B Coin-flip Domain
The coin-flip domain is a small domain causing an exponen-
tial blowup unless full bisimulation contraction is applied
to the states following each product update. The intuition
behind the domain is as follows: Two agents take turns flip-
ping a coin in such a way that the outcome is only visible
to the acting agent, i.e., both outcomes are indistinguishable
to the other agent. This causes the product update to create
two copies of the current epistemic state and thus an expo-
nential growth in the number of worlds. However since the
coin can at any point only be in one of two configurations
(either head or tails up), it is always possible to contract
this down to a bisimilar state consisting of only two worlds.
More formally, the domain is represented as follows: Let
A = {agt1, agt2} be a set of agents. We then represent the
current state of the coin as a proposition p and use proposi-
tions Cn, n ∈ N to count the number turns taken. The coin
flip action is then defined by the epistemic action of Figure
1, where turn(i, Cn) is a special proposition which is true iff
(i = agt1∧n mod 2 = 0)∨(i = agt2∧n mod 2 = 1), i.e.,
it ensures that the agents take turns flipping the coin. The
domain can then be made into a planning problem by speci-
fying an initial state s0 consisting of a single world whereC0

holds and a goal Cn for some specific n equal to the desired
search depth. This leads to a linear policy with the action se-
quence agt1:flip(C0), agt2:flip(C1), agt1:flip(C2), . . .,
which when applied to the initial state s0 results in the se-
quence of states as shown in Figure 2.

As can be seen, the number of worlds in each state dou-
bles for each applied action, thus resulting in an exponen-
tial blowup of the state size. However notice that in s2 the
worlds w3 and w4 are modally equivalent, i.e., the same for-
mulas hold in the two worlds, and similarly for w5 and w6.
We can therefore create the contracted state bs2c of Figure 3
by applying ordered partition refinement on s2 from Fig-

e1: 〈Cn ∧ turn(i, Cn),
p ∧ Cn+1 ∧ ¬Cn〉

e2: 〈Cn ∧ turn(i, Cn),
¬p ∧ Cn+1 ∧ ¬Cn〉)

A− {i}

Figure 1: The coin flip action i:flip(Cn) for agent i ∈ A

w0: C0

s0

w1: p, C1 w2: C1

agt2
s1

w3: p, C2 w4: p, C2

w5: C2 w6: C2

agt2

agt2

agt1 agt1

s2

w7: p, C3 w8: p, C3

w9: C3 w10: C3

w11: p, C3 w12: p, C3

w13: C3 w14: C3
s3

agt1:flip(C0)

agt2:flip(C1)

agt1:flip(C2)

Figure 2: The evolution of the epistemic state after repeated coin flip actions without bisimulation contraction. The agent labels
for the accessibility relations of state s3 has been left out to reduce clutter, but they follow a pattern similar to the smaller states.

ure 2. Note that bs2c only differs from s1 by the names of the
worlds, the agent which currently has uncertainty with re-
gards to p and the counter value. Thus the number of worlds
remains constant and the exponential blowup is avoided.
Applying ordered partition refinement after each coin flip
action therefore keeps the number of worlds at a constant
number and therefore avoid the exponential blowup.

1: p, C2 2: C2

agt1
bs2c

Figure 3: The result of contracting the state s2 using ordered
partition refinement.

C MAPF/DU example
To illustrate how the policies are created, we show the pro-
cess for the concrete MAPF/DU example shown in the main
report. Recall that MAPF/DU defines a grid world with
agents having a start cell and a set of possible goal cells.
Each agent knows their own goal cell, but has uncertainty
regarding the goal cells of the other agents. The agents must
navigate to their own goal cell and announce this, at which
point they are no longer allowed to move. Figure 4 shows
the initial state where agents 1 and 2 are located at the top
left and top right respectively. For each cell, the lower left
corner shows the name of the cell, and the lower right cor-
ner shows what agent may have the cell as goal (where bold
font marks the actual goal). The initial state is formalised
in Figure 5 where g(agt, c) means agent agt has goal cell
c, at(agt, c) means agent agt is currently occupying cell c,
free(c) means cell c is not occupied, and adj(cx, cy) means
that cells cx and cy are adjacent to each other, i.e. it is pos-
sible to move from cell cx to cell cy . The domain has two
actions. We will use the shorthand move(agt, cx, cy) for
the action agt:ontic(at(agt, cx)∧ free(cy)∧ adj(cx, cy)∧

c0 c1 c2

x1

agt2 agt2 agt1

agt1

agt1 agt2

Figure 4: Initial state for MAPF/DU example. Left corner
shows the cell name, right corner shows what agent may
have the cell as goal (where bold font is the actual goal), and
the center text is the initial position of the agents.

¬stopped(agt),¬at(agt, cx) ∧ ¬free(cy) ∧ at(agt, cy) ∧
free(cx)) which moves agent agt from cx to cy if agt
has not already stopped. Likewise we use the shorthand
stop(agt, c) for the action agt:ontic(at(agt, c)∧g(agt, c)∧
¬stopped(agt), stopped(agt)) which announces that the
agent is at its goal and will stop moving. Note that the an-
nouncement action is technically an ontic action as it has
both a precondition and a postcondition. However, it does
not change any physical aspects of the world, but rather sets
a support flag to more easily be able to check whether an
agent has reached their goal. Actions are performed sequen-
tially such that at every time step, one agent performs one
action.

The part of the search graph which is used to extract a
policy can be seen on Figure 6, where s0 is given on Figure
5 and the children of s15 and s17 have been cut for brevity.
All squares are and-nodes, and all circles are or-nodes. The
children of an and-node are all the globals of the state, and
the child of an or-node is the product update with the cho-
sen action. All or-nodes and their chosen action have been
marked with a thick line, and they form the basis of the pol-

w2:
g(agt2, c0)
g(agt1, c2)

w3:
g(agt2, c0)
g(agt1, x1)

w0:
g(agt2, c1)
g(agt1, c2)

w1:
g(agt2, c1)
g(agt1, x1)

agt2

agt2

agt1 agt1

at(agt1, c0)
free(c1)
at(agt2, c2)
free(x1)
adj(c0, c1)
adj(c1, c0)
adj(c1, c2)
adj(c2, c1)
adj(c1, x1)
adj(x1, c1)

s0

Figure 5: Initial state s0 for MAPF/DU example. There is
no uncertainty regarding the list of propositions on the left,
and they have therefore been listed separately instead of at
each world, for brevity.

icy. The policy is extracted by, for each or-node, performing
a perspective shift to the owner of the chosen action, then
performing ordered partition refinement, and mapping them
to their respective chosen action. Take node s13 for example,
the policy is extended by bsagt113 c → stop(agt1, x1)

Note that the graph has been generated from the perspec-
tive of agent agt1 which is why s0 has two children. I.e.
the initial perspective shift of s0 causes both w0 and w2 to
be designated, i.e. Wd = {w0, w2}. Interestingly, the first
three actions of the policy are fixed, i.e. a0 = a1, a2 = a3,
and a4 = a5. They specify that agt1 moves to cell c1 and x1,
where after agt2 moves to cell c1. We can realise that this
is the only optimal solution since we are considering worst-
case optimality. If instead agt2 had made the first move, to
cell c1, it would block both of agt1’s goals. If agt2 contin-
ued moving, to cell x1, it would block one of agt1’s goals,
and would in the worst case have to reverse both actions,
leading to a horrible solution length. After the first three ac-
tions (s9 and s10), if in worlds w1 or w3, agt1 will announce
that she has arrived at her goal x1, else agt2 will move out
of the way to allow agt1 to reach her goal at c2.

References
Blackburn, P.; de Rijke, M.; and Venema, Y. 2001. Modal
Logic, volume 53 of Cambridge Tracts in Theoretical Com-
puter Science. Cambridge, UK: Cambridge University
Press.

s0

s1 s2

s3

s4 s5

s6

s7 s8

s9 s10

s11 s12 s13 s14

s15 s16 s17

s18 s19

s20 s21

s22 s23

s24

s25

Wd = w0 Wd = w2

a0 = move(agt1, c0, c1) a1 = move(agt1, c0, c1)

Wd = w0 Wd = w2

a2 = move(agt1, c1, x1) a3 = move(agt1, c1, x1)

Wd = w0 Wd = w2

a4 = move(agt2, c2, c1) a5 = move(agt2, c2, c1)

Wd = w0 Wd = w1 Wd = w3 Wd = w2

a6 = move(agt2, c1, c0) a7 = stop(agt1, x1) a8 = stop(agt1, x1) a9 = move(agt2, c1, c0)

Wd = w0 Wd = w1

a10 = move(agt2, c1, c0) a11 = stop(agt2, c1)

Wd = w0 Wd = w1

a12 = stop(agt2, c0)

Wd = w0

Figure 6: Partial search graph for MAPF/DU example, used for policy extraction. Circles are or-nodes and squares are and-
nodes

