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Why learning in planning?
When humans solve planning problems, it is not always the case that:

1. We know exactly what the precondition and effects are of all our
atomic actions.

2. We have a built-in heuristics to guide our search for a goal.

Insofar as AI is about making computers do human-like things, we should
try to make them work more on human-like premises, not give them an
unrealistic head start.
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Levels of AI planning

1 Search problems: Given initial state, actions, transition model,
goal, and heuristics. Weakness: Every new problem requires new
transition model and new hand-crafted heuristics. Solved by:

1.1 Automated planning: Actions/transition model given in PDDL (or
similar). Heuristics automatically inferred. Weakness: Action
schemas have to be hand-crafted. Solved by:

1.1.1 Planning + learning of action models: Level 1.1 + learning
PDDL action models from observing state transitions. Weakness:
We need symbolic observations. Alternative:

1.2 Search + learning implicit transition models: Level 1 + learning
implicit transition models from raw data using e.g. neural networks.
Weakness: No automatic inference of heuristics. Solved by:

1.2.1 Search + learning implicit transitions models + learning
heuristics: Level 1.2 + learning heuristics from raw observations.
Weakness: Transfer learning, explainability.

Dittadi & Bolander, Learning to Plan, University of Freiburg, 13 April 2018 – p. 3/28



Symbolic vs sub-symbolic AI

The symbolic paradigm (1950–): Simulates
human symbolic, conscious reasoning. Search,
planning, logical reasoning. Ex: chess
computer. ↑

robust, predictable, explainable

strictly delimited abilities

flexible, learning

never 100% predictable/error-free

↓
The sub-symbolic paradigm (1980–):
Simulates the fundamental physical (neural)
processes in the brain. Artificial neural
networks. Ex: image recognition.

symbolic

↓

↑
sub-symbolic

Dittadi & Bolander, Learning to Plan, University of Freiburg, 13 April 2018 – p. 4/28



Google DeepMind’s AlphaGo (2016)
(and the movie by the same name)

CPH:DOX, 20 March 2018. Left to right: Fan Hui, Euro-
pean Go champion; Sebastian Risi, IT University of Den-
mark; me; Josh Rosen (producer of AlphaGo).
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Google DeepMind playing Breakout
Combining reinforcement learning and neural networks. Reported in
Nature vol 518, 26 February 2015.

http://www2.compute.dtu.dk/~tobo/DeepMind.MP4
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DeepMind playing Montezuma’s Revenge

http://www2.compute.dtu.dk/~tobo/MontezumasRevenge.mov
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Three waves of AI

In February 2017, DARPA publishes the video “A DARPA Perspective on
Artificial Intelligence” (https://www.youtube.com/watch?v=-O01G3tSYpU). Identifies three
waves of AI, and relate to the DARPA challenge:

• “The first wave of AI: Handcrafted knowledge”. Essentially the
symbolic paradigm.

• “The second wave of AI: Statistical learning”. Essentially the
subsymbolic paradigm.

• “The third wave of AI: Contextual adaptation”. Essentially the
combination of symbolic and subsymbolic approaches. Combine
perception in neural networks with symbolic models for representing
features, allowing explanations (“I thought it was a cat because it
has fur and a short snout”).

First wave Second wave Third wave
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Motivation

Wish to create an artificial agent in a grid-based video game setting that:

• interacts with its environment, a fixed type of domain
• the domain can have several different instances (e.g. several
different levels in a game)

• learns the environment dynamics from experience in the form of raw
observations

• acts to achieve goals, and goals can differ between instances.
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Possible approaches to solve our problem

• Automated planning. Problem: requires that the domain is
already fully described in a logical formalism, like STRIPS below.

Action : Move(player, from, to, dir)
Prec : At(player, from) ∧ Clear(to) ∧Move-Dir(from, to, dir)
Effect : ¬At(player, from)∧¬Clear(to)∧At(player, to)∧Clear(from)

Unlike the problem a human novice is facing.

• Action schema learning in automated planning. Problem:
requires observations to be symbolic. Still unlike the problem a
human novice is facing.

• Classical reinforcement learning (model-free and model-based).
Problem: 1) does not generalise to new instances of the domain, 2)
does not generalise to new goals. Still not comparable to humans.

• Our solution: learn implicit (sub-symbolic) action models from raw
observations, and then do search/planning based on those learned
action models.
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Sokoban
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Learning framework

Sokoban is an instance of a planning problem: tuple (S,A, T ,G, s0)
where

• S, A, G are finite sets of states, actions, and goal states (G ⊆ S).

• s0 ∈ S is an initial state.

• T : S ×A → S is a deterministic transition function.

• s ′ = T (s, a) is defined for all s and a, with s ′ = s if a is not
applicable in s.

• G is given as a goal test function g : S → {0, 1}, g(s) = 1G(s).

The states are fully observable, and each observation is a visual frame,
i.e. a matrix of integers in the range [0, 255] (8-bit grayscale
representation of the individual pixels in the frame).

The agent is assumed to be aware of its own position in the environment.

For the noisy scenario, Gaussian independent additive noise.
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Locality assumption: Action preconditions and
effects are geometrically local

• Assume that the preconditions and effects of all actions are restricted
to a local K -neighbourhood of the agent (a sub-grid of size K × K

around the agent). K is either fixed or learned from observations.
• The K -neighbourhood is called the local state of the agent. We
use LKi ,j(s) to denote the K -neighbourhood with center (i , j) of state

s. When (i , j) is the position of the agent, we simply write LK (s).
And when K is clear, L(s).

If s denotes the state on the left,
the highlighted local neighbour-
hood is L57,5(s) = L5(s).
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Environment prediction: learning the (local)
dynamics of the environment

Let SL be the set of local states (for a fixed K ). The aim for the agent is
to learn the local transition function T ′ : SL ×A → SL defined by

T ′(LKi ,j(s), a) = LKi ,j(T (s, a)).

Note: This function is well-defined due to the locality assumption.

It maps a local neighbourhood and an action to the modified local
neighbourhood after action execution.

When the locality assumption holds for a sufficiently small K , this is
better than traditional reinforcement learning (RL):

• Generalises to new domain instances like ordinary action schemas
(RL methods rely on the whole state space so in a new instance they
have to re-learn).

• Easier to learn small area.

Dittadi & Bolander, Learning to Plan, University of Freiburg, 13 April 2018 – p. 14/28



How the agent does environment prediction
The agent uses neural networks to learn an approximation T̂ ′ of the local
transition function T ′:

T̂ ′(Φ(L(s)), a;θ) ≈ Φ(T ′(L(s), a))

• Φ is a preprocessing map—the agent sees the world through this
function, e.g. bit-depth reduction, downscaling, grayscale
conversion.

• θ is a vector of parameters for the neural networks (weights, biases).

More precisely, we define (omitting normalisation operators):

T̂ ′(Φ(sL), a;θ) = NNa(Φ(sL);θa) + Φ(sL),

where NNa is a neural network for learning action a (one network for
each action).

Neural network architecture: K 2 inputs, 4 fully connected layers of
size 64, 128, 128, 64, with leaky ReLU activations, and a linear fully
connected output layer with K 2 outputs.
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Illustration of environment prediction

+

−

+

Hidden
layer

Input
layer

Output
layer

Move right action network

move right
→
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Training
• Observe local transition for action a in state s, that is, observe
transition pair (s, s ′) = (Φ(L(s)),Φ(T ′(L(s), a))).

• From Φ(L(s)) the neural network has to predict the difference

s ′ − s = Φ(T ′(L(s), a))− Φ(L(s)).

Note relation to learning action schema effects.
• Minimize square loss by stochastic gradient descent, using Uniform
Experience Replay (UER) (randomly sample a minibatch from large
buffer of observations) and/or Prioritized Experience Replay (PER)
(recently mispredicted transitions).
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Planning

On top of the neural networks for approximate prediction of state
transitions, we do traditional tree/graph search (e.g. BFS, DFS, A*):

• Initial state is current observed state.

• Goal states are given by goal test function.

• Node expansion using T̂ ′ (approximate state transition function
given by the neural network predictors).

Key idea: compact action descriptions for planning, but choosing implicit
representations (by NNs) instead of explicit (e.g. STRIPS).

If no plan is found (e.g. because environment model is too inaccurate),
return to exploratory behaviour...
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Exploration strategies

Exploration strategy: The agent’s strategy for achieving data for
learning (which actions to choose).

Better exploration → better training set → better learning

• One-step exploration policies: In each step, choose an action
according to a (probabilistic) action selection policy. We consider
two such policies π:

• Random exploration: π(a | s) = 1/|A|.
• Count-based exploration (preferring novelty): π(a | s) is an action

for which the number of explorations of a in the local state LKi,j(s) is
minimal.

• Planning-based exploration (planning for novelty): Use planning
to reach a state s, so that for some action a, the number of
explorations of (LKi ,j(s), a) is minimal among all (local state, action)
pairs. Execute a when s has been reached. (Essentially:
Count-based + planning.)
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Results – Sokoban observations

What the agent observes (two alternatives) and how it preprocesses it.

Pixel observations
(9x9 pixels per cell)

Low-dimensional observations
(one pixel per cell)

• The agent knows the frame size and the board size

• Observations are converted to grayscale and quantized. Pixel observations
are also downscaled by a factor of 3 (pictures later).
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Results – learning dynamics
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• Training level strongly affects performance
• Complex and large level → diverse training set → better learning.
• In this example, the simple level is a small level with 2 boxes only.

• The complete agent uses Prioritized Experience Replay (PER) and
planning for exploration.

Dittadi & Bolander, Learning to Plan, University of Freiburg, 13 April 2018 – p. 21/28



Results – exploration

0 10000 20000 30000 40000 50000 60000
Training steps

0

5000

10000

15000

20000

# 
st

at
e-

ac
tio

n 
pa

irs
Training set variety

complete agent
only count-based expl.
only random expl.

Number of distinct
visited (state, action)
pairs, while training
on standard training
level.

Blue line: one-step

count-based explo-

ration interleaved

with planning for

exploration.

• More diverse experience → more learning potential.
• Best results: combination of one-step count-based exploration and
planning for exploration.

• Actively explore regions the agent would not explore with one-step
count-based exploration alone, but when it doesn’t know how to plan
it can still explore in a smart way.
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Results – solving levels
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8x10, 1 box
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30x30, 8 boxes

• Using BFS to search for goal states. On 30x30 levels we use A* with a
simple domain-specific heuristics.

• Each line corresponds to a test set of randomly generated Sokoban levels.

• The only significant difference is when there is only 1 box (dynamics in the
1-box case are simpler, and learned more easily).
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Results – solving new tasks
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• The two solve level lines are as on the previous slides. The other
task is to have at least one box next to each target.

• No additional training is needed for solving new tasks.
• In RL a new policy would have to be learned from scratch from an

updated reward signal.
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Results – generalizing to pixels observations

• Generalisation of the learning setting.

• The pixel observations shown earlier are preprocessed by the
“vision” map Φ.

• The agent learns from higher-dimensional observations shown here
• noisy observations on the right (independent Gaussian)
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Results – learning from pixels
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• Noisy with Prioritized Experience Replay (PER) doesn’t make sense.
• Performance degradation, but not bad for that level of noise.
• Would be difficult to achieve in most approaches to action schema
learning.
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Related work
• Learning action schemas

[Amir, 2008, Walsh and Littman, 2008, Mourão et al., 2012]
• efficient and flexible
• but needs high-level logical observations.

• Model-free reinforcement learning
[Mnih et al., 2015, Mnih et al., 2016]

• learns from (high-dimensional) raw observations and a scalar reward
signal

• but cannot generalise to new domain instances
• and has no planning capability.

• Model-based reinforcement learning
[Tamar et al., 2016, Weber et al., 2017]

• additionally learns environment model to do planning
• but planning is typically in terms of faster convergence, the output is

still an instance specific policy.

• Reinforcement learning methods are also inefficient: no assumption
on environment structure, and possibly sparse rewards. Reasonable
Sokoban results need 1 billion training samples [Weber et al., 2017].
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Future work includes

• Relax locality assumption: more advanced learning of the relevant
areas of preconditions and effects (compare Montezuma’s Revenge).

• Relax assumption of agent knowing its position.

• Improve learning from high-resolution pixel representations:
better machine learning models, e.g. convolutional neural networks.

• Improve planning efficiency: e.g. learning heuristics for informed
state-space search.
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Reasoning about others in financial bubbles

Greater fools theory: Agent i is willing to buy an asset at a price p

higher than its believed value, if i believes that the asset can later be
resold for a price > p (sold to “a greater fool”).

buyi (p) ↔



Bi (v > p) ∨ Bi





∨

j∈Agents

∨

p′>p

buyj(p
′)









Bi : agent i believes that.

We study: Under which conditions does
greater fool behaviour lead to financial
bubble formation? What kind of agent
types? What kind of reasoning abilities
(levels of Theory of Mind)? What does it
take to avoid those bubbles?

[Thomas Bolander and Hanna van Lee, in
preparation]
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Symbolic and Subsymbolic Action learning

Subsymbolic action learning

+

−

+

Move right action network

move right
→

[Andrea Dittadi, Thomas Bolander & Ole
Winther, under submission]

Symbolic action learning

Action : MoveRight(agt, from, to)

Precondition :
At(agt, from) ∧ Clear(to) ∧
RightOf(from, to)

Effect :
¬At(player, from) ∧ At(player, to) ∧
¬Clear(to) ∧ Clear(from)

Currently extended to multi-agent
learning under partial observability:
learning actions and how others see
them.

Joint work with Nina Gierasimczuk and
Andrés Libermann.
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Goal recognition

Planning-based goal recognition: Infer most probable goal from
observing action sequence and inferring cost of achieving different goals.

By Bayes rule, the chain rule and the law of total probability:

P(g | a1 · · · an, s0) = P(a1···an|s0,g)P(g)∑
g′∈Goals P(a1···an|s0,g ′)P(g ′)

=
P(g)

∏n
j=1 P(aj |T (s0,a1···aj−1),g)∑

g′∈Goals P(g ′)
∏n

j=1 P(aj |T (s0,a1···aj−1),g)

Used in Smart Innovation project with the
startup company Shade making intelligent
lighting (2017–2018).

[Joint work with Andrea Dittadi. Planning-based goal recognition is based on Ramirez,
2011; Geffner, 2013.]
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Human child, 18 months old

http://www2.compute.dtu.dk/~tobo/children_cabinet.mpg

The child is not given any instructions beforehand.

[Warneken 2006]
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Modelling the cabinet example

Possible reasoning and acting by child:

• Goal recognition. Infer goal g of
human: papers in cabinet.

• Multi-agent planning. Compute
plan (c is child, a is adult):
c :go to cabinet, c :open cabinet,
a:place papers.

• Verify that plan is implicitly
coordinated (using beliefs, B ,
instead of knowledge, K ):

s0 |= Br (〈c :go to cabinet〉⊤ ∧ [c :go to cabinet]
Bc(〈c :open cabinet〉⊤ ∧ [c :open cabinet]
Ba(〈a:place papers〉⊤ ∧ [a:place papers]g)))

• Execute c-steps in plan. Wait for a-steps. Replan if failure.
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