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Learning objectives

1. Derive models using mass and energy balances

2. Use time delays to describe transport phenomena
▶ Describe pitfalls of time-varying time delays

3. Analyze the stability of steady states

4. Analyze the effect of feedback control laws

5. Perform numerical simulation studies

6. Perform closed-loop simulations
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Stability theory
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System

General form

ẋ(t) = f(x(t), u(t), d(t), p) (1)

▶ u are manipulated inputs, i.e., we can use them to control the
process

▶ d are process inputs that we do not have control over

▶ p are model parameters
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Stability – Linear systems
For linear systems, e.g., in the form

ẋ(t) = A(p)x(t) +B(p)u(t) + E(p)d(t), (2)

the stability is determined by the system matrix, A

Characteristic equation

P (λ) = det(A− λI) = 0 (3)

▶ Unstable: Largest real part positive, max
i∈{1,...,n}

Reλi > 0

▶ Marginally stable: Largest real part zero, max
i∈{1,...,n}

Reλi = 0,

and algebraic multiplicity equal to geometric multiplicity

▶ Asympt. stable: Largest real part negative, max
i∈{1,...,n}

Reλi < 0

Algebraic multiplicity: # of identical eigenvalues.
Geometric multiplicity: # of identical eigenvectors.
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Characteristic functions and equations

Characteristic equation

P (λ) = det(A− λI) = 0 (4)

Note: Since λ can be complex, the characteristic polynomial, P (λ),
can also be complex for arbitrary λ. Consequently, the condition is
that both the real and imaginary parts are zero, i.e., the
eigenvalues, λ, must satisfy two algebraic equations simultaneously.
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Stability – Nonlinear systems

Nonlinear system

ẋ(t) = f(x(t), u(t), d(t), p) (5)

Steady state

0 = f(xs, us, ds, p) (6)

Jacobian matrix

A =
∂f

∂x
=


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fn
∂x1

. . . ∂fn
∂xn

 (7)

The stability analysis can be carried out based on the Jacobian
matrix, A, evaluated in the steady state, xs, us, and ds. However,
the results are only local.
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Open-loop simulation
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Open-loop simulation

Zero-order hold parametrization: Assume that manipulated inputs
and disturbance variables are piecewise constant

u(t) = uk, t ∈ [tk, tk+1[, (8a)

d(t) = dk, t ∈ [tk, tk+1[ (8b)

The intervals [tk, tk+1] are called control intervals

Open-loop simulation ({uk, dk}N−1
k=0 are given)

xk(tk) =

{
x0 k = 0,

xk−1(tk), k = 1, . . . , N − 1,
(9a)

ẋk(t) = f(xk(t), uk, dk, p), t ∈ [tk, tk+1], k = 0, . . . , N − 1
(9b)
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Balance equations
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Balance equations

Mass and energy balances{
Change

}
=

{
In− Out+ Produced− Consumed

}

Dynamical mass and energy balances{
Rate of change

}
=

{
Inlet rate− Outlet rate

+ Production rate− Consumption rate

}

Dynamical mass balances

ṅ(t) = fin(t)− fout(t) +R(t)V (10)
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Nuclear reactor models
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Nuclear fission

Chemical symbol

Mass number
Atomic numberChemical element (11)

Fission reaction

1
0n + 235

92U

neutron
absorp.
−−−−→ 236

92U
fission
−−−−→

Np∑
i=1

νi
ai
ziEi + ν0

1
0n (12)

Negative beta decay followed by neutron emission

ai
ziEi

neg. beta
decay

−−−−→ ai
zi+1E

∗
i

neutron
emission
−−−−→ ai−1

zi+1E
∗
i +

1
0n, (13)

14 / 32



Nuclear reactor model 1

Mass balance

ṅ(t) =
ρ

Λ
n(t) (14)

ρ is the reactivity and Λ is the mean neutron generation time

Question: Is it stable?

We often express the mass balances in terms of concentrations,
Cn(t) = n(t)/V . If the volume V is constant

Ċn(t) = ṅ(t)/V =
ρ

Λ
n(t)/V =

ρ

Λ
Cn(t) (15)
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Nuclear reactor model 2

Introduce a single neutron precursor group

Ċn(t) =
ρ− β

Λ
Cn(t) + λ1C1(t), (16a)

Ċ1(t) =
β

Λ
Cn(t)− λ1C1(t) (16b)

Matrix-vector form[
Ċn(t)

Ċ1(t)

]
=

[ρ−β
Λ λ1
β
Λ −λ1

] [
Cn(t)
C1(t)

]
(17)
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Nuclear reactor model 3

Introduce m neutron precursor groups

Ċn(t) =
ρ− β

Λ
Cn(t) +

m∑
i=1

λiCi(t), (18)

Ċi(t) =
βi
Λ
Cn(t)− λiCi(t), i = 1, . . . ,m (19)

where β =
∑m

i=1 βi

Matrix-vector form
Ċn(t)

Ċ1(t)
...

Ċm(t)

 =


ρ−β
Λ λ1 · · · λm
β1

Λ −λ1

...
. . .

βm

Λ −λm



Cn(t)
C1(t)

...
Cm(t)

 (20)
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Nuclear reactor model 4
Introduce thermal reactivity feedback

ρ̇(t) ∝ Cn(t) (21)

Proportionality constants

ρ̇(t) = −κHCn(t) (22)

κ is the reactivity proportionality constant and H is the ratio
between the power production proportionality constant and the
heat capacity of the reactor core

Mass balance equations

Ċn(t) =
ρ(t)− β

Λ
Cn(t) +

m∑
i=1

λiCi(t), (23a)

Ċi(t) =
βi
Λ
Cn(t)− λiCi(t), i = 1, . . . ,m (23b)
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General form

General form (continuously-stirred tank reactor)

Ċ(t) = R(t) (24)

Production rate

R(t) = ST (t)r(t) (25)

Stochiometric matrix and reaction rates (n = m+ 1)

S(t) =


−1 1

. . .
...

−1 1
β1 . . . βm ρ(t)− β

 , r(t) =


λ1C1(t)

...
λmCm(t)
Cn(t)/Λ

 (26)
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Energy balances
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Energy balances
Change in internal energy

U̇(t) = H(Tin(t), Pin(t), fin(t))︸ ︷︷ ︸
“Hin(t)”

−H(Tout(t), Pout(t), fout(t))︸ ︷︷ ︸
“Hout(t)”

+Qg(t)

(27)

Enthalpy

H(T, P, n) = U(T, P, n) + PV (T, P, n) (28)

The right-hand side of the energy balance involves enthalpies
because it accounts for both 1) the internal energy of the inlet and
outlet streams and 2) the work associated with the streams [1].

Other aspects that may affect the energy balance

▶ Kinetic energy

▶ Potential energy

▶ Shaft work (work done without adding or removing mass)
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Enthalpy
Enthalpy of mixture

H(T, P, n) = nh(T, P ) (29)

Defining relationship

cP (T, P ) =
∂h

∂T
(T, P ) (30)

Integrate

h(T, P )− h(T0, P0) =

∫ T

T0

cP (T̃ , P ) dT̃ (31)

Special case (constant specific heat capacity)

h(T, P ) = h(T0, P0) + cP (T − T0) (32)

Note: The specific heat capacity may either be given per kilogram
(or similar) or per moles
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Internal energy

Relation between enthalpy, volume, and internal energy

U(T, P, n) = H(T, P, n)− PV (T, P, n) (33)

Special case (constant mass and specific heat capacity)

U̇(t) = f(t)cP Ṫ (t) (34)
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Enthalpy of inlet and outlet streams
Difference in inlet and outlet enthalpy (constant pressure and same
mass flow rate)

H(Tin(t), P, f(t))−H(Tout(t), P, f(t))

= f(t)h(Tin(t), P )− f(t)h(Tout(t), P )

= f(t) (h(Tin(t), P )− h(Tout(t), P )) (35)

Write out difference (constant specific heat capacity)

h(Tin(t), P )− h(Tout(t), P ) = h(T0, P0) + cP (Tin(t)− T0)

− (h(T0, P0) + cP (Tout(t)− T0))

= cP (Tin(t)− Tout(t)) (36)

Substitute

H(Tin(t), P, f(t))−H(Tout(t), P, f(t)) = f(t)cP (Tin(t)− Tout(t))
(37)
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Energy balance

Energy balance (constant pressure and heat capacity and same
flow rates)

ncP Ṫ (t) = f(t)cP (Tin(t)− Tout(t)) +Qg(t) (38)
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Convection heat transfer

Convection

Q = −k(T − Tc) (39)
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Nuclear reactor models revisited
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Nuclear reactor energy balances

Energy balance equations (reactor core and heat exchanger)

nrcP Ṫr(t) = f(t)cP (Thx(t)− Tr(t)) +Qg(t), (40a)

nhxcP Ṫhx(t) = f(t)cP (Tr(t)− Thx(t))− khx(Thx(t)− Tc) (40b)

Thermal power generation

Qg(t) = Qg,0
Cn(t)

Cn,0
(41)
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Nuclear reactor model 5
Reactivity

ρ̇(t) = −κṪr(t) (42)

Mass balance equations

Ċn(t) =
ρ(t)− β

Λ
Cn(t) +

m∑
i=1

λiCi(t), (43a)

Ċi(t) =
βi
Λ
Cn(t)− λiCi(t), i = 1, . . . ,m (43b)

Energy balance equations (reactor core and heat exchanger)

Ṫr(t) =
f(t)

nr
(Thx(t)− Tr(t)) +

Qg(t)

nrcP
, (44a)

Ṫhx(t) =
f(t)

nhx
(Tr(t)− Thx(t))−

khx
nhxcP

(Thx(t)− Tc) (44b)
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Questions?
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